
TYPE Original Research

PUBLISHED 18 August 2025

DOI 10.3389/frsgr.2025.1612770

OPEN ACCESS

EDITED BY

Debani Prasad Mishra,

International Institute of Information

Technology, India

REVIEWED BY

Qingchun Guo,

Liaocheng University, China

Guoqing Chen,

Chengdu Jincheng College, China

*CORRESPONDENCE

Caili Xiang

2510882013@qq.com

RECEIVED 16 April 2025

ACCEPTED 28 July 2025

PUBLISHED 18 August 2025

CITATION

Jiang L, Li C, Qiu W, Xiang C, Yang J and Shu J

(2025) Research on short-term line loss rate

prediction method of distribution network

based on RF-CNN-LSTM.

Front. Smart Grids 4:1612770.

doi: 10.3389/frsgr.2025.1612770

COPYRIGHT

© 2025 Jiang, Li, Qiu, Xiang, Yang and Shu.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Research on short-term line loss
rate prediction method of
distribution network based on
RF-CNN-LSTM

Lin Jiang1, Chen Li1, Wei Qiu1, Caili Xiang2*, Jiawei Yang3 and

Jun Shu3

1Zhuhai Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhuhai, Guangdong, China,
2Automation School, Wuhan University of Technology, Wuhan, China, 3Dongfang Electric Academy of

Science and Technology Co., Ltd., Chengdu, Sichuan, China

Under the background of the new distribution network, the power fluctuation

on the line is increasing, which leads to more uncertainties in the predicted line

loss rate, thus a�ecting the economic benefits of the power grid. In order to

reduce the prediction error of short-term line loss rate and improve its prediction

accuracy, this paper studies a short-term line loss rate prediction method of

distribution network based on RF-CNN-LSTM. Firstly, this paper comprehensively

considers the influence of various uncertain factors on the accuracy of prediction

results. Aiming at the characteristics of high-dimensional time series of line loss

rate data, a random forest (RF) algorithm is proposed to analyze the importance

of multiple characteristic variables a�ecting line loss rate. Then, this paper

constructs a combined model of convolutional neural network and long short-

term memory network (CNN-LSTM) to predict line loss rate. Finally, in order to

verify the accuracy of the prediction results, this paper sets up a support vector

machine algorithm for synchronous prediction as a comparative experiment. The

experimental results show that the prediction results of the proposed prediction

method are more accurate.

KEYWORDS

line loss rate prediction, neural network, random forest algorithm, combined model,

distribution network

1 Introduction

Line loss rate is an important economic and technical index for measuring the design,

operation, maintenance, andmanagement level of a power grid system. Ensuring the stable

and economic operation of the power grid and improving the efficiency of power supply are

of great significance. Under the goal of “double carbon,” the energy production level is low

carbon, the level of energy consumption electrification is increasing, and the power load is

increasing. The line loss of a low-voltage distribution network accounts for ∼40% of the

whole power network loss. The large amount of distributed power access also makes line

loss management more complicated. Therefore, accurately predicting the line loss rate of
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a distribution network for its scientific management, energy

savings, and loss reduction of the distribution network is of great

practical importance (Xiaoke et al., 2023; Yinbiao et al., 2021a).

With the rapid development of artificial intelligence

technology, modern intelligent prediction methods are gradually

replacing classical prediction methods. As a bionic computing

model, neural networks can simulate human or animal nervous

systems’ neurons and connect to each other for information

processing. The neural network can fully adaptively improve its

prediction ability according to the training set of the predicted

data. Guo et al. (2023) used deep learning models such as artificial

neural networks (ANNs), long-term and short-term memory

neural networks (LSTMs), convolutional neural networks (CNNs),

and convolutional neural network and long short-term memory

networks (CNN-LSTMs) to predict the monthly average and

extreme atmospheric temperature changes in Zhengzhou. Guo

et al. (2024a) also used artificial intelligencemodels, such as LSTMs,

CNNs, and CNN-LSTMs, to simulate the climate parameters of

Jinan City, China.

In the context of the new distribution network, power

fluctuations on the transmission line are increasing, which will

lead to more uncertainties in the predicted line loss rate, thus

affecting the power grid’s economic benefits (Yinbiao et al., 2021b).

How intelligent algorithms can be used to optimize the existing

line loss rate prediction model to improve prediction accuracy has

become a current research hot spot. With the random forest (RF)

algorithm proposed by Leo Breiman in 2001, power data prediction

has reached a new level. Its unique feature extraction advantages

are applied to various fields. In a study by Yiwen (2022), the RF

algorithm is used to sort and screen the characteristic quantities of

the influencing factors of line loss rate according to the contribution

rate, and then the least squares support vector machine algorithm

is used to predict the confidence interval of line loss rate. In a study

by Qi et al. (2022), RF combined with IF–THEN rule output feature

selection is used to test the average error. Han et al. (2018) Han et al.

(2018) proposed a new feature selection method for the random

forest algorithm. The example analysis shows that the prediction

accuracy is 5% higher than that of a traditional back propagation

neural network (BP), recurrent neural network (RNN), and support

vector machine (SVM). Jianhua et al. (2020) used the existing

high-precision long short-termmemory neural network (LSTM) to

predict regional line loss, and the results showed that the predicted

value was close to the actual value.

In general, we can predict the line loss rate according to the

time scale. At present, predicting line loss rates mainly focuses

on medium- and long-term predictions; a few studies on short-

term line loss rate prediction are based on the week, day, and

hour. Moreover, many factors affect high voltage line loss rates, and

large fluctuations in the data will also lead to the prediction results

having low accuracy. However, short-term line loss forecasting is

also an indispensable part of power grid line loss rate prediction

(Yingchun et al., 2020). In light of such problems, this article

comprehensively considers the influence of the uncertain factors

faced by the line loss rate during the prediction period on the

prediction results’ accuracy, combines the optimization algorithm

to optimize the existing line loss rate prediction model, and

constructs a model suitable for short-term line loss rate prediction.

First, the influencing factors of short-term line loss rate and

data preprocessing are analyzed. Secondly, this paper proposes

a random forest ( RF ) algorithm to analyze the importance of

multiple feature variables that affect the line loss rate. Remove

the less influential feature variables and select the more important

features and line loss rate data to input into the prediction model,

so as to reduce the data dimension and improve the prediction

efficiency and prediction accuracy. Then, a CNN-LSTMmodel with

a better prediction effect is constructed, and an RF algorithm is

used to extract important influencing variables to ensure that the

line loss rate can be accurately predicted. Finally, the CNN-SVM

model, which is also good at dealing with high-dimensional data, is

introduced to ensure the reliability of the prediction model.

2 Data pre-processing

2.1 Theoretical line loss calculation method

Line loss, in the traditional sense, refers to the power loss

generated during the power transmission process due to the

presence of resistance and reactance in the transmission line,

including double-winding, three-winding transformer loss, reactor

element loss, and wire loss, among others. Usually, to simplify the

concept and calculation, we often subtract the numerical value of

the electric energy at the beginning and the end of the transmission

line to obtain the line loss. In the power marketing department,

line loss can also be expressed as the difference between the power

supply of the power grid and the power sales of each company, and

the ratio of the difference to the power supply is defined as the line

loss rate. The relationship is shown in Equation 1:

Ratio of line loss =
Electricity sales

Power supply quantity
× 100% (1)

The transmission line is equipped with a meter at the beginning

and end of the transmission line to record the amount of electricity.

For example, the line loss of the 10-kV line in the power

transmission process can be expressed as the amount of electricity

measured by the first end meter minus the amount of electricity

measured by the end meter. To facilitate defining this power

difference in practical engineering, it is called the line loss rate, and

the amount of electricity represents the difference.

In the low-voltage distribution network, due to the

characteristic long lines and wide distribution and considering the

irregular distribution of load along the road and the complexity of

the power supply mode of the distribution network, the equivalent

resistance concept is introduced. To simplify the distribution

network’s equivalent model, the distribution network line’s

resistance is equivalent to the total resistance, which is easy to

calculate. The commonly used method is to place an electric energy

meter at the gate. After recording the current, the resistance after

the gate can be equivalent by using a quantitative relationship to

obtain a resistance, Req, so that the total electric energy loss can be

directly calculated, which is equivalent to the sum of the losses of

each branch after the gate.

The distribution network line is shown in Figure 1. The

equivalent resistance of each branch isR1,R2,R3, ...,Rn. The current
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FIGURE 1

Distribution network circuit diagram.

of each branch is I1, I2, I3, ..., In. When the working time is t, the

sum of the energy loss of each line of the distribution network is as

shown in Equation 2:

1A = 3×
(
I21R1 + I22R2 + I23R3 + · · · + I2nRn

)
t × 10−3(kW · h)

(2)

In the actual low-voltage distribution network, accurately

measuring the current is often difficult, so power consumption is

often used instead of current. The relationship between the electric

quantity and the current is shown in Equation 3:

In

I6
=

An

A6

, (3)

where An(n = 1, 2, ..., n) is the power of each branch and A6 is the

total power of the gateway.

Equation 2 can also be expressed as Equation 4:

1A = 3I26

[(
A1

A6

)2

R1 +

(
A2

A6

)2

R2 +

(
A3

A6

)2

R3 + · · ·

+

(
An

A6

)2

Rn

]
× t × 10−3(kW · h). (4)

The active power loss formula is shown in Equation 5:

1P = 3

n∑

i=1

I3i Ri = 3I6
3Req, (5)

,

where Ii represents the current flowing on line i, I6 represents

the total current of the gateway load, and Req represents the

equivalent resistance.

The equivalent resistance of the distribution network line is

shown in Equation 6:

Req =

(
A1

A6

)2

R1 +

(
A2

A6

)2

R2 +

(
A3

A6

)2

R3 + · · · +

(
An

A6

)2

Rn

(6)

In general, the load, length, and line type of each branch are

different. The calculationmethod for equivalent resistance is shown

in Equation 7:

Req =

n∑
j=1

A2
j·6Rj

(
m∑
j=1

Ai

)2
(7)

Rj = rj × Lj (8)

where Rj is the resistance of each wire, rj is the resistance value

of unit length conductor, and Lj is to calculate the length of

branch wire.

2.2 Data pre-processing

To ensure the accuracy and rationality of the line loss rate data,

cleaning the line loss rate data and eliminating the abnormal data

is necessary.

2.2.1 Missing data processing
Usually, “null,” “NA,” “0,” and so on appear in the data. We

generally attribute this kind of data to data missing. If the value of

a certain point is missing, the interpolation method can be used for

data completion. In this article, the Lagrange interpolation method

is used to complete the missing line loss rate. First, a polynomial

function is constructed according to the data characteristics and

requirements near the missing point of the line loss rate, and the

value of the missing line loss rate is calculated using the function.

The Lagrange polynomial function is constructed by extracting

the characteristics of n points around the missing line loss rate

value, and the line loss rate correlation coordinates of n points are

brought into the constructed function p. The specific function is

shown in Equation 9:

pi(x) =
∏

j∈B

x− xj

xi − xj
, (9)
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where xi is one of n points around the missing value of line loss

rate, B is a set of coordinates of n−1 points in the missing value of

line loss rate except xi, and xj represents the jth point in the set B.

It can be seen from the formula that the function value obtained

by substituting xi into the function p is 1, and any xj substituted is 0.

Then, the line loss rate value of n points around the missing value

is multiplied by the value obtained by the function p, and added.

After the abscissa x of the point is substituted, the target line loss

rate value Ln can be obtained, specifically, as shown in Equation 10:

Ln(x) =

n∑

i=1

yipi(x), (10)

where Ln is the value of missing line loss rate, n is the number

of values needed to construct the Lagrange polynomial around the

missing point, x is the coordinates of the missing line loss rate, and

yi is the value corresponding to xi.

2.2.2 Distortion data processing
The line loss rate will change with the periodic change of the

influencing factors for a period, so it also has a certain periodicity.

According to this characteristic, the line loss rate at a certain point

can be selected and compared to the average line loss rate of the

previous period. If the difference is large and exceeds the established

threshold, it is the distortion data, which can be replaced by the

threshold. The specific function is shown in Equation 11:





|Y(d, t)−m(t)| > γ (t)

Y(d, t) = m(t)+ γ (t),Y(d, t) > m(t)

Y(d, t) = m(t)− γ (t),Y(d, t) < m(t)

, (11)

where Y(d, t) is the line loss rate at the time of d days t, m(t) is

the average line loss rate in recent days, and y(t) is the threshold,

which is set to one-third ofm(t).

Assuming that y(t) is the normal transmission line loss rate

offset threshold, the line loss rate offset threshold and the normal

threshold 1 at t−1, t, t+1 are compared. If is less than the threshold

y(t), the line loss rate is normal. If Y(d, t)−m(t) is greater than the

threshold y(t), it is judged to be an abnormal value of the distortion.

For outliers, we can use Equation 12 for processing:

Y(d, t) =
Y(d, t − 1)+ Y(d, t + 1)

2
(12)

After the data outliers are processed, the transmission line loss rate

data tend to be normal.

2.2.3 Data normalization processing
The predicted value of line loss rate after intelligent algorithm

processing is generally between -1 and 0, 0 to 1, or -1 to 1, so

it is convenient to compare and analyze the variables of each

influencing factor. In this paper, the deviation standardization

method is adopted. By comparing the maximum and minimum

values in the data set, it can be transformed through a linear

transformation to be within the range of 0 to 1. The specific method

is shown in Equation 13:





x̄
j
i =

x
j
i−min xj

max xj−min xj

max xj = max
{
x
j
i

}

min xj = min
{
x
j
i

} (13)

,

where i is the number of rows, j is the number of columns,

max xj denotes the maximum value in the column data, min xj

denotes the minimum value in the column data, and xj and x̄
j
i are

the values before and after normalization, respectively. Finally, the

normalized data is between 0 and 1 by standardization.

3 Important feature selection of line
loss rate prediction based on the RF
algorithm

The line loss rate is affected bymultiple parameters. The average

temperature, relative humidity, weather conditions, and load levels

will affect the actual value of the line loss. The measurement error

at the two ends of the line, the table error, the electric energy

acquisition error, and the load impact will cause no load or a heavy

load to affect the line loss rate more or less (Kim and Cho, 2019;

Liao et al., 2023; Ruiming and Jiayu, 2021).

In this article, the influencing factors of line loss rate are

divided into environmental factors, load level, and social factors.

Environmental factors include average temperature, relative

humidity, and so on. The average temperature will more or less

affect the line loss rate, and there is a non-linear relationship

between them. The relationship between line loss rate and relative

humidity is not obvious, and there is a certain weak correlation

between them. The line loss rate is negatively correlated with the

load rate; that is, as the load rate increases, the line loss rate will

decrease, and there is a similar inverse relationship between the

two (Lin et al., 2021). During the holidays, most enterprises and

factories are in a state of shutdown, and the decline in electricity

consumption is larger than usual. Due to the strong correlation

between the impact of electricity consumption on line loss rate,

the impact of holiday load level should be fully considered when

predicting short-term line loss rate.

Because many factors affect line loss and the data are mostly

non-linear, the RF algorithm is used to extract the important

influencing variables to ensure that the line loss rate can be

accurately predicted. In feature selection, the factors that affect the

research object are sorted, and the rules and requirements of its

importance ranking need to be measured by the RF algorithm.

The specific flowchart of feature selection using the RF

algorithm is shown in Figure 2.

Considering that the transmission line loss rate is easily affected

by environmental factors, social factors, load rate level, and other

factors, referring to these characteristic variables’ influence is

necessary when predicting the short-term line loss rate. However,

the category and data dimension of the characteristic variables

cannot be directly estimated, which also has a great impact on

the complexity of calculating the line loss rate prediction model.

Therefore, analyzing the degree of influence on the line loss
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Sample set

Bootstrap

Result 1 Result 2 Result 3

The final result 

of the vote

kResult

Training set 2Training set 1 Training set 3 Training set k

FIGURE 2

Random forest feature selection process diagram.

TABLE 1 Selection table of influencing factors.

Influencing factor Input characteristic variables

Environmental factor Characteristic daily maximum temperature/◦C

Characteristic daily minimum temperature/◦C

Characteristic daily average temperature/◦C

Relative humidity of characteristic day/%

Daily mean air pressure/Pa

Weather type: 1 represents good weather, 2

represents rainy days, 3 represents rime days

Social factor 1–24 represents the time from 1 to 24 o’clock.

1–7 represent Monday to Sunday, respectively.

8 stands for traditional holidays

Load levels The line flows through reactive power/KVar

Active power flowing through the line/KW

rate is necessary, as is appropriately eliminating the characteristic

variables with less influence, which is conducive to improving the

calculation efficiency and prediction accuracy of the prediction

model. In this article, the influencing factors’ characteristics are

sorted and screened before predicting the online loss rate. First, the

influencing factors are shown in Table 1.

Next, the importance of each factor affecting the line loss rate

is analyzed, and the influencing factors are preprocessed. The 11

characteristic variables in Table 1 are selected as data input, and the

importance of each characteristic quantity is analyzed, as shown in

Figure 3.

In Figure 3, the characteristic variables are labeled as follows: 1

corresponds to the highest daily temperature; 2, to the lowest daily

temperature; 3, to the daily average temperature; 4, to the weather

type; 5, to the working day; 6, to the daily average air pressure; 7,

to relative humidity; 8, to the active power of the line; 9, to the line

reactive power; 10, to the rest day; and 11, to the holiday. It can

be seen that the importance of each characteristic variable affecting

the line loss rate is different. Considering that the importance of

1 2 3 4 5 6 7 8 9 10 11

Characteristic variable

0

2

4

6

8

10

I
ec

natr
o

p
m

Importance

FIGURE 3

Comparison chart of the importance of characteristic variables.

the characteristic daily average air pressure with the least influence

is <0.1, to reduce the dimension of the input characteristic variable

matrix and simplify the calculation, the daily average air pressure

with the importance of the influencing factors <0.1 is eliminated,

and the remaining 10 characteristic variables are used together as

the input of the line loss rate prediction model.

4 Short-term line loss rate prediction
model based on RF-CNN-LSTM

4.1 CNN

A CNN model (Jianji et al., 2022) is a neural network model

proposed by LeCun in 1989. The model’s performance is better in

feature extraction and can supplement the shortcomings of other

network models. The composition of the CNNmodel is as follows:

1. Input layer: Its function is to input the original data set.

2. Convolution layer: The convolution operation is used to extract

the features that affect the line loss rate into features more

in line with the prediction model. The convolution kernel is

equivalent to an input matrix, which can perform convolution

operations on data in different input regions. Finally, it is

multiplied by the coefficient matrix of the convolution kernel

to obtain a convolution matrix, which is the feature variable

matrix. Therefore, different convolution kernels can obtain

different convolution feature matrices. Therefore, compared

with the original features, the previously mentioned convolution

features obtained are more effective and can help the model have

higher performance. The basic equation of the convolution layer

operation is shown in Equation 14:

Cl = ReLU
(
Wx+ b

)
, (14)
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CNN 

model

Input layer Convolution layer Pooling layer

Fully connected layer

Output layer

FIGURE 4

Convolutional neural network (CNN) structure diagram.

� � � � � �tanh � � tanh �
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tx
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�

tanh

tanh tanh tanh

FIGURE 5

Long short-term memory neural network hidden layer chain structure diagram.

where Cl is the output feature of the convolutional layer

l, ReLU( ) is the activation function, x is the input of the

convolution layer, W is the weight of the convolutional layer,

and b is bias.

3. Pooling layer: Its role is to reduce the data dimension. This is

a sub-sampling technique, which is similar to the convolution

operation, and extracts the features of each convolution feature

block through a small sliding window to output new features.

Therefore, the role of pooling is not only to summarize the

previous convolution features but also to filter out the bad

features, thus improving the stability of the model. Therefore,

to reduce the parameter types of the convolutional layer and

the dimension of the data set, we calculate the average and

maximum values of the feature variable data, referred to as

average pooling andmaximum pooling. The calculation formula

of the maximum pooling layer is shown in Equation 15:

xlj = f
(
βljdown

(
xl−1
j

)
+ blj

)
, (15)

where down( )denotes the maximum pooling sampling

function, xlj represents the input feature map of the data j of the

convolutional layer l, and βlj is deviation.

4. Full connection layer: After classifying the processed data, the

output results are sent to the next network model.

5. Output layer: This represents the output line loss rate value.

The structure of the CNN is shown in Figure 4.

4.2 LSTM

LSTM has a good performance in processing time-series data.

The data involved in the line loss rate are time-series data, such as

temperature, weather forecast data, daily load rate, and so on, so the

prediction of the line loss rate is widely used.

LSTM is a chain-structured neural network, which is unique

in that it adds a gate structure for the data-storing state. Due to

the structural characteristics of the input gate, forgetting gate, and

output gate, when there is an error in the activation function, the

important information will still be iterated together and continue

to be transmitted backwards, so there is no long-term dependence

between the chain structures. The hidden layer chain structure of

the LSTM neural network is shown in Figure 5.

In the chain’s hidden layer are three gate structures: the input

gate, the forgetting gate, and the output gate, as shown in Figure 6.

Therefore, this layer can selectively retain a certain part of all data,

rather than a single datum. The three gate structures also determine

that it can accept the output of multilayer neurons.

The role of the forgetting gate is to determine which useless

information is received in the forgetting model. The forgetting

gate combines the output ht−1 of the hidden layer at time t − 1

and the input xt at time t. The three can be processed together
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by the activation function to obtain an arbitrary value of [0, 1].

When the number obtained is between 0 and 1, the data can be

selectively retained. When the value is 1, the data are considered

useful information, and all the information is retained. When the

value is 0, all the data are considered useless information, and the

information is forgotten. The calculation method of forgetting gate

is as follows:

1. The forgetting gate takes the input xt of time t and ht−1 the

output of time t−1 as the reference, and deletes the information

from the storage unit. Its expression is shown in Equation 16:

ft=σ
(
wfh × ht−1+wfx × xt+bf

)
, (16)

tanhSig Sig Sig

tanh

1th �

tf

ti tC

tC

th

tx

1tC �

Forget 

gate

In-gate Out-gate

FIGURE 6

Long short-term memory neural network model structure diagram.

where ht−1 is the offset of the forgetting gate, ft is the state

of the forgetting gate, σ () is the activation function, and wfh and

wfx are the weight matrices of the forgetting gate.

2. The information stored in the storage unit is determined. Its

expression is shown in Equation 17:

it= σ
(
wih × ht−1+wix × xt+bi

)

c̃t= tanh
(
wc̃h × ht−1+wc̃h × xt+bc̃

) , (17)

where wih, wix, and w̃ch are the weight matrices of the

input gate; it is the state of the input gate; tanh( ) and σ ( ) are

activation functions; c̃t is the state of the candidate element; and

bi and bc̃ are the offsets of the input gate.

3. Combined with the state of the forgetting gate and the input

gate, the unit state Ct is updated. Its expression is shown in

Equation 18:

Ct = ft · Ct−1 + it · c̃t , (18)

where Ct−1 is the element state of time t − 1.

4. In the unit state at time t, the state Ot of the output gate is

updated. Its expression is shown in Equation 19:

Ot = σ
(
woh · ht−1 + wox · xt + bo

)
, (19)

wherewoh andwox are the weight matrices of the output gate

and bo is the offset of the output gate.

5. The final output of the output gate is determined. Its expression

is shown in Equation 20:

Forecasting 

results

LSTM LSTMLSTM

... ...

...

...

...

0c

0h

0x

1c

1h

1x
2c 1tc �

1th �
2h

1tx �

tc

th

X

CNN model

CNN 

model

LSTM model

Convolution and 

maximum pooling

Input

Fully connected layer

Max 

pooling

Window 

size

Characteristic 

equation

Flattening

FIGURE 7

Convolutional neural network (CNN)–long short-term memory (LSTM) model structure diagram.

Frontiers in SmartGrids 07 frontiersin.org

https://doi.org/10.3389/frsgr.2025.1612770
https://www.frontiersin.org/journals/smart-grids
https://www.frontiersin.org


Jiang et al. 10.3389/frsgr.2025.1612770

Training 

sets

Testing 

set

Establish CNN model 

parameter initialization

Convolution 

layer

Pooling 

layer

Fully connected 

layer

Flattening 

process

Enter the LSTM 

model and save it

The trained CNN-LSTM 

model

Output fully connected 

layer features

Outcome

Feature selection based on 

random forest

Onset

End

FIGURE 8

Random forest convolutional neural network (CNN)–long

short-term memory (LSTM) model prediction flowchart.

ht = Ot · tanh (Ct) , (20)

where ht is the output at time t, that is, the line loss rate value.

4.3 Construction of short-term line loss
rate prediction model based on the
RF-CNN-LSTM

4.3.1 RF-CNN-LSTM prediction model
construction

To predict the change of transmission line loss rate more

accurately, a CNN-LSTM combined model is constructed as shown

in Figure 7. Its steps are as follows: The first step is to input the

processed data to the model through the input layer. The second

step is to extract the important information in the data through the

convolution layer and reduce the dimension of the pooling layer to

obtain the output data. The third step is to train the output data

by the LSTM layer. The fourth step is to enter the output layer to

obtain the output value.

When using the CNN-LSTM model to predict the short-term

line loss rate value, the CNN neural network is first used to extract

the feature quantity of the line loss rate influencing factors, and the

original data set is divided into a training set (80%) for training

the model. This process allows the model to find the correlation

between the line loss rate and the influencing factors so that the

model becomes more suitable for line loss rate prediction, and the

test set (20%) is used to test the model’s accuracy. LSTM can not

only fully obtain the time-series characteristics of line loss rate data

through memory function but also accurately grasp the non-linear

relationship between input data and line loss rate and has higher

accuracy when predicting transmission line loss rates.

The prediction model based on the RF-CNN-LSTM is

constructed in the following discussion, and the prediction process

is shown in Figure 8.

In summary, the steps to establish the RF-CNN-LSTM short-

term line loss rate prediction model are as follows:

1. Data acquisition and pre-processing: The data for transmission

line loss rate, environmental factors, and time on the

characteristic day are collected, and the missing data completion

and distortion data processing are carried out. Finally, the data

are normalized to the same order of magnitude.

2. Data partitioning: To make the model fully trained, the original

data set is usually divided into a training set (80%) and a test

set (20%). The former is used to train the prediction model,

and the latter is used to test the model training results and

prediction accuracy.

3. Feature extraction: The training set is used to train the CNN

model for data feature extraction and finally input into the

LSTM model through the convolutional layer, the pooling layer,

and the fully connected layer for line loss rate prediction.

4. Model evaluation: The training fitting effect of the training set

was observed, and the prediction performance of the model was

evaluated using the test set.

5. Analysis of prediction results: The measured parameters are

input into the model, and the error evaluation index is used to

compare the predicted line loss rate with the real value to judge

the model’s prediction accuracy and evaluate the prediction

model’s advantages and disadvantages.

4.3.2 RF-CNN-LSTM hybrid architecture design
This article proposes a hybrid architecture of the RF-

CNN-LSTM. The system adopts the RF-CNN-LSTM three-stage

processing flow, as follows:

1. RF feature selection layer: The key influencing factors are

screened, and the optimized feature subset is constructed.

According to Section 3, before the data are input into CNN-

LSTM, an RF is used to evaluate and select the importance of

features, and the features after RF screening are reconstructed

into three-dimensional tensors as CNN input.

2. CNN spatial feature extraction module: According to Section

4.1, the convolution layer and pooling layer are determined, and

the data after convolution and pooling are used as the input of

the LSTM. In this article, the line loss rate data of the previous

period is used to predict the line loss rate of the next time

point. Therefore, the line loss rate data need to be processed

by a sliding window. The step size of the sliding window is 1,
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and the length is artificially set to obtain the trajectory matrix

as input. To preserve the time information as much as possible,

the convolution kernel should be as small as possible. Moreover,

the short-term fluctuations of line loss rate are more critical

and should focus on local segments. Therefore, the convolution

kernel size is unified to 3× 3.

3. LSTM timing modeling module: Capture the dynamic evolution

law of the line loss rate. The fully connected layer converts the

spatial features output into time-series vectors using a CNN.

According to Section 4.2, the LSTM layer outputs data through

the forgetting gate to complete the prediction.

The specific number of convolution kernels, convolution kernel

size, step size, and other information are shown in Table 2.

5 Experimental prediction analysis

5.1 Short-term line loss rate prediction
error evaluation index

The indicators of conventional error analysis are root mean

square error (RMSE), mean absolute error (MAE), and mean

square error (MSE). Its calculation expression is shown in

Equations 21–23:

RMSE =

√√√√ 1

n

n∑

i=1

(xi − xi)
2 (21)

MAE =
1

n

n∑

i=1

|xi − xi| (22)

MSE =
1

n

n∑

i=1

(xi − xi)
2 . (23)

The error curve is drawn by using the predicted relative error. The

formula is as follows:

RE =

∣∣∣∣
xi − xi

xi

∣∣∣∣ (24)

where n is the number of samples in the test set, xi is the actual

value of the line loss rate at the time of the sampling i, and xi is

the predicted value of the line loss rate at sampling i. The smaller

the value of the error evaluation index is, the more the predicted

value fits the real value, and the higher the accuracy of the model

prediction is.

5.2 Experimental condition

The short-term line loss rate prediction is mainly to predict

the line loss rate within the next 2 h to 2 weeks. Considering the

maximum margin, this experiment will predict the line loss rate

within 2 weeks. The data set of transmission line loss rate for 15

days from May 1 to May 15, 2024, is selected, and the line loss rate

and characteristic variables are collected every 60min. The first 12

days were the training set, and the next 3 days were the test set.

After training the RF-CNN-LSTMmodel, the line loss rate data for

the next 3 days are predicted and analyzed.

Based on Section 4.3, the parameter settings of the RF-CNN-

LSTM model are shown in Table 3. The initial learning rate is set

to 0.001, and the dropout rate is set to 0.2 in the LSTM layer to

prevent overfitting.

After many experiments, two convolutional layers and two

maximum pooling layers are selected. This setting can help CNN

better extract the feature relationship between the line loss rate and

the influencing factors. The advantages are as follows:

1. Setting two convolutional layers and themaximumpooling layer

can extract the higher-dimensional relationship between the

line loss rate and the characteristic variables of the influencing

TABLE 2 Internal parameters of convolutional neural network–long

short-term memory model.

Type Number of
convolutional

kernels

Size of
convolution

kernel

Step
size

Convolution layer 64 (3× 3) 1

Activation function

ReLU( )

– – –

Pooling layer – (2×2) 2

Activation function

tanh()

– – –

TABLE 3 Model parameter settings.

The number
of network
layer order

Network
structure

Model parameter

1 Input layer Structure (12× 24, 11)

2 Convolution layer Number of convolution kernels:

64. Size: 3× 3. Step length: 1× 1

3 Pooling layer Pool size: 2× 2. Step length: 2× 2

4 Convolution layer Number of convolution kernels:

128. Size: 3× 3. Step length: 1× 1

5 Pooling layer Pool size: 2× 2. Step length: 2× 2

6 Fully connected

layer

Neurons: 128

7 LSTM layer Neurons: 128

8 Output layer Neurons: 1

LSTM, long short-term memory.

TABLE 4 Ablation experimental results.

Model RMSE MAE MSE

CNN-LSTM 0.11298 0.15275 0.01275

RF-CNN-LSTM 0.09753 0.13807 0.00951

CNN, convolutional neural network; LSTM, long short-term memory; RF, random forest;

RMSE, root mean square error; MAE, mean absolute error; MSE, mean square error.
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factors and enhance the expression ability of the model

after learning.

2. The small convolution kernels of 64 and 128 are used to extract

themain features as much as possible, and there is no overfitting.

It will reduce the computational burden of the model, ensure

accuracy, and improve the prediction efficiency.

3. The maximum pooling layer can help reduce the dimension of

feature quantities, abandon redundant data, and only extract

important features, thereby reducing the amount of calculation

and making the model more robust.

4. Using ReLU( ) as the activation function can enhance the

learning ability of the CNN, which is helpful to activate larger

positive neurons and inhibit negative neurons. At the same time,

the activation function also has a good performance in fitting

complex non-linear problems.

5.3 Experimental result analysis

5.3.1 Ablation experiment
AnRF is introduced based on the CNN-LSTM to obtain the RF-

CNN-LSTMmodel. An ablation experiment is carried out using the

preceding model, and the results are shown in Table 4.

According to Table 4, compared with the CNN-LSTM model,

the RF-CNN-LSTM model’s RMSE increases by 13.6%, its MSE by

9.6%, itsMAE by 14.65%, and itsMSE by 25.4%.WhenMAE is used

as the evaluation standard of neural networks, the RF-CNN-LSTM

has a better overall prediction effect on the short-term line loss rate.

The RF algorithm can eliminate redundant features, and the overall

accuracy of the RF-CNN-LSTM model is significantly improved

after focusing on the key influencing factors and selecting the

feature quantity of RF. In addition, the RF-CNN-LSTM performs

well on the MSE and RMSE indicators, and the prediction results

are more stable.

5.3.2 RF-CNN-LSTM model experiment and
analysis

The test results are shown in Figures 9, 10.

The error evaluation indexes, RMSE, MAE, andMSE, proposed

in Section 5.1 are used to analyze the error of the prediction

results of the RF-CNN-LSTM model. According to the calculation,

the error evaluation indexes of the RF-CNN-LSTM model can be

obtained, specifically RMSE = 0.09753, MAE = 0.13807, and MSE

= 0.00951.

It can be seen from Figure 9 that for the RF-CNN-LSTMmodel

training set samples, the overall fitting effect is good. However,

when the number of training set samples is in the 20–50 range, the

peak fitting effect of the RF-CNN-LSTM model is not good, and

the error is∼15%. As the number of training set samples increases,

the error gradually decreases. This shows that when the sample

size is insufficient, the model has difficulty fully learning the spatial

and temporal characteristics and noise patterns contained in the

peaks, resulting in limited generalization ability and error. When

the training data are sufficient, the RF-CNN-LSTM components
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The fitting e�ect of random forest–convolutional neural network–long short-term memory model training set samples.
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Random forest–convolutional neural network–long short-term memory line loss rate prediction results.

TABLE 5 Ablation experimental results.

Model RMSE MAE MSE

RF-CNN-LSTM 0.09753 0.13807 0.00951

RF-CNN-SVM 0.10242 0.15129 0.01049

CNN, convolution neural network; LSTM, long short-term memory; RF, random forest;

RMSE, root mean square error; MAE, mean absolute error; MSE, mean square error.

can be collaboratively optimized, which effectively alleviates the risk

of overfitting and improves the accuracy of peak fitting.

From Figure 10, it can be seen that when the RF-CNN-LSTM

model is used for actual testing, the measured value is also close

to the true value. However, the prediction error at the peak of the

actual prediction is ∼7%, and the error is relatively large. This

may be related to the strong volatility of line loss rate data, the

granularity of line loss rate data, and the initial parameter setting

during this period.

5.3.3 Contrast experiment
To further prove the superiority of the prediction method

proposed in this paper, the same data sets are input into the RF-

CNN-LSTM model and the RF-CNN-SVM model, respectively.

The test results are shown in Table 5 and Figures 11, 12.

It can be seen from Table 5 that the error evaluation indexes

of the RF-CNN-SVM model are as follows: RMSE = 0.10242,

MAE = 0.15129, and MSE = 0.01049. Compared with the RF-

CNN-LSTM model, all error evaluation indices are significantly

increased. Compared with the RF-CNN-SVM model, the RMSE of

the RF-CNN-LSTM model proposed in this article is reduced by

4.78%, the average absolute error is reduced by 8.7%, and the mean

square error is reduced by 9.34%.

It can be seen from Figure 11 that the RF-CNN-SVM model

training set has a poor fitting effect, and the fitting effect at the

peak and trough is worse than that of the RF-CNN-LSTM model.

It can be seen from Figure 12 that the CNN-SVM model has

a poor fitting effect on the short-term line loss rate, and the

prediction results at the peaks and troughs are quite different

from the real values. The RF-CNN-LSTM model is closer to the

real value than the RF-CNN-SVM model. The comparison of the

two prediction results can highlight the advantages of RF-CNN-

LSTM in predicting short-term line loss rate. In summary, the RF-

CNN-LSTM model proposed in this paper has more advantages in

predicting short-term line loss rate.

6 Conclusion

In this article, an RF algorithm is used to sort the influencing

factors of line loss rate according to their importance, and the daily

average air pressure with the proportion of influencing factors<0.1

is removed, which can reduce the data dimension and improve the

reliability and speed of model training. Considering that the feature

variables extracted by the input layer of the traditional method are

not complete, a CNNwas used to extract the feature variables. Then

the LSTM neural network was selected for prediction. To verify the

accuracy of the prediction results, the SVM algorithm is set up for

synchronous prediction as a comparative experiment. The results
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show that the CNN-LSTM neural network prediction results are

more accurate.
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