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We investigate the structure of a cholesteric blue phase (BP) liquid crystal cell of

finite thickness under an electric field normal to the planar surfaces confining

the liquid crystal. We carry out large scale simulations to consider cases inwhich

the thickness of the BP liquid crystal is approximately 40 times the BP lattice

constant (typical thickness in experiments), larger than that of previous

simulation studies. Our calculations clearly demonstrate that the number of

periodic structures along the thickness direction (thickness divided by the lattice

constant) is discretized by the presence of confining surfaces. The stability of

the so-called BP X structure over the BP I under the electric field, as well as the

electrostriction, is confirmed. The metastability of the BP X structure after the

cessation of the electric field, demonstrated in a recent experiment [Nat. Mater.

19, 94 (2020)] is also shown. We also perform calculations for the reflection

spectra of the BP structures, and clearly observe the shift of the reflection peak

due to electrostriction. Our study demonstrates the role of finite thickness on

the behavior of a BP cell.
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Introduction

Cholesteric blue phases (BPs) are complex three-dimensional ordered structures

exhibited by highly chiral liquid crystals (Wright and Mermin 1989; Bahr and Kitzerow

2001). They comprise an intricate network of so-called double-twist cylinders and

topological line defects of orientational order (disclination lines). In a double-twist

cylinder, the orientational order is twisted along all directions perpendicular to the

cylinder axis. Two thermodynamically stable blue phases are known to exhibit cubic

symmetry: BP I with body-centered-cubic ordering with space groupO8 (I4132), and BP II

with simple cubic ordering with space group O2 (P4232) (A third stable blue phase, BP III,

which is believed to be amorphous (Henrich et al., 2011; Gandhi and Chien 2017), is not

the target of the present study). Cholesteric blue phases have been attracting interest from

the viewpoint of basic science as an intriguing example of frustration-induced order (The

inability of energetically favorable double-twist ordering to fill the whole space leads to the

formation of disclination lines), and extensive studies have been carried out towards
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application for fast-switching displays (Kikuchi et al., 2002, 2007;

Rahman et al., 2015; Tan et al., 2017).

The response of cholesteric blue phases to an applied electric

field has been drawing considerable attention because it provides

an interesting problem on structural transformation in soft

materials, and its understanding is crucial for their potential

applications. The electric field gives rise to intriguing behavior

involving the change in the symmetry and the variation of lattice

constants (electrostriction) (Kitzerow 1991). Hexagonal

(Pieranski et al., 1985; Hornreich and Shtrikman 1989) and

tetragonal (Cladis et al., 1986; Pieranski and Cladis 1987) blue

phases have been identified that are thermodynamically stable

only under an electric field. The latter, often referred to as BP X,

has been shown to possess the space group symmetry I4122.

Electrostriction of BPs and the resulting shift of reflection peak

have been also attracting interest because of the potential of BPs

as a tunable photonic material (Heppke. et al., 1989b; Yoshida

et al., 2013; Chen et al., 2015; Guo et al., 2020).

Here we carry out a simulation study on how an applied

electric field affect the structural and optical properties of a BP

cell whose thickness is comparable with that of a real

experimental cell (~ 10 μm). Our study is motivated by a

recent experimental study (Guo et al., 2020) that

demonstrated that BP X structures with their lattice constant

along the cell normal being larger than that of BP I can be stable

even after the cessation of the electric field (to be precise, they are

metastable but their lifetime is long enough for applications).

(Meta)stable BP X has been achieved by carefully applying an

electric field repetitively with time intervals so that the BP can

effectively dissipate heat during the interval. The lattice constant

of the observed metastable BP X along the cell normal is not

unique and depends on the history of the applied field. Purely

bulk BPs are not likely to exhibit multiple lattice constants, and

therefore the finite thickness and the presence of confining

surfaces seem to play some role.

There have been a number of simulation studies focusing on

the behavior of BPs under an electric field (Alexander and

Marenduzzo 2008; Alexander and Yeomans 2009; Fukuda

et al., 2009; Fukuda and Žumer 2013; Henrich et al., 2010;

Tiribocchi et al., 2011a; 2011b). However, most of them deal

with purely bulk systems with periodic boundary conditions, or,

even when a cell of finite thickness is considered, the cell

thickness is much smaller than that of typical experimental

systems. In the present work, the cell thickness is taken to be

30
�
2

√
times the lattice constant of bulk BP I, which corresponds

to ~ 10 μm, close to typical experimental values. Note that in a

previous large scale simulation of BPs (although the electric field

is not considered) (Li et al., 2017; Martínez-González et al., 2017),

the cell thickness is 2.1 μm, 14 times the lattice constant of BP

(Note also that the lateral dimension of their numerical BP cell is

a few times larger than ours). Although there are a number of

possibilities for the lattice orientation of BPs, because of the high

numerical costs, we restrict our attention to two cases typically

observed experimentally (Yoshida et al., 2013; Chen et al., 2015;

Guo et al., 2020): BP I with its (110) plane parallel to the

confining surfaces, and BP X with its 41 screw axis along the

cell normal.

This paper is organized as follows: In Calculation of BP

structures and Calculation of reflection spectra, respectively,

we describe how we calculate the structures of BPs and their

reflection spectra. The results of the calculation of the

structures are shown in Structures of cholesteric blue phase

in a cell and Reflection spectra presents the reflection spectra.

Discussion gives a concluding discussion.

Model

Calculation of BP structures

For the calculation of the structures of our cholesteric blue

phase cell, we make use of the Landau-de Gennes continuum

theory in which the orientational order of the liquid crystal is

represented by a second-rank symmetric and traceless tensor χαβ.

Details of the theory and the numerical calculation are presented

in our previous papers (Fukuda et al., 2009; Fukuda and Žumer

2010a; 2010b; Fukuda and Žumer 2011a; 2011b; Nych et al., 2017;

Fukuda et al., 2018; Fukuda and Žumer 2020; Fukuda 2022;

Fukuda et al., 2022), and here we present their essence.

The geometry of the liquid crystal cell, shown in Figure 1, is

such that it is confined by two planar surfaces that are parallel to

the xy plane and located at z = 0 and z = L (The cell thickness is

hence L. As mentioned below, length is appropriately rescaled).

The free energy of the liquid crystal is given as a functional of the

order parameter χαβ(r), where r represents the position. We

introduce the rescaling of the free energy itself, order

parameter, length and the material parameters as described in

detail in Supplementary Appendix S1. The total free energy is the

sum of the bulk part and the surface anchoring part, and the

former is written as

Fbulk � ∫ dx dy∫L

0
dz φlocal χ( ) + φelastic χ,∇( ) + φE χ( )[ ], (1)

where

φlocal χ( ) � τ Trχ2 − �
6

√
Trχ3 + Trχ2( )2, (2)

is the local free energy given as a Landau expansion in terms of

χαβ, and τ is the rescaled temperature. Tr means the trace of a

tensor. The elastic energy taking care of the inhomogeneity of χαβ
is written as

φelastic χ,∇( ) � κ2 ∇× χ( )αβ + σχαβ[ ]2

+ η ∇ · χ( )α[ ]2{ }, (3)

where κ is the rescaled elastic constant and can be regarded also

as the strength of chirality inversely proportional to the

cholesteric pitch p (See Supplementary Appendix S1). The
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parameter η represents the anisotropy of elasticity. In the present

study η is set to one corresponding to the so-called one-constant

approximation setting the splay, twist and bend Frank elastic

constants to be equal. We have adopted this approximation just

for simplicity, and in usual nematic liquid crystal made of rodlike

molecules, twist elastic constant is smaller than the other two,

and smaller twist elastic constant is realized by taking η > 1

(Wright and Mermin 1989; Fukuda 2022). Here and in the

following, summations over repeated Greek indices are

implied (Hence, in Eq. 3, the summation symbols ∑α=x,y,z and∑β=x,y,z are omitted). Note that the length has been rescaled so

that the cholesteric pitch is equal to 4π (See Appendix). Therefore

the cholesteric pitch does not appear explicitly in Eq. 3. The sign

of the chirality is determined by that of σ (|σ| = 1) and we here

choose σ = +1, which yields right-handed helical order in the

terminology of de Gennes and Prost 1995. The electrostatic

energy is given by

φE χ( ) � −~ϵêαêβχαβ, (4)

where the electric field is assumed to be uniform and fixed, and

the unit vector ê is along the field direction. The parameter ~ϵ
characterizes the effect of the field, and is proportional to the

dielectric anisotropy (including its sign), and the square of the

field strength. In the present study we consider the case of

positive dielectric anisotropy, and for simplicity the electric

field is assumed to be uniform along the cell normal (z

direction).

The surface anchoring energy is expressed as

Fsurf � ∫ dx dy φs0 χ( ) + φsL χ( ){ }, (5)

where φs0(χ) and φsL(χ) are the free energy density at z = 0 and

z = L, respectively. As in our previous study (Fukuda and

Žumer 2020), both φs0(χ) and φsL(χ) are given by the sum of

the planar-degenerate part φpd and the unidirectional planar

part φpd that are expressed as

φpd χ( ) � 1
2
w1Tr ~χ − ~χ⊥( )2 + 1

2
w2 Tr~χ2 − χ2s( )2, (6)

φud χ( ) � 1
2
wudTr χ − χ0( )2. (7)

Eq. 6, originally proposed in Fournier and Galatola 2005, has

been extensively used for modeling surfaces with planar-

degenerate anchoring with no preferred in-plane orientation.

In Eq. 6, χs defines the degree of orientational order at the surface,
~χαβ ≡ χαβ + (1/3)χsδαβ and ~χ⊥αβ ≡ Pαμ~χμ]P]β with Pαβ = δαβ −

δαzδβz being the projection operator onto the surface (parallel

to the xy plane in the present case). In Eq. 7, χ0 is the value of the

tensor order parameter that minimizes φud, and we set

χ0αβ � χs ]α]β − 1/3( )( )δαβ. (8)

Here ν is the direction of the orientational order imposed by

the unidirectional planar anchoring (hereafter referred to as

the easy axis), and taken to be parallel to the xy plane.

Therefore ν can be written as ν = (cos θ, sin θ, 0), with θ

being the azimuthal angle of the easy axis (Figure 1). The

parameters w1, w2 and wud are rescaled anchoring strengths.

In our system, θ is taken to be the same for both surfaces. In

Fukuda and Žumer 2020, we discussed how the variation of θ

affects the free energy of BP I with its (110) planes parallel to

the confining surfaces. We showed that the free energy is

minimized at θ = 38.5°. Similar calculation for BP X shows that

θ = 38.5° minimizes the free energy of BP X as well, although

we believe that this is a coincidence without a profound

meaning (Note that the precision of θ is 0.1°). From these

observations, we set θ = 38.5° for the present calculations.

For the convenience of the discussions that follow, we define

the free energy per (rescaled) unit area:

FIGURE 1
Geometry of the system for numerical calculation. The gray planes at z = 0 and L are the cell surfaces imposing unidirectional planar anchoring
with its easy axis being ν. The angle theta specifies the direction of ν with respect to the x axis. Other white planes impose periodic boundary
conditions.
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F � Fbulk + Fsurf∫dx dy , (9)

where Fbulk and Fsurf are defined in Eqs. 1, 5, respectively.

In Table 1 we summarize the parameters used for all the

simulations. See Supplementary Appendix S1 for more detail on

how Table 1 is derived. As noted above, we consider the case of

positive dielectric anisotropy (~ϵ> 0), and set ~ϵ to 0, 0.02 and 0.03.
Separate calculations for a bulk system shows that the phase

transition between BP I and BP X occurs at ~ϵ ≃ 0.02,

corresponding to E ≃ 3.2 V/μm (Table 1), close to typical

experimental transition field strength (≃ 3.0 V/μm in Guo

et al., 2020). We also note that for our choice of κ = 0.4

(corresponding to p ≃ 280 nm), the free energy before

rescaling per μm2 is

≃ F × 6.8 × 104kBT, (10)

where F is defined in Eq. 9, kB is the Boltzmann constant, and

kBT ≃ 4.1 × 10–21 J for room temperature (See Supplementary

Appendix S1).

In the xy plane, periodic boundary conditions are

imposed, and the system is discretized by Nx × Ny

rectangular grid points with spacings Δx and Δy. We have

chosen Nx = 45 and Ny = 32. In the z direction normal to the

confining surfaces, Nz + 1 grid points with equal spacings Δz

and Nz = 1350 are allocated (Hence the cell thickness is L =

NzΔz). The minimization of the free energy is achieved by a

simple relaxation equation:

z

zt
χαβ r( ) � −δ Fbulk + Fsurf( )

δχαβ r( ) + λ r( )δαβ, (11)

where λ(r) is the Lagrange multiplier ensuring the tracelessness

of χαβ(r), and the time t is rescaled so that the kinetic coefficient

does not appear explicitly in Eq. 11. The technical details of the

minimization procedures are described in detail in Fukuda and

Žumer 2020. We just note here that not only the order parameter

χαβ but also Δx and Δy are optimized in the minimization

procedures.

Initial conditions necessary for the minimization procedure

of the free energy are prepared as follows. In a smaller system

with periodic boundary conditions in the x, y and z direction, we

prepare a profile of BP I with its (110) plane parallel to the xy

plane, and a profile of BP X. The initial condition is the repetition

of one of these profiles along the z direction.We prepare different

initial conditions containing different numbers of BP lattices in

the z direction of the BP cell by changing the lattice constant of

the BP lattice in the z direction.

Calculation of reflection spectra

For reflection spectra, we solve the Maxwell equations for

electromagnetic wave of light as described in our previous studies

(Fukuda et al., 2016; Nych et al., 2017; Fukuda and Žumer 2018;

Cho et al., 2021). For a non-magnetic medium with no free

charge or electric current, the magnetic field is safely eliminated

and theMaxwell equation for the electric field E oscillating with a

single frequency ω as ∝ exp (−iωt) reads (Landau et al., 1984)

∇×∇E − ω

c
( )2

ϵ↔E � 0. (12)

Here ϵ↔ is the dielectric tensor and c is the speed of light in

vacuum.

As noted in Calculation of reflection spectra, the liquid crystal

fills the region 0 ≤ z ≤ L. The media outside the liquid crystal (z <
0, z > L) are an isotropic and homogeneous materials whose

refractive index is set to noutside = 1.5 (or the dielectric constant

ϵoutside = 2.25). The dielectric tensor of the liquid crystal is

assumed to be a linear function of the order parameter, that

is, ϵαβ = ϵisoδαβ + ϵaχαβ, where ϵiso = 2.571 and ϵa = 0.825 as in the

previous studies (Nych et al., 2017), and δαβ is the Kronecker

delta. The choice of ϵiso and ϵa is such that the average refractive

index of the liquid crystal is nLC = 1.6, close to typical

experimental values.

We consider the response of the liquid crystal to

monochromatic light incident from z = −∞, whose electric

field is given by E = Ei exp (iki ·r). As noted in Calculation of

reflection spectra we assume the periodicity of χαβ in the xy

direction, and then according to the Bloch theorem the electric

field E is formally expanded as

E r⊥, z( ) �

Ei exp iki · r( ) + ∑
m,n

E m,n( )
r exp i k m,n( )

⊥ · r⊥ + k m,n( )
rz z( )[ ] z< 0( ),

∑
m,n

E m,n( )
LC z( )exp ik m,n( )

⊥ · r⊥( ) 0< z< L( ),
∑
m,n

E m,n( )
t exp i k m,n( )

⊥ · r⊥ + k m,n( )
tz z − L( )( )[ ] z> L( ),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(13)

where r⊥ = (x, y), and we have defined k(m,n)
⊥ ≡ ki⊥ + G(m,n)

⊥ , with

G(m,n)
⊥ being a 2-dimensional reciprocal vector (labeled by

integers m and n and G(0,0)
⊥ � 0) that is consistent with the

TABLE 1 Summary of parameters used for all the simulations. See
Supplementary Appendix S1 for the correspondence between the
parameters and the corresponding parameters before rescaling.

Symbol Value Corresponding value before
rescaling

κ 0.4 pitch p ≃ 280 nm

τ −0.1 (BP I is thermodynamically stable)

η 1 (One-constant approximation)

w1, w2 0.1 anchoring strength ≃ 7 × 10–5 Jm−2

wud 0.025 anchoring strength ≃ 1.7 × 10–5 Jm−2

χs 0.994 (minimizes φlocal at τ = −0.1)

L 536.673 ≃ 12 μm (30
�
2

√
times the lattice constant of bulk BP I)

~ϵ 0.02
0.03

electric field ≃ 3.2V/μm
3.9V/μm

Frontiers in Soft Matter frontiersin.org04

Fukuda 10.3389/frsfm.2022.1011618

https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2022.1011618


periodicity of the liquid crystal ordering, and ki⊥ being the xy

components of ki. The wavevector component k(m,n)
r,tz satisfies the

dispersion relation |k(m,n)
⊥ |2 + (k(m,n)

r, tz )2 � ϵoutside(ω/c)2 (� |ki|2).
Here we particularly focus on normal incidence, and

therefore ki⊥ = 0.

The reflectivity for each mode (m, n) is given by

R m,n( ) � − Re k m,n( )
rz( ) E m,n( )

r · E m,n( )p
r( )

kiz Ei · Ep
i( ) , (14)

where Re denotes the real part (for evanescent contributions,

Re k(m,n)
rz and hence R(m,n) are zero), and the superscript * denotes

the complex conjugate. Eq 14 is deduced from the z components

of the Poynting vectors (Landau et al., 1984). The reflectivity to

be presented below is the sum of all R(m,n)’s in the numerical

calculations.

As we are dealing with a chiral system, we are interested

in the dependence of reflectivity on the sense of circular

polarization of incident light. We set Ei � ( �
2

√ )−1(1, i, 0) for
left-circular polarized incident light, and Ei �
( �

2
√ )−1(1,−i, 0) for right-circular polarization (We follow

the convention of de Gennes and Prost 1995 for the sense of

circular polarization).

Results

Structures of cholesteric blue phase in a
cell

Before presenting the details of the simulation results on

the structures of cholesteric blue phase cell, let us

characterize the periodicity of the cholesteric blue phase

structure. For this purpose, we first introduce the Fourier

transform of χαβ(r):

χαβ q[ ] � 1
V

∫
V
dr χαβ r( )eiq·r , (15)

whose discretized version for q = 2π(jx/NxΔx, jy/NyΔy, jz/NzΔz)

and r = (nxΔx, nyΔy, nzΔz) reads

χαβ jx, jy, jz[ ] � 1
NxNyNz

∑Nx−1

nx�0
∑Ny−1

ny�0
1
2

χαβ nx, ny, 0( ) + χαβ nx, ny,Nz( )( )e2πi jxnx/Nx( )+ jyny/Ny( )( ){
+ ∑Nz−1

nz�1
χαβ nx, ny, nz( )e2πi jxnx/Nx( )+ jyny/Ny( )+ jznz/Nz( )( )⎫⎬⎭.

(16)
Here the special treatment for nz = 0 and Nz is due to the absence

of periodic boundary conditions in the z direction.

Now we define the average wavenumber of the structure in

the z direction by

�q � 2πjz
NzΔz

� ∑jz
2πjz/NzΔz( ) χαβ 0, 0, jz[ ]∣∣∣∣∣ ∣∣∣∣∣2

∑jz
χαβ 0, 0, jz[ ]∣∣∣∣∣ ∣∣∣∣∣2 , (17)

and the number of periodic structures in the z (cell normal)

direction:

m � �qL

2π
� jz. (18)

Note that |χαβ[0, 0, jz]|
2 is sharply peaked, and that the

summation over jz in Eq. 17 is taken over the small range

containing the peak, more specifically, 40 ≤ jz ≤ 80, to

eliminate possible undesirable contributions from higher and

lower jz (See the discussion after presenting the real-space

structures in Figures 2, 3). Note also that only positive jz is

considered because |χαβ[0, 0, jz]|
2 = |χαβ[0, 0, − jz]|

2, and therefore

the peaks appear symmetrically about jz = 0).

In Figure 2 we show the representative equilibrium structures

of BP I with its (110) plane parallel to the xy plane in our finite-

thickness cell. It is well known that the orientational order

described by a tensor order parameter is weaker at the

disclination (Schopohl and Sluckin 1987), and disclination

lines are depicted by the isosurfaces Tr χ2 = 0.3 (when
~ϵ � 0.02, Tr χ2 ≃ 0.69 in the bulk away from the disclinations).

Structures with differentm are shown, and they are distinguished

by the arrangement of disclination lines in the vicinity of the top

confining surface (Figures 2A,D. See also the highlighted areas in

Figures 2C,F. The bottom views, Figures 2B,E, are almost

indistinguishable). The side views (Figures 2C,F) clearly

indicate structures with slightly different periodicity along the

z direction. The number of periodic units is in fact m/2, because

in the definition of �q (Eq. 17) spatial average in the xy directions

has been taken by setting jx = jy = 0, and information on the

structure in the xy directions has been lost. The lattice constant in

the z direction is hence

az � 2L
m
. (19)

Figure 3 shows two equilibrium structures of BP X with

different m. The 41 screw axis of BP X is parallel to the z

direction. Again the difference in the arrangement of

disclination lines is found in the vicinity of the top surface

(Figures 2A,D. Figures 2C,F also highlights the difference).

Note that the disclination structure shown here has already

been proposed as a candidate of BP X structure in earlier

numerical studies (Alexander and Marenduzzo 2008;

Alexander and Yeomans 2009).

Figure 4 shows |χαβ[0, 0, jz]|
2 for the structures shown in

Figures 2, 3. Indeed, |χαβ[0, 0, jz]|
2 is sharply peaked around

m � jz, and it has a smaller peak at jz = 0. The latter is

uninteresting for the determination of the characteristic

periodicity, and therefore eliminated in the evaluation of jz in

Eq. 17 (As noted above, in the actual calculation of Eq. 17 we have
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eliminated contributions from jz < 40). We note that the

numerator of Eq. 17 is proportional to jz, and therefore

contribution from large jz can be non-negligible even when

|χαβ[0, 0, jz]|
2 is small (We have checked that contributions

from jz > 80 alter jz by 0.3–0.4). This is the reason for the

elimination of contributions from jz > 80 in the evaluation of Eq.

FIGURE 2
Numerically obtained BP I structures with (A–C) m = 56.0 and (D–F) m = 56.6, in orthographic view from (A,D) + z, (B,E) − z, and (C,F) − x
direction. The interval sandwiched by arrows in (F) indicates the “wavelength” defined by 2π/�q, which is half the lattice constant in the z direction az
(See text). The most prominent structural differences in the top view (A,D) and in the sideview (C,F) are highlighted by ellipses. The field strength ~ϵ is
set to 0.02.

FIGURE 3
The same as Figure 2 for numerically obtained BP X structures with (A–C) m = 56.0 and (D–F) m = 56.3.
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17. As we will see in Figure 5, jz(� m) falls within the range

40≤ jz ≤ 80, and therefore the above-mentioned elimination

does not miss the contribution from the sharp peak of interest.

To show how the free energy of the BP cell per unit area

(hereafter denoted by F BPI and F BPX for BP I and BP X

structures, respectively, and calculated by Eq. 9) depends on

m that characterizes the periodicity of the BP structure, we plot in

Figure 5A–C the dependence ofF BPI andF BPX onm for different

field strengths ~ϵ. In Figure 5A–C, the free energy is subtracted by

the minimum free energy for given structure and ~ϵ, which is

denoted by F BPI,BPX
min (~ϵ). In Figure 5D, we separately show

F BPI,BPX
min (~ϵ).

FIGURE 4
Plot of |χαβ[0, 0, jz]|

2 as a function of jz for the structures in Figures 2, 3. The range of jz is (A) jz ≥ 0 and (B) 40 ≤ jz ≤ 80.

FIGURE 5
The free energy of the BP cellFBPI,BPX(m, ~ϵ) − FBPI,BPX

min (~ϵ) as a function ofm, for ~ϵ � (A) 0, (B) 0.02 and (C) 0.03. (D) Plot ofFBPI,BPX
min as a function of

~ϵ.
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One finds that the local minima of F BPI and FBPX are

found at integer m’s (To be precise, “m is an integer” means

that the difference betweenm and the closest integer is smaller

than 0.025).Figure 2A–C. Figure 3A–C show typical structures

with integer m. For non-integer m’s F BPI and FBPX exhibit

local maximum, and the corresponding structures

inFigure 2D–F. Figure 3D–F. The relaxation of initial

structures described in Calculation of BP structures results

in these types of structures, and hence m cannot take

continuous values, but is discretized, as can be clearly seen

in Figures 5A–C. Note that in our calculations metastable

profiles for BP X could not be reached in the intervals 58 <m <
59 and 59 <m < 60 in Figure 5A, and 58 <m < 59 in Figure 5B;

the initial profiles prepared for the intervals turned out to

relax to structures with integer m. Since in an infinite system

without boundaries the lattice constant along the field

direction az is expected to take only one optimum value for

a given BP structure and a field strength, the observation that

the BP can take multiple discrete values of m (and hence az) is

clearly attributable to the presence of confining surfaces. Such

discretization of BP structures was reported in our previous

numerical study for different anchoring condition and smaller

cell thickness (Fukuda and Žumer 2011c).

From Figure 5 we also find that stronger ~ϵ (or the electric

field) drives the optimum m to smaller values (i.e., larger az),

indicating electrostriction, and that the optimum m is common

for BP I and BP X (58 for ~ϵ � 0 and 56 for ~ϵ � 0.02) except for
~ϵ � 0.03 (55 for BP I and 54 for BP X). Note that F(m, ~ϵ) −
Fmin(~ϵ) for BP X is smaller than that for BP I when m is smaller

than the optimum value, which indicates that BP X is inclined to

exhibit structures with larger az.

Figure 5D demonstrates that a stronger field favors BP X,

and the transition between BP I and BP X is located at
~ϵ ≃ 0.02, close to that in the bulk (As noted in Calculation

of BP structures, ~ϵ � 0.02 corresponds to E ≃ 3.2 V/μm, and

the experimental BP I–BP X transition in Guo et al., 2020 is at

≃ 3.0 V/μm).

Guo et al., 2020 showed that BP X structures carefully

prepared by applying an electric field can retain their ordering

even after the cessation of the field, despite the energy gain by the

transformation to BP I (estimated to be ≃ 1.8 × 104kBT/μm
2 from

Figure 5D; Eq. 10). We first note that from our numerical results

we cannot evaluate the energy barrier involved in the structural

transformation from BP X to BP I, because its kinetic pathway is

not clear. Nevertheless we comment that in the relaxation process

to obtain the (meta)stable profiles we did not observe

FIGURE 6
Reflection spectra for (A–C) BP I structures for ~ϵ � 0 (m � 58), ~ϵ � 0.02 (m � 56) and ~ϵ � 0.03 (m � 55), and (D–F) BP X structures for
~ϵ � 0 (m � 58), ~ϵ � 0.02 (m � 56) and ~ϵ � 0.03 (m � 54). The polarization of the normally incident light is (A,D) right-circular (the same as the sense
of the twisted orientational ordering), (B,E) left-circular, and (C,F) unpolarized. The horizontal axis is the wavelength of incident light in vacuum, λvac,
divided by the cholesteric pitch p. Arrows in (A,D) indicates λvac/p with λvac = az*nLC and nLC = 1.6.
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spontaneous transformation from BP X to BP I, suggesting non-

negligible energy barriers. Now let us discuss the energy barrier

involved in the variation of m or az. Suppose that the BP X

structure with m = 56 is transformed to BP I with the same m

after the electric field with ~ϵ � 0.02 is turned off. From Figure 5A;

Eq. 10, the energy barrier experienced by the transformation of

BP I from m = 56 to 57 is ΔF ≃ 3.8 × 10−3, corresponding to ≃
260kBT/μm

2. When the BP X structure is retained, this energy

barrier is still larger (ΔF ≃ 7.1 × 10−3 corresponding to ≃
480kBT/μm

2). We are dealing with a perfect lattice realized by

periodic boundaries in the xy directions, and in actual

experiments lattice imperfections would lower the energy

barrier towards the original az (This could be why metastable

BPs with different lattice constant had not been observed before

Guo et al., 2020). On the contrary, our results indicate that a

perfect BP ordering with az (or m) being not optimized can be

stable enough over thermal fluctuations.

Reflection spectra

Here we consider how the BP cell reflects normally incident

light, and Figure 6 shows the reflection spectra for the BP I and

BP X structures that minimize the free energy and are presented

in Structures of cholesteric blue phase in a cell. The horizontal axis

represents λvac/p, where λvac is the wavelength of the incident

light in vacuum, given by 2πnoutside/|ki|. Irrespective of whether
the structure is BP I or BP X, when the sense of the polarization is

the same as that of the twisted orientational order (right-circular

in the present study), strong selective reflection occurs (Figures

6A,D) and otherwise reflection becomes much weaker (Figures

6B,E). Strong selective reflection of circularly polarized light has

long been well known for a cholesteric liquid crystal cell

(Berreman and Scheffer 1970; Dreher et al., 1971; Takezoe

et al., 1983; de Gennes and Prost 1995; St. John et al., 1995),

and similar selective reflection by BPs has been also drawing

interest (Bohley and Scharf 2004; Yoshida et al., 2016; Cho et al.,

2021). Reflection spectra for unpolarized light are also shown in

Figures 6C,F that could be compared with some experiments.

When the electric field is stronger, and the lattice spacing in

the z direction, az, becomes larger, the shift of the reflection peak

towards larger λvac is clearly observed, as expected and in

agreement with experiments (Heppke et al., 1989b; Yoshida

et al., 2013; Chen et al., 2015; Guo et al., 2020). The location

of the peak agrees with that of the Bragg peak λvac = aznLC (See

the arrows in Figures 6A,D). When the BP X structure with m =

56 turns out to be stable, the peak shift from that of BP I with no

field (m = 58) is ≃ 3.6%, close to the typical values reported in

Guo et al., 2020, again suggesting that the discretization of the BP

structure by the confining surfaces is responsible for the

stabilization of the BP structure with different lattice constant

in Guo et al., 2020.

We note that the qualitative difference in shape between the

reflection spectra of BP I (Figures 6A–C)) and BP X (Figures

6D–F)) is not pronounced. Therefore reflection spectra for

normal incident alone cannot distinguish the structural

difference of BPs, and other techniques such as Kossel

diagrams (Heppke et al., 1989b; Yoshida et al., 2013; Chen

et al., 2015; Guo et al., 2020) will be necessary. We further

note that, in contrast to our calculation results (Figure 6), in

many experiments the reflection spectra are bell-shaped, and that

the fringes are not observed or far less visible if they exist. This

difference could be due to the perfect ordering in our calculation

not realized in experiments, a small distribution of the incident

angle in experiments, or the fluctuation of the cholesteric pitch

(St. John et al., 1995).

Discussion

We carried out a simulation study on the structures and

optical properties of a cholesteric blue phase cell whose

thickness is on the order of 10 μm, comparable to that of

typical experimental systems, and much larger than that of

previous simulation studies. Our numerical calculations

were based on the Landau-de Gennes continuum theory

describing the orientational order by a second-rank

tensor. We focused on two blue phase structures: One is

BP I with its (110) plane parallel to the confining surfaces,

and the other is BP X with its 41 screw axis along the cell

normal. The latter has been known to be not

thermodynamically stable in the absence of an electric

field. We were particularly interested in the effect of the

applied electric field along the cell normal.

We showed that both BP I and BP X exhibit multiple (meta)

stable structures with a different value of the lattice constant in

the cell normal direction. The possibility of multiple states with

distinct lattice constant is attributable to the presence of

confining planes. The electrostriction, larger lattice constant

along the field direction for a stronger field, was also clearly

observed. From the evaluation of the free energy, we found that

the (meta)stable structures of BP I and BP X can be stable enough

with respect to the variation of the lattice constant in the cell

normal. We also calculated the reflection spectra of these blue

phase structures for normal incident light, and demonstrated the

selective reflection of circularly polarized light arising from the

chirality of the blue phase structure, and the shift of reflection

peak due to electrostriction. These findings are in qualitative

agreement with recent experimental results reported in Guo

et al., 2020 on the stabilization of BP X structures with

different reflection peak wavelength. The relative shift of the

peak wavelength of a few percent in Guo et al., 2020 is safely

accounted for by the discretization of the BP structure we found

numerically.
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Here we particularly focused on BP I, and the other cubic

structure BP II is also expected to exhibit discretized behavior

attributable to the cell surfaces, although further experimental

and numerical studies will be necessary. How the presence of cell

surfaces affects BP III that is believed to be amorphous is far from

trivial, and because one cannot assume periodicity in the lateral

directions, numerical calculations for BP III will be much more

challenging, and experimental studies are first desirable.

Asmentionedabove,ourstudyconcernsonlycaseswithspecific

orientationof theBPlattice, andthereareotherpossibilitiesof lattice

orientations (Kitzerow 1991; Miller and Gleeson 1996). Which

lattice orientation is more easily realized in a BP cell of finite

thickness, and how the lattice orientation with respect to the

confining surfaces affects the response of BPs to an electric field

will be interesting future directions of numerical studies.

We restricted ourselves to the (meta)stable static structures,

and the investigation of dynamic behavior in a realistic time scale

is a daunting task requiring an unrealistically long calculation

time: In Guo et al., 2020 the duration of the electric field is tens of

seconds, and in our present numerical system, simulation of the

dynamics for 1 s will take almost 2 years (in some of the

calculations we used 56 cores of Intel Xeon Gold 6330 CPU

with OpenMP parallelization). We note that the incorporation of

the backflow, not taken into account in our dynamic Equation

(11), will further slow the calculation. Moreover, Guo et al., 2020

emphasized the importance of the application of the field without

heating the liquid crystal. Most of the simulations based on the

Landau-de Gennes formalism (including ours) assume an

isothermal system, and incorporation of the effect of heating

requires the formulation of the dynamics of the liquid crystal

including inhomogeneous temperature field. Although such

formalism based on non-equilibrium thermodynamics has

been developed for a long time (Martin et al., 1972; De Groot

andMazur 1984), simulating liquid crystals with spatial variation

of temperature does not seem to be drawing particular attention.

As mentioned above, simulation of the dynamics of a blue

phase cell of realistic size and time scale is highly challenging.

Nevertheless, our study reveals the necessity of such studies for

the understanding of the behavior of a blue phase cell, especially

when one is interested in its practical application.
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