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As the grid-connected capacity of distributed photovoltaic (PV), energy storage,

electric vehicle (EV), and other devices gradually increases, new source-load

equipment becomes an important demand response (DR) resource in the

distribution network (DN). To fully utilize the DR’s capability for EVs and other

devices and reduce the system operating costs and line network loss, this

article presents a DR scheduling strategy for EVs based on a time-of-use (TOU)

price dynamic adjustment mechanism. First, a fuzzy C-mean (FCM) clustering

algorithm is used to calculate the typical operating curves of PV and electrical

load and their optimal number of classifications. The deterministic scenarios

express the PV’s output characteristics and the users’ electricity consumption

characteristics. Second, a dynamic adjustment mechanism of TOU price is

proposed based on the load operation curve of the DN, and the interactive price-

incentive signal for DR within the DN is formulated. Finally, a DR scheduling

strategy for EVs in the DN that considers the economic cost of system operation

and line network loss is proposed. CPLEX in MATLAB is employed to simulate the

cases. After applying the TOU price dynamic adjustment mechanism proposed,

the peak total load and peak–valley load di�erence decreased by 6.9% and 33.8%,

respectively, compared to implementing fixed electricity prices. At the same time,

the operating revenue of the distribution network increased by 13.2%, and the

line network loss decreased by 12.9%. The analysis results demonstrate that the

proposed EV DR scheduling strategy can realize the price guidance and orderly

scheduling of EVs and reduce the operation cost and line network loss in the DN.

KEYWORDS

electric vehicles, demand response, optimal scheduling, clustering algorithm, time-of-

use price model

1 Introduction

With the transformation of the global energy structure and the diversification of power

generation and utilization, the distribution network (DN) is gradually transforming into a

new distribution system containing a high proportion of distributed photovoltaics (PVs),

energy storage devices, and electric vehicles (EVs; Xu et al., 2023). Among these factors,

the variability of PV output and load fluctuation pose a challenge to the stable operation of

the DN (Alamolhoda et al., 2024). To solve these problems, experts are gradually tapping
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the interactive potential of various demand-response (DR)

resources to participate in grid regulation and formulating more

effective DN operation modes and time-of-use (TOU) price

mechanisms (Sun et al., 2024).

An important means for guiding subjects in the DN to

participate in the DR (Choi and Murali, 2022), research related to

the TOU price policy for DNs has attracted extensive attention.

To achieve the minimization of comprehensive operating costs,

a peak–valley TOU price optimization model can be established

by considering the power generation–side, grid-side, and user-side

revenue (Ahsan et al., 2023). A TOU price optimization method for

PV admittance capacity improvement in DNs can also be proposed

from the user side. The imperialist competitive algorithm is used

to solve the TOU price (Shabbir et al., 2024). The improved price

elasticity matrix model based on elasticity effect weights can also be

used to analyze users’ responses to TOU price, and combined with

genetic algorithms, the decision-making model of TOU price can

be solved (Xue et al., 2023). Most of the mentioned studies focus on

establishing various TOU price models from different stakeholders’

perspectives and using different solution algorithms to realize the

accurate calculation of TOU price; they do not conduct in-depth

research on the periods’ division of TOU price and the dynamic

adjustment of TOU price.

In recent years, in research on DN optimization and operation,

scene generation and vehicle-network interaction have gradually

become hot issues. The random scenes of wind speed, light

intensity, electrical load, and thermal load can be simulated

using the Monte Carlo method and optimized using the particle

swarm algorithm for scene selection (Fu et al., 2020). Some

literature proposes combining a multidimensional representative

scene generation algorithm based on load clustering with the K-

means clustering method to extract representative scenes of PV

and wind power (Gao et al., 2023). Intelligent algorithms based

on parameter-sharing frameworks can quantify EVs’ ability to

participate in DR and voltage regulation services in DNs for power

coordination control (Wang et al., 2023). Using an improved robust

model predictive control strategy in microgrids can effectively

TABLE 1 The technical comparison between proposed controller and existing controllers.

Comparison
dimension

Ref (Imani et al., 2019;
Pandey et al., 2022;
Zhang et al., 2025)

Ref (Yang et al.,
2020; Magdy et al.,
2021)

Ref (Ma et al., 2022;
Kaur and Singh, 2023;
Song et al., 2021; Zhou
et al., 2020)

Proposed method

Dynamic pricing

capability

No real-time grid consideration,

average 8% increase in network

power loss

Not applicable Not applicable Real-time price adjustment

reduces network loss by

12%−15%

PV & load

adaptability

Not applicable 65%−72% PV consumption

rate

Not applicable 18% PV consumption

improvement

DR incentive

effectiveness

Not applicable Not applicable 40%−50% user DR participation

rate

76% DR participation rate

with 11% user cost reduction

Response time 24-h manual adjustment delay Not applicable Not applicable Fully automated real-time

adjustment (<1 h)

Scheduling

accuracy

7.2% maximum voltage fluctuation 92.6% stability rate 9%−15% precision loss 30% precision improvement,

3.3% maximum voltage

fluctuation, and 99.2%

stability rate

PV, photovoltaic; DR, demand response.

utilize EVs for frequency control, improving the stability and

robustness of the DN (Rao et al., 2021). By combining the peak-

shaving requirements of the system, a vehicle–grid interaction

incentive pricing mechanism can be developed to smooth the

system’s electrical load curve and improve the DN’s operational

economy (Yin et al., 2023). These studies do not accurately calibrate

the reasonableness of the clustering results and have not taken into

account the line network loss and operating revenue of the DN for

multi-objective scheduling.

As an important means of guiding various entities in the DN to

participate in DR (Yang et al., 2013), research on TOU price in the

DN has attracted widespread attention from scholars worldwide.

At present, research methods on electricity pricing mechanisms

mainly focus on reducing the operating costs of DNs, improving

PV consumption rates, and incentivizing users to participate in

DR. Each method’s characteristics are shown in Table 1. Some

literature considers the interests of the power generation side,

grid side, and demand side to establish a TOU electricity price

optimization model, achieving the minimization of comprehensive

operating costs (Imani et al., 2019; Pandey et al., 2022; Zhang et al.,

2025). Some TOU price optimization methods start from the user

side, design objective functions for the PV acceptance capacity of

the DN, and use different optimization algorithms to solve the

TOU price (Yang et al., 2020; Magdy et al., 2021). By calculating

an improved price elasticity matrix model based on elastic effect

weights, EVs’ response to TOU pricing can be analyzed, and a

decision-making model for the TOU price can be solved using

genetic algorithms (Ma et al., 2022; Kaur and Singh, 2023; Song

et al., 2021; Zhou et al., 2020). The mentioned research mainly

focuses on establishing various TOU price models from different

stakeholders and using different solving algorithms to achieve the

accurate calculation of TOU pricing without in-depth research on

the division of the TOU price periods and the dynamic adjustment

of the TOU price.

To address the aforementioned problems, this article presents

a DR scheduling strategy utilizing the TOU price dynamic

adjustment mechanism for EVs. First, methods for extracting
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typical PV output and regional load scenarios, as well as

methods for generating EV charging loads, are presented.

Second, a hierarchical clustering algorithm is used to classify the

comprehensive load into periods. Then, a load electricity price

elasticity matrix is established to quantify the role of TOU pricing

in guiding loads, combined with the implementation of DR to

establish a more efficient guiding TOU price mechanism. Finally,

a comprehensive objective function is constructed by considering

the operating revenue and line network loss and combining the

constraints of each subject in the DN to schedule their operation

status. An optimization scheduling model is constructed with the

following decision variables: electricity price, consumption of PV

output, charging and discharging power of energy storage, charging

and discharging quantity of EVs, and the number of load reductions

that can be made in each time period. This model belongs to the

mixed-integer programming problem, so the Cplex solver in the

Yalmip platform is called on to solve the problem to achieve the

goal of improving the operating income of the DN and reducing

the line network loss.

The remainder of the article is organized as follows: Section

2 introduces the generation methods of PV, regional load, and

EV charging curves. Section 3 proposes a dynamic adjustment

mechanism for TOU electricity prices. Section 4 constructed a DR

scheduling model for the DN. Simulation and analysis are given in

Section 5. Section 6 concludes the article with a discussion.

2 Typical PV and electrical load curves

The difficulty of optimal scheduling of DNs is the uncertainty

of PV output and electricity consumption characteristics. Although

the power curves exhibit a certain regularity overall, differences

also exist between them. This article adopts the fuzzy C-means

clustering algorithm (FCM) to cluster the PV and regional load

curves in the DN to generate typical curves. This method not

only comprehensively considers various situations of electricity

consumption and PV output but also reduces the computational

complexity. Meanwhile, based on EV travel data, the Monte Carlo

method is used to generate the EV charging load curve.

2.1 FCM

FCM is a clustering method that utilizes the objective function,

where the degree to which each sample data point belongs

to a certain cluster is determined by membership degree, and

it has the characteristics of fuzzy soft clustering (Yang et al.,

2024). This algorithm has the characteristics of simple design and

easy implementation. It can also use non-linear theory to solve

optimization algorithms with a wide range of applications. The

FCM clustering method flowchart is shown in Figure 1.

The FCM clustering method first preprocesses historical

PV and load data and selects the appropriate clustering

indicators. Then, the clustering indicators and scene clustering

centers are iteratively calculated using the Lagrange multiplier

method, and the likelihood of each sample belonging to each

clustering center is calculated to obtain the PV and load curves’

clustering results.

FIGURE 1

The flowchart of the fuzzy C-means clustering method (FCM). PV,

photovoltaic.

The objective function of FCM includes two indexes: the cluster

center and the membership matrix. After selecting the clustering

indicators, the number of clusters and the optimal clustering

curves when the objective function takes the minimum value are

iteratively solved.

2.1.1 Clustering process
Supposing a data set matrix X is

X = {x1, · · · , xt , · · · , xT} (1)

where T is the total number of samples contained in the PV or load

sample data set, T = 24, and xt is the vector of feature aggregation

metrics for the tth sample.
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The objective function of FCM is defined as follows:

minJFCM(λ, η) =
m

∑

l=1

T
∑

t=1

umlt D
2
xl,t

(2)

where λ is the scene clustering affiliation matrix with matrix sizem

× T; m is any given number of initial clusters, η is the clustering

center matrix with matrix size m × z; z is the number of clustering

indicators for each PV or load sample; l indicates category, lε[1,m];

ult is the probability that the tth sample belongs to category l;
m
∑

l=1

ult = 1, ult ∈ [0, 1] ∀l, t. Dxl,t = |xt − vl|, Dxl,t is the Euclidean

distance between the sample data, which is used to characterize the

similarity between the vectors; AM is the degree of fuzziness; and vl
is the lth clustering center.

The optimal sample clustering likelihood indicator ult and

scene clustering center vl in the objective function can be computed

iteratively by the Lagrange multiplier method (Chaouch, 2013;

Rajabi et al., 2020).

2.1.2 PV clustering index
PV output is random and fluctuates due to weather, season,

holidays, and other conditions. To extract the PV output curve’s

fluctuation characteristics and enhance the accuracy of clustering,

selecting appropriate clustering indicators is necessary. Therefore,

the daily average output, the daily output volatility, and the

daily output distribution skewness are selected as the PV output

characteristic clustering indexes.

Considering the daily output characteristics, the average PV

output during the day is calculated:

PmPV =
T

∑

t=1

PtPV
T

(3)

where PmPV is the average daily power generated by PV and PtPV is

power produced by PV at time t.

The daily output volatility is utilized to describe the level

of volatility of the PV curve. The smaller the value of this

characteristic, the smaller the fluctuation of the day’s PV

output curve:

γPV =

√

√

√

√

1

T − 1

T
∑

t=1

(PtPV − PmPV )
2

(4)

where γPV is the volatility of daily PV output.

The skewness of the daily output distribution can be used to

describe the degree of daily skewness of the PV output. When

the skewness value is between [−0.5, 0.5], the force distribution is

relatively symmetrical. When the skewness value is between [0.5,

+∞), the force distribution is positively skewed and concentrated

on the right side of themean.When the skewness value lies between

[–∞, −0.5], the force distribution is negatively skewed, and the

force is concentrated on the left side of the mean:

SKPV =
T

(T − 1)(T − 2)

T
∑

t=1

(
PtPV − PmPV

γPV
)3 (5)

where SKPV is the skewness of the daily PV output distribution.

2.1.3 Regional load clustering index
Selecting the appropriate load clustering indexes can more

comprehensively reflect the curve characteristics and improve

the speed of solving the scheduling model. The load rate,

the maximum utilization hour rate, and the daily peak-to-

valley difference rate are selected from an all-day perspective,

the peak load rate from a peak-period perspective, the flat-

period load rate from a flat-period perspective, and the

valley load rate from valley-period perspective as the load

clustering indexes (Satre-Meloy et al., 2020). It comprehensively

combines the electricity consumption characteristics of loads for

clustering processing.

2.2 Modeling of charging load for EVs

A large number of EVs are in the DN, and their disorderly

charging and discharging characteristics increase the peak load,

which has a significant impact on the operation of the DN.

As a result, establishing a charging load model for EVs and

scheduling them accordingly are necessary. The disorder in EV

charging is reflected in the uncertainty and unpredictability of

the charging start time and charging time. According to U.S.

Department of Transportation statistical data on EV travel in the

United States (Ren et al., 2024), a probability model for daily EV

travel is calculated.

The end time of the last trip of an EV in a single day is

equivalent to the start time of EV charging, following a normal

distribution. The normal distribution function is used to describe

the starting time of EV charging:

f (xc) =
1

σc
√
2π

exp[−
(xc − µc)

2

2σ 2
c

] (6)

where xc is a random variable representing the starting time of

EV charging.

The daily mileage of EVs has a certain regularity. This article

employs a logarithmic normal distribution function to describe the

daily mileage of EVs:

f (xs) =
1

xs

1

σs
√
2π

exp[−
(lnxs − µs)

2

2σ 2
s

] (7)

here xs is a random variable representing the daily mileage of EV.

The charging time of an EV is defined as

TEV = xsX
100
d /100Pcdηc (8)

where X100
d

is the power consumption of an EV for driving 100

kilometers, Pcd is the charging power of an EV, and ηc is the

charging efficiency of an EV.

The EV’s charging load curve is obtained using theMonte Carlo

method (Shan et al., 2025).
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3 TOU price model

Adopting a TOU price model can change users’ electricity

consumption habits and reduce DN costs (Venizelou et al., 2018).

With the increase in the number of EVs, combining their charging

demand with regional electricity demand as a comprehensive load

for co-participation scheduling can not only avoid power shortages

during peak hours but also increase the DN’s stability (Nicolson

et al., 2018). It is evident that completing the TOU pricemechanism

in which EV loads and regional loads co-participate in DR is crucial.

First, a hierarchical clustering method is used to divide the

comprehensive load at each moment into periods. On this basis,

the relationship between time period load and TOUprice is studied,

and the load electricity price elasticity coefficient matrix is derived.

Furthermore, a TOU price model is established to solve the TOU

price for each period.

3.1 TOU price period division method

Due to the increase in the types and quantities of loads, such

as EVs in the power system, midday loads regularly have low

troughs. The charging time of EVs overlaps with the evening peak

time, resulting in an increase in the peak valley difference for the

load curve (Li et al., 2023), making the load curve characteristics

more complex.

Using the hierarchical clustering method to classify periods

can effectively aggregate electricity consumption periods with

similar loads. The hierarchical clustering method can effectively

aggregate the periods with similar loads and cluster the samples of

comprehensive load periods without setting the number of periods

in advance.

In the hierarchical clustering process, based on the input

comprehensive load at each moment of the PSL, the degree of

similarity between loads of any two time periods can be quantified

as the Euclidean distance DPSL,i,j between the comprehensive

load samples:

DPSL,i,j = |PSL,i − PSL,j|, i, j = 1, 2, · · · , 24 (9)

As PSL,i and PSL,j get closer, the value of DPSL,i,j gets smaller.

Conversely, as PSL,i and PSL,j get farther apart, the value of DPSL,i,j

gets larger. From this, a 24× 24 distance matrix DPSL between load

powers at each moment can be defined:

DPSL =













0 DPSL,1,2 · · · DPSL,1,24

DPSL,2,1 0 · · · DPSL,2,24

· · · · · ·
. . . · · ·

DPSL,24,1 DPSL,24,2 · · · 0













(10)

At first, each period load in the matrix is considered to be one

category. Then, based on DPSL , the two time periods corresponding

to the minimum non-diagonal elements are merged into a new

period. The square of the inter-category distance between the new

classification period and other periods can be defined:

FIGURE 2

Relationship curves between electricity supply and electricity

demand.

D2
com,re =

nin1

ncom
D2
in1,re +

nin2

ncom
D2
in2,re (11)

where Din1,re and Din2,re are the distances between the loadings

of the two time periods involved in the merger and the other

periods, ncom is the number of periods in the merged new period,

and nin1 and nin2 are the number of periods in the two categories

participating in the merger, respectively.

After completing the kth merge, obtain n-k periods and

renumber them as T
(k+1)
1 , T

(k+1)
2 ,... T

(k+1)
n−k

. These steps are repeated

until the final clustering of periods is completed.

3.2 Guiding e�ect of electricity price on
load

Some research has been conducted on quantifying the role

of TOU price in directing load. The relationship curve between

the electricity supply and the electricity demand is given in the

literature (Zhu et al., 2018), as shown in Figure 2. The electricity

supply curve illustrates the relationship between the electricity price

and the amount of electricity supplied. The electricity demand

curve illustrates the relationship between the electricity price and

the amount of electrical load. The intersection point represents the

equilibrium between the supply and demand of electricity, which is

the actual operating point of the power system.

3.2.1 Relationship between load and electricity
price in the same period

The electricity demand curve in Figure 2 reflects the

relationship between the change in electricity price in the

current period and the change in electrical load in the same

period. It is considered that the electricity price and electrical

load approximately satisfy the linear relationship near the market

equilibrium point (point E0 in Figure 2) in each period. The

relationship can be defined as

Pj = −kjcj + bj (12)
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where kj and bj are the parameters of the linear function for period

j, jε[1, J]; Pj is the electricity load in period j; and cj is the electricity

price in period j.

3.2.2 Relationship between load and electricity
price in the di�erent periods

To quantify the impact of electricity price changes on electrical

load, the concept of price elasticity, which is commonly used in

economics, is introduced. Price elasticity measures the extent to

which market demand changes in response to price fluctuations.

It is expressed as the ratio of the change in load to the change in

price in TOU price, which can be expressed using Equation 13:

ε =
1P/P

1c/c
(13)

where ε is the price elasticity coefficient, P is the amount of

comprehensive load, c is the electricity price, 1P is the change in

electrical load, and 1c is the change in the electricity price.

Because changes in electricity price in a given period may

affect electrical loads in more than one time period, categorizing

the elasticity coefficients as self-elasticity coefficients and cross-

elasticity coefficients is necessary (Yang et al., 2023).

3.2.3 Self-elasticity coe�cient
The self-elasticity coefficient reflects the effect of electricity

price changes on the electrical load during the same period. It is

defined using Equation 14:

εjj =
1Pj/Pj

1cj/cj
(14)

where εjj is the self-elasticity coefficient in period j, Pj is the original

comprehensive load in period j,1Pj is the change in comprehensive

load after electricity price adjustment during period j, cj is the

original electricity price in period j, and 1cj is the electricity price

change in period j.

According to Equations 12, 14, the self-elasticity coefficients for

each period can be obtained using Equation 15:

εjj =
−kjPj

−kjPj + bj
(15)

3.2.4 Cross-elasticity coe�cient
The cross-elasticity coefficient reflects the effect of electricity

price changes in other periods on the electrical load in a given

period. Taking period 1 and period j as an example, it can be defined

using Equation 16:

ε1j =
1P1/P1

1cj/cj
(16)

where ε1j is the cross-elasticity coefficient between period 1 and

period j, P1 is the original comprehensive load during period 1,

and 1P1 is the change in comprehensive load after electricity price

adjustment in period 1.

Because load stability constraints are present, the daily

comprehensive load can be considered to be a fixed value:

P1 + · · ·Pj · · · + PJ = PL (17)

Substituting Equation 12 into Equation 17, the equation

is simplified:

P1 − · · · − kjcj + bj − · · · − kJcJ + bJ = PL (18)

Deriving from cj both sides of Equation 18,

∂P1

∂cj
= kj (19)

Combining Equations 16, 18, the cross-elasticity coefficient can

be obtained:

ε1j =
cj

P1
·
∂P1

∂cj
=

kjcj

−k1P1 + b1
(20)

The cross-elasticity coefficients for the other periods can be

obtained in the same way.

3.2.5 Relationship between electricity load and
electricity price changes

According to Equation 13, the comprehensive load change 1P

after electricity price adjustment 1c is obtained using Equation 21:

1P = P(1c/c)ε (21)

The load electricity price elasticity matrix S in 1 day is shown in

Equation 22:

S =













ε11 ε12 · · · ε1N

ε21 ε22 · · · ε2N
...

...
. . .

...

εN1 εN2 · · · εNN













(22)

where N = 24. The elements in the diagonal are the self-

elasticity coefficients at each moment. The off-diagonal elements

are the cross-elasticity coefficients between each moment and the

other moments.

In summary, combining Equations 21, 22, the comprehensive

load P′ for J periods after electricity price adjustment can be defined

using Equation 23:

P′ =







P
′
1 0 0

0 · · · 0

0 0 P
′
J






=







P1 0 0

0 · · · 0

0 0 PJ






· S ·







1c1/c1
. . .

1cJ/cJ






(23)

where P1 · · ·PJ are the comprehensive loads for J periods before the

electricity price adjustment.
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3.3 TOU price calculation model

3.3.1 Objective function
From the DN perspective, the purpose of implementing a TOU

price model is to reduce peaks, fill valleys, and minimize the peak-

to-valley difference of electrical loads. Therefore, two sub-objective

functions are established when constructing the objective function

of the TOU price decision-making model. The degree of electricity

price change in each period is used as an independent variable.

The objective function is constructed to minimize the total peak-

to-valley load difference Pz and the total peak load Pf to calculate

the TOU price in each period.

The objective function Cm is defined in Equation 24:

minCm = ωPz + (1− ω)Pf (24)

where ω is the weight parameter of the objective function, ωε(0,1):

Pz = f1
(

1c1,1c2 · · ·1cJ
)

(25)

where Pz is the difference between the maximum and minimum

load in P′1,P
′
2 · · · P′J calculated using Equation 23 after the

electricity price adjustment:

Pf = f1
(

1c1,1c2 · · ·1cJ
)

(26)

where Pf is the maximum load in P
′
1, P

′
2 · · ·P

′
J , calculated from

Equation 23’s electricity price adjustment.

3.3.2 Constraint condition
3.3.2.1 Constraints on operational revenue of DN

The unit price of electricity sold by the DN should exceed the

unit electricity price purchased from the higher level power grid.

The revenue of the DN after implementing the TOU price should

be higher than before. Equations 27, 28 define these:

c
′
j ≥ cjg (27)

C′ ≥ C (28)

where c
′
j is the electricity price for period j after implementing

the new TOU price mechanism; cjg is the purchase price by

the DN from the higher level power grid in period j; C
′
is the

comprehensive operating income of the DN after implementing the

new TOU price; and C is the comprehensive operating income of

the DN before implementing J periods TOU price.

3.3.2.2 Electricity price constraints during peak and

valley periods

When formulating the TOU price, the electricity price for each

period should be limited within a certain range:

cmin ≤ c
′
j ≤ cmax (29)

where cmin and cmax are the minimum and maximum electricity

prices set in this article.

Meanwhile, the peak-to-valley electricity price ratio has certain

range limitations. Setting the peak–valley electricity price ratio too

high will affect the electricity consumption features of the electrical

load, causing the electrical load curve to invert the peak and the

valley and lose the operational revenue of the DN. Setting the

peak-to-valley electricity price ratio too small will not realize the

effect of peak reducing and valley filling, which could affect the

implementation of the TOU price. This article sets it within a

reasonable range:

kmin ≤
c
′
max

c
′
min

≤ kmax (30)

where kmax and kmin are the minimum and maximum values,

respectively, of the peak–valley electricity price ratio and c
′
max and

c
′
min are the highest and lowest electricity prices, respectively, in the

J periods after the electricity price adjustment.

3.3.2.3 Load stability constraint

The regional load and EV charging load cannot increase or

decrease significantly and always fluctuate around the average

value. This article states that the comprehensive load fluctuation

before and after implementing the TOU price should meet the

following constraints:

− 1P ≤
J

∑

j=1

1Pj ≤ 1P (31)

where 1P is the limit of the daily variation of the comprehensive

load before and after implementing the TOU price, taking the

smaller value.

3.3.2.4 EV charging and discharging constraints

Formulating the TOU price should take into account EV

charging characteristics and EV users’ preferences to participate

in response; therefore, the upper and lower limits of EV charging

and discharging electricity prices should be constrained. When the

discharge electricity price of an EV exceeds the minimum value and

meets the requirement that the net income of EV users is greater

than zero, the EV will react to the scheduling demand in the peak

electricity periods.

a. Lower and upper limits of charging electricity price

Considering the EVs in a charging state general charging loads,

the upper and lower limits of the EV charging electricity price are

the highest and lowest electricity prices, respectively, among the

TOU prices obtained by solving the first three constraints.

b. Lower and upper limits of discharging electricity price

The need for EV discharge in the DN only occurs during peak

load periods, and EV discharge is not required during other periods

(Zhang et al., 2020). At this time, the upper limit of EV discharge

electricity price is the highest electricity price among the TOU

prices obtained by solving the first three constraints.
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The average daily charging cost of an EV is defined in

Equation 32:

C
′
e =

ccdmin × Tat × Sat

S1kWh
(32)

where ccdmin is the lower limit of EV charging electricity price, Tat is

the average number of EV trips per day, Sat is the average distance

traveled by EV per trip, S1kWh is the mileage traveled by an EV

per kilowatt-hour.

During peak load periods, EVs discharge in the DN, and the

daily revenue that EV users can receive is defined in Equation 33:

CEV = cdd(Gm − Ge)− ccdminGm − Lb (33)

Lb = ccdmin ×
(

1

ηc − ηd
− 1

)

(34)

where cdd is the EV discharge electricity price, Gm is the average

value of the power consumption of an EV after a single charge, Ge

is the average remaining power after EV discharge, Lb is battery loss

due to battery charging and discharging, ηc is EV battery-charging

efficiency, and ηd is EV battery-discharging efficiency.

The condition for EV users to discharge their EVs on the grid

is that the EV discharge revenue is greater than 0. Simplifying

Equations 33–35 is obtained:

cddmin >
1

Gm − Ge
×

(

ccdmin × Tat × Sat

S1kWh
+ ccdminGm + Lb

)

(35)

where cddmin is the lower limit of EV discharge electricity price.

4 Scheduling model

Combining the clustering results of PV and load scenarios as

well as the TOU price of each period, the comprehensive objective

function is constructed by considering the operating revenue of the

DN and the line network loss. Combining various constraints to

solve the operation state of each scheduling entity in the DN.

4.1 Objective function

To formulate an EVDR dispatch strategy based on the dynamic

adjustment mechanism of TOU price, a comprehensive objective

function considering the DN operation revenue and line network

loss is constructed. Considering that the operating profit C′ of the

DN is a very large indicator and the line network loss PLoss is a

very small indicator, constructing the following objective function

Cp using Equation 36:

maxCp = C′ − PLoss (36)

Considering that the units and orders of magnitude of the

line network loss and operating income are different, they are

normalized, and the processed objective function Cpn is shown in

Equation 37:

maxCpn = C
′
nom − PLoss,nom (37)

where Cpn is the normalized dispatch model objective function,

C
′
nom is the normalized DN operating revenue, and PLoss,nom is the

normalized line network loss.

4.1.1 The operating revenue of the DN
DN operating revenues are equal to the operating revenues

minus the operating costs. DN operating revenues are equal to

revenues from electricity sales to loads. Operating costs include

electricity purchase costs from the higher grid, PV abandonment

costs, compensation costs due to interruptible load, and storage

charging and discharging costs (Yin et al., 2024). Treating the five

factors considered as a whole, the comprehensive operating revenue

C′ after implementing the J periods TOU price is defined using

Equation 38:

C′ = CS − CG − CQ − Ccu − CE (38)

4.1.1.1 Revenue from electricity sales to loads

CS =
J

∑

j=1

n
∑

i=1

cjPij (39)

where n is the number of nodes and Pij is the load power of node i

in period j.

4.1.1.2 Expense of purchasing electricity from the

higher grid

CG =
J

∑

j=1

cjgPjg (40)

Pjg is the amount of electricity sold by the higher level power grid

to the DN in period j.

4.1.1.3 Cost of PV abandonment

CQ =
J

∑

j=1

kq(P
j
PV − P

xfj
PV ) (41)

where kq is the cost coefficient of abandoned light, P
j
PV is the PV

output power in period j, and P
xfj
PV is the amount of PV output

consumed in period j.

4.1.1.4 Cost of compensating the interruptible load

The interruptible load in the regional load can participate in

DR. Interruptible load refers to a flexible load that can be reduced

without changing the running time. The load that can be reduced

at time t can be defined using Equation 42:

Pcu,t = (1− Ncu,t)Pcu′ ,t (42)
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where Pcu,t and Pcu′ ,t represent the load that can be slashed at time

t before and after the reduction, respectively, and Ncu,t is the load

reduction state at time t.

The cost of compensating the interruptible load is defined using

Equation 43:

Ccu = Kcu

T
∑

t=1

Ncu,t

(

Pcu,t − Pcu′ ,t
)

(43)

where Ccu is the compensation cost for load reduction at time t and

Kcu is the compensation cost for unit load reduction.

4.1.1.5 Cost of energy storage charge and discharge

CE =
J

∑

j=1

N
∑

s=1

ke(P
j
sc + P

j

sd
) (44)

where N is the number of energy storage devices, ke is the energy

storage operating cost factor, P
j
sc is the charging power of the sth

energy storage device during period j, and P
j

sd
is the discharging

power of the sth energy storage device during period j.

4.1.2 Line network loss

PLoss =
K

∑

k=1

P2
k
+ Q2

k

3U2
N

(

Rk + jXk

)

(45)

whereK is the number of branches in the DN, Pk is the active power

in the kth branch, Qk is the reactive power in the kth branch, UN is

the rated voltage in the DN, and Rk + jXk is the impedance of the

kth branch.

4.2 Constraint condition

4.2.1 Power balance constraint
The power emitted and absorbed at every moment in the DN

should be balanced, which can be defined in Equation 46:

Pg + P
xf
PV + Pdd × Nd +

N
∑

s=1

Psd = PL + Pcd × Nc +
N

∑

s=1

Psc (46)

where Pg is the amount of power purchased from the DN to the

higher level grid, P
xf
PV is the amount of PV power consumption,

Pdd is the discharging power of EV. Nd is the number of EVs being

discharged, Psd is the discharging power of the sth energy storage

device, PL is the load power in the DN, Pcd is the charging power of

EV, Nc is the number of EVs being charged, and Psc is the charging

power of the sth energy storage device.

4.2.2 Energy storage device constraint
The charging and discharging power and storage capacity

of energy storage devices during operation should be within a

certain range:

0 ≤ Psc ≤ Pcmax (47)

0 ≤ Psd ≤ Pdmax (48)

0 ≤ Es ≤ Esmax (49)

Ets = E(t−1)s + Psc × uc −
Psd

ud
(50)

where Pcmax and Pdmax are the upper limit of the charging and

discharging power, respectively, of the energy storage device; Es is

the amount of power stored in the sth energy storage device; Esmax

is the upper limit of the amount of power stored in the sth energy

storage device; Ets is the amount of power stored in the sth energy

storage device at the time t; E(t−1)s is the amount of power stored

in the sth energy storage device at the time t−1; and uc and ud are

the charging and discharging efficiencies, respectively, of the energy

storage device.

4.2.3 PV output constraint
The actual PV output should exceed the amount of PV output

consumed. This constraint is defined in Equation 51:

PPV ≥ P
xf
PV (51)

where PPV is the PV output power.

4.2.4 Interruptible load reduction constraint
To avoid a continuous load reduction in DN scheduling during

peak periods, constraining the frequency and the load reduction

duration is crucial:

T
∑

t=1

Ncu,t ≤ Ncu,max (52)

t+Tcu,max+1
∑

t=1

(

1− Ncu,t

)

≥ 1 (53)

where Ncu,max is the maximum amount of allowed reduction and

Tcu,max is the maximum time allowed for reduction.

4.2.5 EV charging and discharging quantity
constraints

Nd ≤ Ndmax (54)

Nc ≤ Ncmax (55)

where Ndmax is the maximum amount of discharging EVs allowed

in the DN and Ncmax is the maximum amount of charging EVs

allowed in the DN.
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4.2.6 Line current constraint

Ik 6 Imax,k (56)

where Imax,k is the maximum amplitude of the current in the kth

line. Ik is the amplitude of the current in the kth line.

4.2.7 Voltage constraint at each node

Umin,i 6 Ui 6 Umax,i (57)

where Umin,i and Umax,i are the minimum and maximum

amplitudes, respectively, of the voltage at node i and Ui is the

amplitude of the voltage at node i.

5 Case studies

This article presents a method for generating PV and

comprehensive load scenarios, a dynamic adjustment mechanism

for TOU price, and a DR scheduling strategy for EVs. To verify the

effectiveness of the preceding work, case studies are conducted in

this section.

In this section, the PV data are sourced from the PV open-

source website NPC Daily Data. The regional load electricity data

come from the actual data of a certain regional DN. The data on

EV travel come from the statistical data of the local transportation

department on EV travel in that area. The charging load data of

EVs are simulated and generated using the Monte Carlo method.

The fixed electricity pricing mechanism adopted is the actual TOU

electricity price in a certain region. The network structure and line

impedance values of the DN are sourced from the standard IEEE

33-node DN.

5.1 Scene clustering generation

First, based on the annual PV output and the DN’s regional load

power consumption, the FCM algorithm is used to determine the

typical PV output curves and regional load power curves, and three

commonly used clustering validity criterion indexes are selected to

determine the optimal number of categorizations.

The three commonly used clustering validity criteria, namely,

RFP (λ,m), RP′ (λ,m), and RL (λ,m), used in this article can be

calculated based on the literature (Arbelaitz et al., 2013; Zhang et al.,

2008; Wang et al., 2022).

After calculating the three cluster validity criteria, they were,

first, greatly normalized to obtain RFP,sd(λ,m), RP′ ,sd(λ,m), and

RL,sd(λ,m). From the literature (Arbelaitz et al., 2013; Zhang et al.,

2008; Wang et al., 2022), the first one is a very small indicator,

and the last two are very large indicators. These three indicators

are combined to get the scene clustering effectiveness criterion

indicator Rcomp (λ,m):

Rcomp(λ,m) = RP′ ,sd(λ,m)+ RL,sd(λ,m)− RFP,sd(λ,m) (58)

TABLE 2 The criterion for clustering validity of photovoltaic output

curves.

Number of clusters Rcomp (λ, m)

2 1.039

3 1.507

4 1.451

5 2.219

6 1.114

7 1.435

8 1.157

FIGURE 3

Photovoltaic output curve generation results.

This indicator is also extremely large. The larger its value, the

better the clustering result of the scenario. The value of m∗ that

yields the maximum value of Rcomp (λ,m) represents the optimal

number of clusters for the sample data set to be clustered.

The change in the values of the clustering validity criterion

during the change in the number of clusters from 2 to 8 for the

PV output scenes is recorded in Table 2. According to Table 2, it

is evident that when the number of categories is 5, the clustering

validity criterion has the highest value. Therefore, the optimal

number of categories for PV output scenarios is 5.

The five PV output curves obtained from clustering are shown

in Figure 3. The probabilities of the five scenarios appearing are

0.07, 0.25, 0.15, 0.29, and 0.24.

The change in the values of the clustering validity criterion

during the change in the number of clusters from 2 to 8 for the

regional load scene is recorded in Table 3. According to Table 3, it

is evident that when the number of categories is 5, the clustering

validity criterion has the highest value. Therefore, the optimal

number of categories for regional load scenarios is 5.

The five regional load curves obtained from clustering are

shown in Figure 4. The probabilities of the five scenarios appearing

are 0.08, 0.14, 0.22, 0.31, and 0.25, respectively.

Frontiers in SmartGrids 10 frontiersin.org

https://doi.org/10.3389/frsgr.2025.1554251
https://midcdmz.nrel.gov/apps/daily.pl?site=NPC&start=20060327&yr=
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Liu et al. 10.3389/frsgr.2025.1554251

TABLE 3 The criterion for clustering validity of regional load curves.

Number of clusters Rcomp (λ, m)

2 0.879

3 1.458

4 1.612

5 2.463

6 1.756

7 1.214

8 0.938

FIGURE 4

Regional load curve generation results.

Based on Figures 3, 4, the FCM is applied to cluster the

given PV output and regional load data while preserving key

characteristics such as maximum, minimum, peak, and valley

values in the data set to a large extent. At the same time, the

method also enhances the variability between different data sets

and maximizes the uncertainty difference of power at different

moments of PV output and regional loads using five scenarios.

Fifty EVs are connected to the DN. The EV charging load curve

generated using the Monte Carlo method are shown in Figure 5.

According to Figure 5, EV charging has the lowest charging

power around 9:00 and the highest charging power around 19:30.

At least 5 EVs are charging in the DN during each time period,

and up to 38 EVs are charging. The total fluctuation of the daily

charging load is large.

The comprehensive load curves generated by overlying the five

regional load curves in Figure 4 with the EV charging load curves

in Figure 5 are shown in Figure 6.

The comprehensive load curves generated by overlying the five

regional load curves in Figure 4 with the EV charging load curves

in Figure 5 are shown in Figure 6.

After superimposing the charging load of EVs with the five

regional electricity loads, the comprehensive load curve obtained

still fluctuates greatly during the day, especially in scenarios 1,

2, and 5 where the probability of occurrence is relatively low.

FIGURE 5

Electric vehicle charging load curve generation results.

FIGURE 6

Comprehensive load curve generation results.

Therefore, researching the TOU electricity pricing mechanism that

adjusts dynamically based on the DN load curve is necessary.

5.2 Verification of price mechanism

5.2.1 TOU price calculation
To verify the TOU price decision model and periods division

method, a simulation verification was conducted on the TOU price

obtained by weighting the representative scenarios 1, 2, 4, and 5

comprehensive load curves in Figure 6. The simulation results are

shown in Figure 7.

According to Figure 7a, under load scenario 1, due to the

large peak–valley difference of the comprehensive load during the

day, the TOU price calculation method divides the price into five

periods. The prices are 0.335, 0.435, 0.555, 0.675, and 0.775 for the

deep valley period, the valley period, the normal period, the peak

period, and the sharp peak period, respectively.
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FIGURE 7

Time-of-use price under di�erent load scenarios: (a) under scenario 1; (b) under scenario 2; (c) under scenario 4; (d) under comprehensive load

scenario.

According to Figure 7b, load scenario 2 has a smaller peak

load during the day compared to scenario 1, and there are two

peak periods for comprehensive load. The TOU price calculation

method divides the price into four periods. The prices are 0.35,

0.45, 0.60, and 0.75 for the deep valley period, the valley period,

the normal period, and the peak period, respectively.

According to Figure 7c, load scenario 4 has two peak periods

like scenario 2, but the peak loads are smaller and the valley loads

are larger. The peak-to-valley load difference is the smallest among

the five scenarios. The TOU price calculation method divides the

price into three periods. The prices are 0.40, 0.55, and 0.72 for the

valley period, the normal period, and the peak period, respectively.

According to Figure 7d, under the five comprehensive load

curves weighting scenarios, the TOU price calculation method

divides the price into four periods. The prices are 0.45, 0.55, 0.625,

and 0.75 for the valley period, the normal period, the peak period,

and the sharp peak period, respectively.

Table 4 summarizes the time period division and TOU prices

in the different scenarios. It verifies that the proposed electricity

pricing mechanism can be adapted to various DN operation

scenarios.

From the preceding analysis, it is evident that the TOU

price decision model and period division method presented in

this article can dynamically adjust the TOU price model for

different load scenarios to guide the subjects in the DN to

carry out DR.

5.2.2 Comparison of TOU price mechanisms
Comparing the total peak load and peak-to-valley load, the

differences between the dynamic adjustment mechanism of TOU

price and the three-stage fixed pricemechanism under the weighted

scenario of five comprehensive load curves can be seen. The three-

stage fixed prices are 0.4, 0.55, and 0.7 for the valley period, the

usual period, and the peak period, respectively. The simulation

results are shown in Table 5.

According to Table 5, compared to the three-stage fixed

price mechanism, the total peak load and the peak-to-

valley load difference under the electricity price dynamic

adjustment mechanism are both significantly reduced, which

verifies the superiority of the mechanism’s peak-reducing and

valley-filling effects.
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TABLE 4 Time division and electricity price in di�erent scenarios.

Scenario Deep
valley
period

Deep
valley
price

Valley
period

Valley
price

Normal
period

Normal
price

Peek
period

Peek
price

Sharp
peek
period

Sharp
peek
price

Scenario 1 12–16 0.335 3–5, 11–12 0.435 2–3, 5–11,

16–19

0.555 1–2, 19–21 0.675 21–1 0.775

Scenario 2 22–4 0.35 4–5, 21–22 0.45 10–11,

16–21

0.60 5–10, 11–16 0.75

Scenario 4 1–5 0.4 23–1,

10–19

0.55 5–10, 19–23 0.72

Comprehensive

scenario

1–5, 13–15 0.45 23–1, 5–7,

10–13

0.55 7–8, 9–10,

15–20

0.625 8–9, 20–23 0.75

TABLE 5 Comparison of the scheduling e�ects of the two electricity price

mechanisms.

Total peak load
(kW)

Peak-to-valley
load (kW)

Fixed electricity price

mechanism

713.91 78.66

Electricity price dynamic

adjustment mechanism

664.72 52.04

FIGURE 8

Structure of the modified IEEE 33-node system.

5.3 Verification of the scheduling model

This article takes the standard IEEE 33-node DN model as

the verification scenario, which includes distributed PV, energy

storage, and EVs, as shown in Figure 8. Four distributed PV devices

with capacities of 500 kVA, 500 kVA, 300 kVA, and 400 kVA are

connected at nodes 7, 10, 24, and 27, respectively, of themodel. Two

energy storage devices with capacities of 3.5 MWh and 4 MWh are

connected at nodes 5 and 15, respectively. Fifty EVs are randomly

connected to each node of the distribution grid for charging and

discharging or DR.

Considering the number of EVs participating in the response

and the price, the proposed EV DR scheduling strategy is validated.

The case settings are as follows:

Fixed price: The three-stage fixed prices are 0.4, 0.55, and

0.7 for the valley period, the normal period, and the peak

period, respectively.

TOU price: The TOU price under the comprehensive loads

calculated in the previous section is used.

TABLE 6 Distribution network (DN) operation revenue under four cases.

Case DN operation revenue (U)

1 1,478.62

2 1,703.04

3 1,623.45

4 1,828.36

TABLE 7 Line network loss under four cases.

Case Line network loss (kW)

1 6.28

2 5.47

3 4.62

4 3.91

Case 1: The number of EVs participating in DR in the DN is 20

with a fixed price.

Case 2: The number of EVs participating in DR in the DN is 20

with the TOU price.

Case 3: The number of EVs participating in DR in the DN is 40

with a fixed price.

Case 4: The number of EVs participating in DR in the DN is 40

with the TOU price.

The results of the calculation of DN operation revenue are

shown in Table 6.

By analyzing Table 6, it can be seen that the economic revenue

of using the TOU price model is higher when the amount of

EVs participating in the response remains unchanged. Under the

same price model, as the amount of EVs participating in the DR

increases, there is a certain degree of improvement in economic

revenue. Due to the increase in the number of participating EVs

in the response, the cost paid by the DN to EV users also increases,

leading to a modest increase in revenue.

The calculation results of line network loss under the four cases

are shown in Table 7.

By analyzing Table 7, it can be seen that when the amount of

EVs participating in the DR remains unchanged, using the TOU

price model results in smaller line network loss. When using the
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TABLE 8 The value of objective function in di�erent cases.

Case DN operation
revenue (U)

Line network
loss (kW)

1 1,478.62 6.28

2 1,703.04 5.47

3 1,623.45 4.62

4 1,828.36 3.91

DN, distribution network.

FIGURE 9

Number of charging electric vehicles in each period.

same price model, with the amount of EVs participating in the DR

increases, the line loss network decreases.

The target function values for different examples are shown in

Table 8. After adopting the electricity pricing mechanism proposed

in this article, the sub-values of both objective functions increased

to a certain extent, verifying the effectiveness of the proposed

electricity pricing mechanism in optimizing the operation of the

DN compared to the fixed electricity pricing mechanism. It also

indicates that as the number of EVs participating in scheduling

increases, it can optimize the operating revenue and line losses of

the DN.

Based on the preceding analysis, it is evident that the DR

scheduling strategy for EVs constructed in this article is relatively

effective in enhancing the DN’s operating revenue and reducing line

network losses.

CPLEX in MATLAB is used to solve the optimal scheduling

model. When taking the objective function’s maximum value, the

scheduling results are shown in Figures 9–11.

As shown in Figure 9, after adopting the EV scheduling method

proposed in this article, the number of charging EVs significantly

decreased during the high comprehensive load periods of 6–10 and

17–22. This proves that the proposed EV scheduling method can

alleviate the DN’s power supply pressure and optimize its operation

status by reducing the charging load of EVs during peak electricity

consumption periods.

As shown in Figure 10, during periods of high load levels,

such as 6–7, 10–11, 15–16, and 20-−22, the proposed EV

FIGURE 10

Number of discharging electric vehicles in each period.

FIGURE 11

Charging and discharging power of two energy storages in each

period.

scheduling method can stimulate some EVs to discharge, thereby

reducing the power supply pressure on the DN and optimizing its

operational status.

As shown in Figure 11, in the DR equipment scheduling model

constructed in this article, two energy storage devices can adjust

their charging and discharging power based on the comprehensive

load curve of the DN. They discharge at 7–11 and 17–22 when the

comprehensive load is high and charge at 23–6 and 12–16 when

the comprehensive load is low. This proves that the DR equipment

scheduling model constructed in this article can smooth the load

curve of the DN and improve the operating income of the DN by

controlling the energy storage devices to charge during low-load

periods and discharge during high-load periods.

From Figures 9–11, it is evident that the optimization

scheduling strategy can enable multiple DR resources to participate

in scheduling and schedule suitable devices for DR throughout the

entire period.
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5.4 Summary of simulation results

This article’s simulation content mainly covers displaying PV

and load curve clustering results, verifying the TOU electricity

price dynamic adjustment mechanism, and verifying the EV DR

scheduling strategy.

The simulation part of Section 5 is based on historical PV and

load data, using the FCM to extract typical PV and regional load

power curves, namely, five PV scenarios and five load scenarios,

and using the Monte Carlo method to generate the charging load

curve of EVs. Overlaying the power curves of PV, regional load, and

EVs, five comprehensive load curves, namely, five comprehensive

load scenarios, are obtained.

The TOU electricity prices are calculated for the representative

scenarios 1, 2, 4, and 5 comprehensive load curve weighted

scenarios, and the effectiveness of the proposed TOU electricity

price calculation model is verified by flexibly adjusting the

number of time periods and time period electricity prices in

different scenarios.

The peak total load and peak valley load differences are

compared under the dynamic adjustment mechanism of

TOU electricity price proposed in this article and the fixed

electricity price mechanism in five weighted scenarios of

comprehensive load curves. The simulation results show that

compared with the latter, the peak total load and peak valley

load difference of the former have decreased by 6.9% and 33.8%

respectively, verifying the proposed TOU electricity price dynamic

adjustment mechanism’s effectiveness in peak shaving and

valley filling.

To verify the proposed DR scheduling strategy’s effectiveness

for EVs, four examples were set up to compare and demonstrate

the impact of different electricity pricing policies and the number

of participating EVs on the operating revenue and line losses of

the DN. The simulation results show that when participating in

the response to the number of EVs, using the proposed TOU

electricity price dynamic adjustment mechanism can increase the

operating income of the DN by 13.2% and reduce the line loss

by 12.9% compared to using a fixed electricity price. This proves

the effectiveness of the DR scheduling strategy in improving the

economic benefits of the DN.

6 Conclusion

To improve the DN’s economic operation level by scheduling

the DR resources, this article presents a DR scheduling strategy for

EVs based on the dynamic adjustment mechanism of TOU price.

The case analysis shows the following:

1. A scene generation clustering algorithm has been proposed

and applied to cluster PV output and regional load curves in the

DN. The case studies show that both PV output and regional load

scenarios can be approximated by five curves.

2. The proposed dynamic adjustment mechanism of TOU price

utilizing the electricity load operation curves can provide electricity

price according to the operating status of the DN. Compared

to implementing the fixed electricity price mechanism, the total

peak load and peak–valley load difference decreased by 6.9% and

33.8%, respectively.

3. An optimal scheduling model incorporating both the

operating revenue of the DN and the line network loss can be

constructed. By solving the scheduling model, optimizing both the

economic expense of system operation and the expense of line

network loss is achieved. According to the analysis of the case

simulations, it can be seen that the operating revenue of the DN can

be increased by 13.2% and the line network loss can be decreased

by 12.9%.

Based on the research in this article, the inclusion of distributed

wind power generation, distributed generating units and other

multidiscipline scheduling subjects, TOU price adjustment

mechanism, and multi-objective optimal scheduling strategy under

larger scale EVs access will be the focus of further research.
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