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Integrating electric vehicles (EVs) into the electricity and carbonmarkets presents

a promising pathway toward sustainable transportation futures. This article

proposes a comprehensive framework that synergizes the operations of the

electricity and carbon markets with the growing adoption of EVs. The proposed

framework includes a low-carbon transmission network operation model

that integrates the electricity and carbon markets, facilitating optimal energy

dispatch while minimizing carbon emissions. In addition, the framework extends

to distribution network operations, incorporating a double carbon taxation

mechanism to address emissions at both the generation and consumption

levels. A carbon emission flow model is employed to meticulously trace carbon

emissions across the supply chain, enhancing transparency and accountability.

The framework also introduces an EV-integrated tra�c flow model that

captures the interactions between transportation networks and energy demand,

influencing tra�c dynamics and EV charging behaviors. Furthermore, a planning

and pricing model for EV charging stations is developed, incorporating carbon

costs into the pricing strategy to incentivize eco-friendly practices. Themultilevel

solution algorithm ensures an iterative convergence of decision variables across

transmission, distribution, and transportation networks, ultimately fostering an

integrated eco-transport system. This work contributes to the development

of sustainable transport systems by promoting e�cient EV integration and

supporting decarbonization e�orts in both the energy and transportation sectors.

KEYWORDS

carbon market, electric vehicles, carbon emissions tracing, tra�c flow modeling,

integrated market

1 Introduction

The global push toward energy transition has become a critical topic in addressing

climate change and ensuring a sustainable future. A key component of this transition is

the decarbonization of the power sector, which is essential for reducing greenhouse gas

emissions andmeeting international climate targets (Tao et al., 2020). To facilitate this shift,

carbon trading has been introduced in the power sector, creating economic incentives for

reducing emissions and encouraging the adoption of cleaner energy sources (Zhang et al.,

2024). Simultaneously, electrifying the transportation system is recognized as a crucial step

toward achieving carbon neutrality. As one of the largest contributors to carbon emissions,

the transportation sector’s shift to electric vehicles (EVs) not only reduces the reliance on

fossil fuels but also integrates into the broader energy system, creating new opportunities
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and challenges. This convergence of the power sector’s

decarbonization efforts with transportation electrification has

led to the emergence of the eco-transportation system. The

eco-transportation system is a holistic approach that integrates

electricity network operations with the electricity market and

carbon market, aiming to optimize both energy use and emissions

reductions. By considering the dynamic interactions between

these systems, the eco-transportation framework supports the

development of sustainable transport solutions that align with

broader energy transition goals. This article explores the potential

of this integrated approach to drive the next phase of energy

transition, focusing on the synergies between electricity and carbon

markets and their impact on transportation electrification.

The increasing interconnectedness of the power and

transportation sectors provides a strong motivation for exploring

integrated approaches that can maximize the benefits of

decarbonization efforts. As EVs become more prevalent, they

introduce both opportunities and challenges for energy systems.

On one hand, EVs offer a viable path for reducing transportation-

related carbon emissions and enhancing energy efficiency. On

the other hand, their widespread adoption poses new demands

on the electricity grid, necessitating innovative solutions that can

manage this demand without compromising the grid’s stability

or increasing emissions. This research’s motivation stems from

the need to develop a comprehensive framework that addresses

these challenges by integrating EVs into the broader context of the

electricity and carbon markets. Such an integration is crucial for

optimizing energy usage, reducing emissions, and supporting the

transition to a sustainable, low-carbon future.

Participating in electricity and carbon markets is a crucial

area of research that intersects with the broader goals of

decarbonization and sustainable energy management (Qiu et al.,

2023). The literature has extensively explored the mechanisms

by which various energy resources, including renewable energy

and distributed energy resources, can participate in these markets,

driving the transition toward a low-carbon economy (Nadimi et al.,

2024). A key focus has been on how carbon pricing mechanisms,

such as cap-and-trade systems, carbon taxes, and emission trading

schemes, can be leveraged to create financial incentives for reducing

greenhouse gas emissions (Ouyang et al., 2024). Studies have

shown that carbon pricing can significantly influence the dispatch

of generation units, favoring low-carbon or renewable energy

sources over fossil fuel–based generators (Mingolla et al., 2024).

For instance, research on integrated electricity and carbon markets

highlights how carbon prices impact the marginal cost of electricity

production, making carbon-intensive generation less competitive

(Zheng et al., 2024). This dynamic encourages deploying renewable

energy sources like wind and solar, which, in turn, leads to a

decrease in overall carbon emissions from the power sector. In

addition, studies have explored the role of carbon markets in

facilitating investments in clean energy technologies by providing

a predictable revenue stream through the sale of carbon credits

or allowances (Tao et al., 2021b). In recent years, the emission

obligation on the demand side has aroused researchers’ attention.

Mu et al. (2022) proposed a decentralized market model integrating

electricity and carbon trading for microgrids. The proposed model

not only satisfied the demand for transactions but also ensured

the constraint of total carbon emissions for the microgrid. Some

references further consider the carbon trading behaviors between

consumers (Wan et al., 2023). It has been pointed out that the

proposed method can motivate “grid-friendly” and “low-carbon”

peer-to-peer (P2P) trading (Lu et al., 2022).

Integrating transport and electric systems within an electricity–

carbon environment is motivated by the need to address

both the environmental and operational challenges posed by

increasing EV adoption. As the transportation sector shifts toward

electrification, EVs introduce a significant new demand on the

electricity grid, which must be managed effectively to ensure

grid stability and efficiency. At the same time, carbon emissions

from both the power and transportation sectors are critical

contributors to climate change. Incorporating a carbon pricing

mechanism into this coupled system incentivizes lower emissions

by integrating renewable energy sources and promoting eco-

friendly charging practices.

The existing literature has made significant strides in

understanding various aspects of EV integration. Research has

extensively explored the impact of EV charging on grid stability

(Bishla and Khosla, 2024). As EV adoption increases, the

cumulative demand for electricity during peak charging times

can lead to voltage instability (Gholami et al., 2024), increased

load on distribution networks (Amir et al., 2024), and potentially

higher operational costs for grid operators. To mitigate these

effects, strategies such as time-of-use pricing (Chen et al., 2024),

demand response (Menghwar et al., 2024), and smart charging

systems (Tao et al., 2021a) have been proposed to incentivize

EV owners to charge their vehicles during off-peak hours when

electricity demand is lower and generation costs are reduced. In

addition, studies have examined the role of renewable energy in

supporting the increased demand from EVs, demonstrating the

potential for solar and wind power to complement EV charging

needs and reduce carbon emissions. The literature suggests that

coupling EV charging with renewable energy generation can

provide dual benefits: It not only meets the additional demand

but also contributes to reducing carbon emissions by displacing

fossil fuel–based electricity generation (Will et al., 2024). These

models often explore scenarios in which EVs are charged during

periods of high renewable generation, thereby optimizing clean

energy use and reducing the carbon footprint of EVs (Ahmed et al.,

2024). Furthermore, the interaction between electricity markets

and carbon trading has been investigated, with findings suggesting

that carbon pricing mechanisms can effectively incentivize the

adoption of low-carbon technologies (Liu et al., 2023). Carbon

pricing can influence the cost of electricity used for charging,

thereby encouraging the use of cleaner energy sources and more

efficient charging practices. The planning of EV charging stations

has been extensively studied, with researchers addressing various

factors, such as location optimization, grid impact, and integration

with renewable energy sources (Lin et al., 2023). Early studies

primarily focused on the optimal placement of charging stations

to minimize travel time for EV users and ensure accessibility.

For example, several studies have utilized geographic and traffic

data to identify high-demand locations for charging infrastructure,

ensuring that stations are placed in areas with significant traffic

flows to maximize convenience for users (Tao et al., 2022b). More
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recent studies have evolved to incorporate grid constraints to

address the impact of charging stations on the power system. These

studies recognize that large-scale EV integration can lead to an

increased load on the distribution grid, potentially causing voltage

instability or overloading transformers. As a result, optimization

models have been developed that not only consider the location of

charging stations but also account for grid limitations, ensuring that

the placement of charging infrastructure does not negatively impact

grid operations (Pal et al., 2023).

However, despite these advancements, notable gaps remain in

the literature. Much of the existing research tends to treat the

power sector, the transportation sector, and carbon markets as

separate entities without fully exploring the potential synergies

that could arise from their integration. Specifically, the dynamic

interactions between transportation networks, electricity grids,

and carbon markets have not been comprehensively addressed.

For instance, while studies have analyzed EVs’ impact on grid

stability and energy demand, less attention has been given to how

transportation patterns influence energy consumption and carbon

emissions. Moreover, integrating carbon costs into EV charging

pricing remains underexplored, leaving a gap in strategies that

could incentivize more sustainable consumer behavior and better

align transportation with decarbonization goals.

This article seeks to address these research gaps by proposing a

comprehensive framework that integrates EVs into both electricity

and carbon markets. By considering the transport–electric system

within an electricity–carbon market environment, we can align

the objectives of energy decarbonization with transportation

electrification. Carbon pricing influences EV charging costs,

encouraging charging at times when cleaner energy is available,

which reduces overall emissions. Furthermore, optimizing EV

charging station placement and pricing within this environment

not only minimizes grid stress but also maximizes low-carbon

energy source use, supporting a more sustainable transport

infrastructure. This combined framework ultimately enables a

balanced approach to economic and environmental sustainability

in both sectors, addressing the dual goals of decarbonization and

efficient grid operation.

The contributions of this article can be summarized as follows:

First, a novel framework is presented that integrates EVs into

both electricity and carbon markets, providing a dual-market

perspective that extends beyond the conventional focus on energy

consumption or emissions alone. This integrated framework allows

for a comprehensive analysis of the interplay between grid stability,

energy usage, and carbon emissions, enabling a unique approach

to optimize energy use in the power sector while advancing

transportation electrification in alignment with decarbonization

goals. Unlike existing studies, which often examine these markets

in isolation, this framework captures the synergistic effects of their

combined impact on sustainable grid and transport operations.

Second, an eco-transportation system model that captures the

dynamic interactions among transportation networks, electricity

grids, and carbon markets is developed. Unlike existing models

that focus primarily on grid impacts from EV penetration, our

model provides insights into how EV usage influences traffic

patterns, energy demand, and carbon emissions in an integrated

environment. This approach offers new avenues for planning and

operating transport systems in conjunction with sustainable energy

systems, contributing tomore effective infrastructure development.

Third, a novel approach is proposed for incorporating carbon

costs into EV charging prices—a strategy underexplored in the

literature. By integrating carbon pricing directly with EV charging

costs, our model incentivizes sustainable consumer behavior,

encouraging EV owners to charge during low-emission periods

or when cleaner energy is available. This contribution highlights

the potential of market-based mechanisms in fostering low-

carbon transportation systems and supports overall efficiency and

sustainability in energy-transition strategies, differentiating our

approach from existing studies focused solely on technical or

operational EV charging solutions.

The remainder of this article is structured as follows: In Section

2, we present the carbon–electricity market synergy modeling.

Section 3 introduces the proposed EV-integrated traffic flow model

and charging station planning approach. Section 4 describes the

multilevel solution algorithm for achieving convergence across

transmission, distribution, and transportation networks. The case

study, presented in Section 5, evaluates the effectiveness of the

proposed framework using a modified Institute of Electrical and

Electronics Engineers (IEEE) bus system. Section 6 summarizes the

major findings and outlines future research directions. Section 7

discusses future work.

2 Carbon–electricity market synergy
modeling

2.1 Low-carbon transmission network
operation

The objective function of the integrated wholesale electricity

market and carbon market clearing can be formulated as

Equation 1. It consists of the fuel cost of thermal generators, the

battery degradation cost, the quota purchase cost, and the quota

selling revenue:

Min.FTN =
∑

t

∑

i∈�G

(
ai

(
PGi,t

)2
+ biP

G
i,t + ci

)
+

∑

t

∑

i∈�BESS

ςiP
BESS,C
i,t

+
∑

t

∑

i∈�G

λ
Quo
i,t P

Quo,buy
i,t −

∑

t

∑

i∈�

λ
Quo
i,t P

Quo,sell
i,t ,

(1)

where �G is the set of generators; �BESS is the set of battery

energy storage system (BESS); ai, bi, and ci are the fuel coefficients

of thermal generators; PGi,t is the power generation of thermal

generators; ςi is the battery degradation cost; P
BESS,C
i,t is the charging

power of the BESS; λQuoi,t is the carbon quota price; P
Quo,buy
i,t is the

quota purchased by the ith generator; and PQuo,selli,t is the quota sold.

The constraints can be shown as follows:

PGi,t + PRNWi,t = PDNi,t − PBESS,Ci,t + PBESS,Di,t +
∑

j∈�+
i

PBij,t (2)

QG
i,t = QDN

i,t +
∑

j∈�+
i

QB
ij,t (3)
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PBij = UiUj

(
Gij cos θij + Bij sin θij

)
− U2

i Gij (4)

QB
ij = −UiUj

(
Bij cos θij − Gij sin θij

)
+ U2

i Gij (5)

0 ≤ PGi,t ≤ PG,max
i ,

0 ≤ QG
i,t ≤ QG,max

i (6)

PGi,t − PGi,t−1 ≤ RUi ,

PGi,t−1 − PGi,t ≤ RDi (7)

Umin
i ≤ Ui,t ≤ Umax

i (8)

− PB,max
ij ≤ PBij,t ≤ PB,max

ij ,

−QB,max
ij ≤ QB

ij,t ≤ QB,max
ij (9)

EBESSi,t+1 = EBESSi,t + PBESS,Ci,t ηC1t − PBESS,Di,t 1t/ηD (10)

EBESS,min
i ≤ EBESSi,t ≤ EBESS,max

i (11)

0 ≤ PBESS,Ci,t ≤ PBESS,C,max
i,t ,

0 ≤ PBESS,Di,t ≤ PBESS,D,max
i,t (12)

∑

t

eGi P
G
i,t ≤ Capi +

∑

t

P
Quo,buy
i,t −

∑

t

P
Quo,sell
i,t , (13)

where PRNWi,t is the renewable energy power; PDNi,t is the active

power requirement of the subnetwork at the distribution level;

PBESS,Ci,t and PBESS,Di,t are the charging and discharging power of

BESS; PBij,t is active power flow; Q
G
i,t is the reactive power of thermal

generators; is the reactive power requirement of the subnetwork

at the distribution level; QB
ij,t is reactive power flow; Ui is nodal

voltage; θij is phase angle; Gij is the conductance; Bij is the

susceptance; PG,max
i is the maximum active power of the thermal

generator; QG,max
i is the maximum reactive power of thermal

generator; RUi is ramp-up limits; RDi is ramp-down limits; Umin
i

and Umax
i are minimum and maximum voltage magnitude; PB,max

ij

and QB,max
ij are the maximum active and reactive power; EBESSi,t

is the energy storage stage of BESS; ηC and ηD are the charging

and discharging power of BESS; EBESS,min
i and EBESS,max

i are the

minimum and maximum energy storage state of BESS; PBESS,C,max
i,t

and PBESS,D,max
i,t are the maximum charging and discharging power

of BESS; Capi is the free quotas allocated to the ith generator; and

eGi is the emission factor.

Equations 2, 3 are the active and reactive energy balance

constraints. Equations 4, 5 are the alternating current (AC) power

flow. Equation 6 is the maximum capacity of thermal generators.

Equation 7 is the ramping limit. Equation 8 is the nodal voltage

limit. Equation 9 is the power flow limit. Equation 10 is the

energy balance for BESS. Equation 11 is the energy storage limit.

Equation 12 is the maximum charging and discharging power.

Equation 13 means the actual carbon emission of the thermal

generators should be within the allocated quotas plus the purchased

quotas minus the sold quotas.

2.2 Integrated transmission and distribution
network operation

The objective function for the distribution network operation

can be formulated as Equation 14. It consists of energy purchase

costs from the parent transmission system using locational

marginal price (LMP), the fuel cost of microthermal generators,

the quota purchase cost of end users, the quota selling revenue

of end users, the battery degradation cost, and the power loss

cost. In this article, a double carbon taxation mechanism is

considered, reflecting a comprehensive approach to addressing

carbon emissions at both the supply and consumption levels. The

philosophy behind this approach is to assign explicit financial

responsibility for emissions to both producers and consumers,

thus promoting a more equitable and effective distribution of

the environmental costs associated with carbon emissions. The

rationale for this double taxation stems from recognizing that

emissions are not solely the responsibility of the country or entity

where they are produced. Instead, they are also significantly driven

by consumer demand in other regions, particularly in developed

countries where consumption rates are high. For instance, many

light industrial products are manufactured in developing countries,

yet most of these products are exported and consumed in developed

nations. This dynamic raises questions about which nation should

bear the fiscal responsibility for the emissions: the developing

countries where the “observed” emissions are generated or the

developed countries whose demand is the root cause of these

emissions. The concept of “virtual” emissions, therefore, plays

a critical role in this taxation strategy, ensuring that emissions

embedded in global trade are not overlooked. By applying a

taxation mechanism at both ends of the supply chain—from

generation to end users—the model aims to create incentives for

all stakeholders in the energy sector to adopt cleaner technologies

and practices. This comprehensive approach not only clarifies

the cost implications of carbon emissions for consumers but also

encourages producers to innovate to reduce their environmental

impact. The long supply chain in the energy sector, spanning

generation, transmission, and distribution, typically dilutes the

efficacy of generation-based incentives. However, with a taxation

system that integrates multiple points along this chain, clearer and

more direct incentives can be established:

Min.FDN =
∑
t

λLMP
t PSTt +

∑
t

∑
m∈�MG

(
am

(
PMG
m,t

)2
+ bmP

MG
m,t + cm

)

+
∑
t

∑
m∈�

λ
Quo
m,t P

Quo,buy
m,t −

∑
t

∑
m∈�

λ
Quo
m,t P

Quo,sell
m,t

+
∑
t

∑
m∈�BESS

ςmP
BESS,C
m,t ,

+λLMP


ZST

∑
m,n∈�+

ST

Imn,t +
∑

m,n∈�FD

ZLD
mnImn,t




(14)

where λLMP
m,t is the LMP from the transmission level; PSTt is

the power from the substation; PMG
m,t is the power of the

microgenerators; λLMP is the average LMP; Imn,t is the squared

current magnitude; ZST is the impedance of the substation; and

ZLD
mn is the impedance of the feeders. The LMP can be calculated

according to Tan et al. (2022).
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The constraints can be formulated as

∑
k∈�+

n \{m}
PBmk,t−PBmn,t = PSTm,t + PRNWm,t + PMG

m,t + PBESS,Dm,t

−PLm,t − PBESS,Cm,t − PEVm,t + PLCm,t (15)

∑

k∈�+
n \{m}

QB
mk,t − QB

mn,t = QST
m,t + QMG

m,t − PLm,t + PLCm,t (16)

Vm,t − Vn,t =
(
rmnP

B
mn,t + xmnQ

B
mn,t

)
/V0 (17)

Imn,t =

(
PBmn,t

)2
+

(
QB
mn,t

)2

Vn,t
(18)

∥∥∥∥∥∥∥

2PBmn,t

2QB
mn,t

Imn,t − Vmn,t

∥∥∥∥∥∥∥
2

≤ Vn,t + Imn,t (19)

Vmin ≤ Vm,t ≤ Vmax (20)

− PB,max
mn ≤ PBmn,t ≤ PB,max

mn (21)

− QB,max
mn ≤ QB

mn,t ≤ QB,max
mn (22)

EBESSm,t+1 = EBESSm,t + PBESS,Cm,t ηC1t − PBESS,Dm,t 1t/ηD (23)

EBESS,min
m ≤ EBESSm,t ≤ EBESS,max

m (24)

0 ≤ PBESS,Cm,t ≤ PBESS,C,max
m,t , 0 ≤ PBESS,Dm,t ≤ PBESS,D,max

m,t (25)

∑

t

eNmP
L/EV
m,t ≤ Capm +

∑

t

P
Quo,buy
m,t −

∑

t

P
Quo,sell
m,t , (26)

where PEVm,t is the EV load, PLm,t is the other normal load, PLCm,t is the

load curtailment, Vm,t is the squared voltage magnitude, rmn and

xmn and are the resistance and reactance, respectively.

Equations 15, 16 are the active and reactive energy balance

in the distribution network. Equations 17–19 are the DistFlow

equations. Equation 20 is the limit of nodal voltage. Equations 21–

22 are power flow limits. Equation 23 is the energy balance of

the BESS. Equation 24 is the energy storage stage limit of the

BESS. Equation 25 is the charging and discharging power limit.

Equation 26 means the indirect carbon emission of the end users

should be within the allocated quotas plus the purchased quotas

minus the sold quotas.

Mathematically, the coupling is achieved by integrating the

power balance equations of the transmission and distribution

systems, where the distribution network draws power from the

transmission network based on real-time load demand. The

transmission system provides the necessary supply to meet the

aggregated demand from multiple distribution networks, which is

expressed through active and reactive power flow equations.

2.3 Transmission–distribution–load carbon
tracing

In this article, we employ the carbon emission flow model, first

introduced by Kang et al. (2012), to meticulously track the carbon

footprint from the generation side to the demand side. This model

provides a structured framework to allocate carbon emissions

accurately to consumers, reflecting the true environmental impact

of their consumption choices. By understanding the power

flow dynamics, we can distribute the carbon responsibility

proportionally along the energy supply chain, from producers to

end users.

Applying this model is crucial for implementing the double

carbon taxation mechanism discussed previously. By quantifying

the carbon emissions at each stage of the energy process, we ensure

that both producers and consumers are taxed based on their actual

carbon contributions (Qiu et al., 2022). This method not only

promotes transparency but also enhances accountability across the

board. Moreover, the model’s ability to trace carbon emissions

through the power flow allows for a more nuanced approach to

taxing carbon at the consumption level. Consumers are charged for

the carbon emissions embedded in the electricity they consume, not

just for the emissions generated at the point of production. This

ensures that the carbon tax reflects the full life-cycle emissions of

the energy consumed, providing a more accurate and fair allocation

of environmental costs.

The nodal carbon intensity can be calculated as

eNi,t =

(
PGi,te

G
i +

∑
ij∈L+i

∣∣∣PBij,t
∣∣∣ eBij,t

)

/

(
PGi,t + PRNWi,t +

∑
ij∈L+i

∣∣∣PBij,t
∣∣∣
)
, (27)

where L+i is the set of branches that inject active power into the ith

bus, eNi,t is the nodal carbon intensity, eGi is the emission factor, and

eBij,t is the branch intensity.

Considering the BESS in the networks, the carbon intensity of

the BESS can be formulated as

eBESSi,t+1 = (eBESSi,t · EBESSi,t + eNi,tP
BESS,C
i,t 1t)/(EBESSi,t + PBESS,Ci,t 1t),

(28)

where eBESSi,t is the carbon intensity of the BESS.

Then, the BESS-integrated carbon emission flow (CEF) model

can be written as

eNi,t =

PGi,te
G
i + PBESS,Di,t eBESSi,t +

∑
ij∈L+i

∣∣∣PBij,t
∣∣∣ eBij,t

PGi,t + PRNWi,t + PBESS,Di,t +
∑

ij∈L+i

∣∣∣PBij,t
∣∣∣
, (29)

eBij,t = eNi,t , i = Ŵij (30)

where Ŵij is the power injection bus of branch ij.

The preceding model tracks the carbon flow from generation

nodes to demand nodes at the transmission level. Similarly, the
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carbon flow can be further tracked to the end users at the

distribution level:

eNm,t =

PSTm,te
∧N
m,t + PMG

m,t e
MG
m + PBESS,Dm,t eBESSm,t +

∑
mn∈L+m

∣∣PBmn,t

∣∣ eBmn,t

PGm,t + PRNWm,t + PBESS,Dm,t +
∑

mn∈L+m

∣∣PBmn,t

∣∣ ,

(31)

where e∧N
m,t is the nodal carbon intensity of the substation inherited

from the parent transmission system.

3 Eco-transport planning and pricing
for EVs

3.1 EV-integrated tra�c flow modeling

To study the synergistic effects between the transportation

sector and the electricity and carbon markets, developing an EV-

integrated traffic flow model is essential. This model will serve

as the foundational analytical tool to examine how the increasing

penetration of EVs affects traffic dynamics, electricity demand, and

carbon emissions across urban and regional networks.

Based on the user-equilibrium (UE) model (Tao et al., 2022a),

the EV-integrated traffic model can be expressed as

minZ = ϑ
∑

t

∑
a∈A

∫ ca,t

0
ta,t (ω) dω

+ϑ
∑

t

∑
m∈�CS

∫ xm

0
tCm,t (ω) dω

+
∑

t

∑
m∈�CS

λEVm xm,tE
Cd, (32)

where A is the set of roads, �CS is the set of EV charging stations,

ϑ is the time cost, ta,t is the traveling time on the ath road, tCm,t is

the charging waiting time at the mth charging station, ca,t is the

traffic flow on the ath road, xm is the EV numbers charging at the

mth charging station, λEVm is the EV charging price, and ECd is the

charging demand.

This objective function aims to minimize the total traveling

time of vehicles, EV charging time, and EV charging cost. The

constraints can be formulated as

f EVod,p,t ≥ 0, f GSod,p,t ≥ 0 (33)

∑
p∈P

f EVod,p,t = qEVod,t ,

∑
p∈P

f GSod,p,t = qGSod,t (34)

ca,t =
∑

(o,d)∈o

∑
p∈P

(
f EVod,p,t + f GSod,p,t

)
σ od
a,p (35)

xm,t =
∑

a∈AC
m

ca,t (36)

ta,t
(
ca,t

)
= t0a

(
1+ ξ(ca/Ca )τ

)
(37)

tCm,t

(
xm,t

)
= tC,0m

(
1+ Que

(
xm,t

xmax
m − xm,t

))
(38)

xm,t ≤ xmax
m (39)


Sini −

∑

a∈Ap

(
ECon,EVLa/E

max
)

 f EVod,p,t ≥ 0,

∀p ∈ 2NCP (40)

[
Sini − ECon,CSp /Emax

]
f EVod,p,t ≥ 0,

∀p ∈ 2CP, (41)

where P is the set of the paths; o is the set of the od (origin-

destination) pairs; AC
m is the set of charging links related to the

mth charging stations; 2NCP is the set of non-charging paths; 2CP

is the set of charging paths; f EV
od,p,t

is the EV traffic flow starting

from origin o to destination d through the pth path; f EV
od,p,t

is the

traffic flow of gasoline vehicles, qEV
od,t

is the EV traffic demand from

origin o to destination d, qEV
od,t

is the traffic demand of gasoline

vehicles from origin o to destination d, σ od
a,p is the binary parameter

indicating if the pth path passes through the ath road, t0a is the

free traveling time, Ca is the road capacity, ξ and τ are the road

impedance parameters, Que is the queueing function, tC,0m is the

free charging time, xmax
m is the capacity of the charging stations,

Sini is the average EV initial state-of-charge (SOC), ECon,EV is the

per kilometer energy consumption of EVs, La is the length of the

road, Emax is the EV energy capacity, and ECon,CSp is the energy

consumption of EVs reaching the first available charging stations

on the pth path.

Equation 33 means the traffic flow should be positive.

Equation 34 means the total traffic flow from o to d should equal

the traffic demand. Equation 35 means the traffic number on one

road equals the traffic flows on all the paths passing this road.

Equation 36 means that the EV number in the charging station

equals the total traffic flows passing through the related charging

link. Equation 37 is a commonly used road impedance function,

that is, the Bureau of Public Roads function. Equation 38 is the

charging time based on the queuing model. Equation 39 limits the

capacity of the charging station. Equation 40 means the selected

path for EVs should guarantee sufficient energy to reach the

destination for the non-charging paths (no charging station on

the path). Equation 41 means the selected path for EVs should

guarantee that sufficient energy reaches the first charging station.

3.2 Charging station planning and
carbon-integrated EV charging pricing

The traffic capture of the mth charging station can be

calculated as

f
cap
m,t =

∑
(o,d)∈o

∑
p∈P

f od,Ep,t σ∧ od
m,p , (42)
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where f
cap
m,t is the traffic flow capture of the newly built charging

station on the mth node; σ∧ od
m,p is the binary parameter indicating

whether the pth path from o to d passes themth charging station.

Then, the charging demand of the charging station can be

estimated using Equation 43:

P∧EV
m,t = min

{
DCHκ

f
trip
t∑
t f

trip
t

f
cap
m,t∑

m∈�CS f
cap
m,t

, δEVm · ϒ

}
, (43)

where P∧EV
m,t is the estimated charging demand of the charging

station, DCH is the total charging demand of EVs in the system,

κ is the choosing ratio of the charging station, f
trip
t is the travel

ratio, δEVm is the binary variable indicating if a new charging station

is built, and Ŵ is a large number.

Equation 43 means that the estimated EV charging demand is

proportional to its traffic capture, and if no charging station is built,

there is no charging demand.

Then, based on the traffic flow model, the electricity network

operationmodel, and the CEFmodel, the charging station planning

and charging pricing model can be formulated as

minH =
∑

t

∑

m∈�CS

(
λEVm,t + eNm,tλ

Quo
m,t − λDLMP

m,t

)
× PEVm,t , (44)

where λEVm,t is original the EV charging price; λDLMP
m,t is the

distribution location marginal price (DLMP) electricity price; and

PEVm,t is the EV charging demand. DLMP can be calculated according

to Bai et al. (2017).

In the objective function, it maximized the revenue of the

charging station. The carbon integrated pricing is considered by

allocating the carbon emission cost into the charging price.

The constraints can be formulated as follows:

0 ≤ λEVm,t ≤ δEVm λEV ,max (45)

ε =

(
PEVm,t − P̂EVm,t

)
/̂PEVm,t(

λEVm,t + eNm,tλ
Quo
m,t − λ

EV ,base
m,t

)
/λ

EV ,base
m,t

(46)

∑

m∈�CS

δEVm = NCS, (47)

where δEVm is the binary variable indicating if a charging station

is built, λEV ,max is the maximum EV charging price, P̂EVm,t is the

base EV charging demand based on estimation, λEV ,basem,t is the base

charging price, ε is the elasticity of the EV demand, and NCS is the

number of charging stations to be planned.

The carbon-integrated electricity price is designed to embed the

environmental costs associated with carbon emissions directly into

the cost of electricity, thereby reflecting the true carbon intensity

of energy consumption. By adjusting electricity prices according

to carbon emissions, this approach creates a direct economic

signal for consumers, including EV owners, to alter their charging

behavior. EV owners are encouraged to charge during periods when

renewable energy sources dominate the energy mix, which typically

results in lower carbon-based costs. This not only reduces the

carbon footprint of EV charging but also optimizes grid use by

aligning EV charging demand with cleaner energy availability.

The double taxation mechanism further strengthens the

carbon-responsive behavior of EV users by applying carbon costs

to both energy producers and consumers. In this approach,

electricity generation companies are taxed based on their

emissions, incentivizing them to prioritize cleaner energy sources.

Simultaneously, end users, including EV owners, are also taxed

for their indirect carbon emissions through higher costs during

carbon-intensive periods. This dual-layered approach ensures that

carbon accountability is shared across the supply chain, from

energy generation to end use, providing a comprehensive incentive

structure for reducing emissions.

Together, the carbon-integrated electricity price and double

taxation mechanism create a responsive system that encourages EV

users to shift charging to lower emission times, fostering sustainable

charging habits and helping to manage peak demand on the grid.

This approach not only reduces overall carbon emissions but also

supports the transition to a low-carbon energy system by aligning

economic incentives with decarbonization goals.

4 Multilevel solution algorithm

The solution algorithm for the multilevel modeling is shown in

Figure 1. First, the joint low-carbon operation transmission system

and the distribution system are formulated. The synergistic effect

between the carbonmarket and the electricity market is considered,

where the thermal generators at the transmission level have to

realize their carbon responsibility based on quota mechanisms and

the end users at the distribution level have to follow the demand-

side carbon obligations. Based on the power flow, the carbon

footprint can be tracked from the generation side to the end-

user side. The DLMP in the distribution network and the model

carbon intensity as well as the EV demand from transportation

network modeling will further affect the planning and pricing of

EV fast-charging stations. The pricing price and the EV charging

demand will then, in turn, affect the EV traffic flow and EV

charging flow in the transportation networks. In addition, the EV

demand also affects the total load in distribution networks and

further affects the operation in the transmission network and finally

forms a loop. The iteration will stop when the epsilon convergence

of the decision variables is reached. To this end, the framework

for integrating EVs in eco-transport systems participating in the

electricity–carbon market can be investigated. The pseudocode can

be shown in Algorithm 1.

5 Case study

5.1 Experiment setting

The proposed method is verified in a modified IEEE 30-bus

system, which encompasses IEEE 33-bus distribution networks,

shown in Figure 2. The distribution network is coupled with a

transportation network, shown in Figure 3, and the coupling point

is the candidate location for EV charging station planning.

To reveal the superiority of the proposed method, three cases

are established:
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FIGURE 1

Solution algorithm. EV, electric vehicle; CEF, carbon emission flow.

Case 1: Electricity network operation and charging station

planning and pricing without carbon emission trading mechanism

(Dong et al., 2021). The UEmodel is utilized to replace its EV users’

charging decisions at a lower level.

Case 2: The carbon emission trading is considered in electricity

network operations at the generation side. The carbon-tax-based

pricing is modeled for EVs in coupled power–traffic networks (Qiao

et al., 2023). Also, the UE model is utilized to replace its EV route

selection at a lower level.

Case 3: The double carbon taxation is considered. The EV

customers are obliged to consider the carbon cost through carbon

tracing (proposed).

The simulations were completed by a PC with an Intel Core

(TM) i9-10980HK CPU @ 5.10 GHz with 32.00 GB RAM, RTX

GeForce 2080.

The proposed problem takes 42.3min to reach convergence.

All levels of the optimization problem in our proposed framework

are designed to be convex. Additionally, while AC power flow

equations are typically non-linear, we apply a linearization

approach to approximate the power flows.

5.2 Simulation result

Figure 4 depicts the daily carbon intensity variations at a bus

where an EV charging station is planned, comparing three distinct

operational scenarios. Throughout the day, all cases exhibit a

similar trend: Carbon intensity peaks during early morning and

late evening hours and significantly dips aroundmidday, suggesting

a possible increase in renewable energy input like solar power

during these hours. Case 3 consistently shows the lowest carbon

intensity across the entire day. This suggests that Case 3′s strategy

significantly reduces indirect carbon emissions associated with EV

charging, indicating a more effective carbon management strategy

in this scenario. The slight divergence between the cases during

main():

//Main iterative process

Initialize system parameters

Initialize variables: Distribution network

demand, Transmission-level power flow, LMP,

EV Charging Demand, Distribution-level power

flow, DLMP, Carbon intensity, EV charging

price

while (not converged and iteration_count <

max_iterations):

Transmission-level power flow, LMP =

Transmission (Distribution network demand)

Transmission-level carbon intensity = CEF

(Transmission-level power flow)

Distribution-level power flow, DLMP,

Distribution network demand = Distribution

(LMP, EV Charging Demand)

Distribution-level carbon intensity = CEF

(Distribution-level power flow)

EV charging price, EV charging demand =

Transportation (DLMP, Carbon intensity, EV

charging price)

iteration_count + = 1

end

//Output final decision variables:

Output:

- Final power generation

- Final electricity prices

- Final carbon trading

- Final EV charging station planning

- Final EV charging prices

- Final EV charging demand

end

function Transmission (Distribution network

demand)

//Step 1: Transmission and Carbon Market

Operation

Solve transmission-level optimization:

//Objective: Minimize total cost,

including fuel cost, battery degradation,

and carbon quotas

Minimize objective function (1)

Subject to (2)-(13)

Update transmission-level variables:

Transmission-level power flow, LMP

end

function Distribution (LMP, EV Charging

Demand)

//Step 2: Distribution Network Operation

Solve distribution-level optimization:

//Objective: Minimize distribution-level

costs, including energy purchase and battery

degradation

Minimize objective function (14)

Subject to (15)-(26)

Update distribution-level variables:

Algorithm 1. (Continued)
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Distribution-level power flow, DLMP,

Distribution network demand

end

function Transportation (DLMP, Carbon

intensity, EV charging price)

//Step 3: Transportation Network and EV

Charging Operation

Solve UE transportation-level

optimization:

//Objective: Minimize total EV travel

time, waiting time, and charging cost

Minimize objective function (32)

Subject to (33)-(41)

Estimate the EV charging demand (42)-(43)

Solve charging station optimization:

//Objective: Maximize the revenue of

charging station

Maximize objective function (44)

Subject to (45)-(47)

Update transportation-level variables:

EV charging price, EV charging demand

end

function CEF (Power flow)

//Step 4: CEF Model Update

Update carbon emission flow:

Calculate carbon intensity at nodes and

branches based on power flows using

Equations (27–31)

Update carbon intensity.

end

Algorithm 1. Multilevel interactions.

FIGURE 2

Modified IEEE 30-bus system which encompasses IEEE 33-bus

distribution networks.

peak hours and the pronounced midday dip highlights the impact

of operational strategies on carbon emissions.

FIGURE 3

IEEE 33-bus distribution network coupled with a transportation

network.

FIGURE 4

The carbon intensity of the bus where the charging station is

planned.

Figure 5 displays the DLMP at a bus where an EV charging

station is planned, comparing three operational scenarios over

24 h. All cases exhibit a similar pattern, where DLMPs rise from

early morning; peak during late afternoon hours, coinciding with

peak electricity demand; and then taper off toward the night. This

pattern reflects typical daily electricity usage trends, where demand

and, consequently, generation costs escalate during the daytime and

early evening. It can be concluded that the carbon policy in different

cases has a relatively small impact on the DLMP and will less likely

affect the energy purchase cost of the charging station.

Figure 6 shows EV charging prices at a planned station across

three cases. It shows closely aligned price patterns between Case 1

and Case 2, suggesting similar carbon management or operational

strategies on the demand side that minimally impact charging

costs. In contrast, Case 3 exhibits a distinct trajectory, with lower
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FIGURE 5

The distribution location marginal price (DLMP) of the bus where the

charging station is planned.

FIGURE 6

Charging price of the planned charging station.

prices during peak daytime hours and slightly higher prices at

night. This divergence likely results from a more aggressive carbon

management approach in Case 3, potentially involving robust

carbon pricing mechanisms that either reduce demand during

peak hours or encourage energy usage during off-peak periods. EV

charging prices are lower during peak daytime hours and slightly

higher at night, which can be linked indirectly to carbon intensity

and grid demand management. Typically, grid stress peaks when

demand is high, often necessitating the operation of less efficient

fossil fuel–based power plants, which, in turn, increases carbon

emissions. By strategically lowering charging prices during these

peak periods, Case 3 likely aims to shift EV charging demand to

off-peak hours. This shift not only helps manage grid load more

effectively but also aligns with periods when cleaner, renewable

energy sources might be more available, thereby reducing the

carbon intensity associated with EV charging.

Figure 7 depicts EV charging demand at a planned station.

It reveals distinct patterns across three scenarios, with demand

peaking during typical commuting hours and dipping midday

and late night. Cases 1 and 2 display similar demand profiles,

suggesting parallel operational strategies that do not significantly

shift charging behaviors from peak times. Conversely, Case 3

shows a notably lower demand during peak periods, likely due to

effective demand management or dynamic pricing strategies that

encourage charging during off-peak hours. This suggests that Case

3 utilizes advanced pricing models or technologies, such as pricing

based on grid load or carbon intensity, effectively modulating

FIGURE 7

Electric vehicle charging demand of the planned charging station.

FIGURE 8

Voltage profile at the planned charging station.

consumer behavior to alleviate grid stress and align with periods of

lower carbon emissions. This differential in demand highlights the

potential of targeted strategies in influencing EV charging practices

to support grid stability and environmental objectives.

The voltage profile in Figure 8 illustrates variations across the

day for three cases, reflecting the impact of EV charging demand

and carbon policies on grid stability. During peak hours (12:00–

18:00), the voltage dips significantly across all cases, indicating

high energy demand and grid stress. In contrast, the voltage levels

recover during off-peak hours (0:00–6:00 and after 18:00) when

demand is lower, highlighting the grid’s ability to stabilize under

a reduced load. It can be found that the voltage patterns of the

three cases are similar, with reasonable voltage variation within the

normal operation range.

Table 1 offers a detailed quantitative comparison of three cases

concerning the operational metrics of an EV charging station. Case

1 records the highest revenue at $4,712.46 and the highest profit

at $3,923.88, suggesting a more traditional approach to charging

station management that maximizes financial returns. However,

Cases 2 and 3 show a decline in both revenue and profit, with

Case 3 marking the lowest at $4,618.13 and $3,828.67 respectively.

This trend may indicate implementing strategies that prioritize

environmental impacts over maximum revenue generation, such

as price adjustments during peak demand times to discourage

excessive load on the grid.

Indirect emissions decrease significantly across the cases, from

7.12 tons in Case 1 to 5.19 tons in Case 3, highlighting the

effective environmental management in Case 3 that reduces the
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TABLE 1 Quantitative comparison of di�erent cases.

Case 1 Case 2 Case 3

Revenue ($) 4,712.46 4,624.96 4,618.13

Profit ($) 3,923.88 3,853.43 3,828.67

Indirect emission (ton) 7.12 6.51 5.19

Charging demand

satisfied (kWh)

11,992.59 11,427.63 11,383.14

Charging sustainability

(ton/MWh)

0.59 0.57 0.45

carbon footprint per unit of electricity supplied. Similarly, the total

charging demand satisfied shows a slight decrease from Case 1

to Case 3, which could reflect strategic demand management or

energy efficiency improvements. Notably, the metric of charging

sustainability, measured as tons of emissions per MWh, improves

across the cases—from 0.59 in Case 1 to 0.45 in Case 3—

demonstrating that Case 3 not only supports lower emissions but

also promotes more sustainable energy use.

6 Conclusion

This article presents a robust framework for integrating

EVs into the electricity and carbon markets, demonstrating

how coordinated market operations can effectively support the

transition to eco-friendly transport systems. By incorporating

a double carbon taxation mechanism and a CEF model, the

framework ensures equitable carbon cost allocation and enhances

transparency across the energy supply chain. The proposed

EV-integrated traffic flow model and charging station planning

approach highlight the interplay between transportation networks

and energy demand, underscoring the importance of including

carbon costs in EV charging prices. The multilevel solution

algorithm achieves convergence across transmission, distribution,

and transportation networks, promoting a balanced and sustainable

eco-transport system. The results show that the strategic placement

of EV charging stations and carbon-based pricing can significantly

reduce emissions while maintaining operational efficiency. For

instance, in Case 3 (proposed method), which implements a higher

carbon taxation strategy, the framework reduced indirect emissions

from 7.12 tons in Case 1 to 5.19 tons while maintaining operational

efficiency, as shown by the satisfied charging demand and improved

charging sustainability (0.45 tons/MWh in Case 3 compared to 0.59

tons/MWh in Case 1).

7 Future work

In future work, we will delve deeper into how evolving carbon

policies and system upgrades may influence the results presented

in this study. Changes in carbon taxation levels or stricter carbon

quotas can have a multifaceted impact on EV charging behaviors,

grid operations, and overall emissions reduction. For instance,

higher carbon costs might incentivize EV owners to shift their

charging to off-peak hours or periods dominated by renewable

energy generation. While this behavior aligns with sustainability

goals, its economic implications for EV users, such as increased

charging costs, and grid operators, such as operational adjustments

to manage dynamic demand, require further investigation.

System upgrades, including expanded transmission capacity,

advanced grid management technologies, and BESSs, play a

crucial role in improving grid flexibility and resilience. These

upgrades could potentially alter the balance between operational

costs and emissions reduction by enabling greater integration

of renewable energy and more efficient demand management.

Moreover, deploying renewable energy generation, often supported

by system upgrades, is likely to reduce the carbon intensity of

the electricity supply, which, in turn, could impact carbon trading

dynamics in coupled markets. Lower carbon intensity may lead

to a reduced reliance on carbon taxation mechanisms to drive

sustainable behaviors, further influencing EV charging station

placement and pricing strategies.

Future research will focus on verifying these impacts under

diverse regional, regulatory, and technological contexts. This

includes quantifying the trade-offs between grid upgrade costs

and emissions reduction benefits, refining dynamic carbon pricing

models, and exploring strategies to optimize grid resilience

and EV integration. These investigations will ensure that

the proposed framework remains effective and adaptable to

advancing carbon policies and evolving energy infrastructure

requirements, supporting a sustainable transition for energy and

transportation systems.
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