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Label-Free Detection of Ochratoxin A
Using Aptamer as Recognition Probe
at Liquid Crystal-Aqueous Interface

Manisha Devi, Kavyasree AT, Ipsita Pani’, Soma Sil and Santanu Kumar Pal*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India

Aqueous interfaces of stimuli-responsive, thermotropic nematic liquid crystals (LC) have
been utilized in the design of biosensing platforms for a range of analytes. Owing to the
orientational changes in LC, these interfaces can easily report aptamer-target binding
events at the LC-aqueous interface. We demonstrate a label-free, simple and robust
technique for the detection of Ochratoxin A (OTA) using aptamer as the recognition probe.
The self-assembly of CTAB (cetyltrimethylammonium bromide; cationic surfactant) at
aqueous-LC interface gives a homeotropic orientation of LC. In presence of negatively
charged OTA specific aptamer, aptamer forms a complex with CTAB. Formation of
aptamer-CTAB complex results in ordering transition of LCs to planar/tiited. In
presence of OTA, OTA forms a strong and stable G-quadruplex structure of aptamer
that results in the redistribution of CTAB at LC-aqueous interface and leads to homeotropic
orientation of LC. The designed LC aptasensor exhibits a detection limit of 0.1 nM. We
observed that the sensitivity of LC aptasensor was affected by the pH and ionic strength. In
addition, we demonstrated the applicability of the designed LC aptasensor for the
detection of OTA in tap water and apple juice. This approach offers advantages over
the conventional detection methods in terms of fabrication, ease of operation, and analysis.

Keywords: liquid crystal, aqueous interface, biosensor, aptamer, ochratoxin A

1 INTRODUCTION

Mycotoxins are secondary metabolites produced by different fungal species which are major
contaminants of agricultural food products that affect human health adversely. Among various
mycotoxins, ochratoxin A (OTA) has gained considerable attention with regards to food safety
(Van der Merwe et al., 1965). OTA is a toxic metabolite produced by fungal species such as
Penicillium verrucosum and Aspergillus ochraceus, which is present in cereals, such as spices, dried
fruits, fruit juices, beer, and wine (Covarelli et al., 2012). OTA is a widely detected fungal toxin in
blood plasma proteins because of its long elimination half-life time, and reversible hepatic
circulation. OTA has been recognized as mutagenic, neurotoxic, hepatotoxic, teratogenic,
nephrotoxic, immunosuppressive, and carcinogenic having effects on animal, rodent, mice,
and other mammalian species (Pfohl-Leszkowicz and Manderville, 2007). The Internal Agency
for Research on Cancer (IARC) has identified OTA as human carcinogenic agent (group 2B) due to
induction of oxidative DNA (Wei et al., 2015). Hence, the presence of OTA even at very low
concentrations in agricultural and food products may cause serious toxic effects. Therefore, the
detection of OTA in food and agricultural products is of prime importance in food safety, quality
control, and human health. There are conventional analytical methods to detect OTA such as high-
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performance liquid chromatography (HPLC), colorimetric
sensing, gas chromatography (GC), antibody-based
techniques, and mass spectrometry (MS) etc. (Yu et al., 2005;
Reinsch et al., 2007; Tessini et al., 2010; Zhao et al., 2020).
Although conventional methods have excellent stability,
reliability, and precision in the detection of OTA, these
techniques impose some drawbacks which restrict their
practical applications such as these are time-consuming,
expensive, complex instrumentation, complicated
pretreatment of samples, and requirement of trained
operators. Hence, the development of alternate sensitive and
selective methods is needed in order to overcome these
drawbacks.

Nowadays, aptamers integrated with other technologies
have attracted considerable attention over antibodies due to
their properties including low cost, easy synthesis, chemical
stability, and excellent selectivity and sensitivity (Zhou et al.,
2017). Most importantly, aptamers have excellent affinity for
binding to their targets such as metal ions, proteins, etc. that
results in changes in their secondary structures to specific
conformational structures. Therefore, aptamers are very
promising  molecular recognition probes for the
development of various biosensors (Liu et al, 2009). In
recent years, various biosensors have been developed by
integrating the aptamer with liquid crystals (LCs) (Price
and Schwartz, 2008; Noonan et al., 2013; Zhou et al., 2016;
Verma et al., 2019; Qi et al., 2020; Xu et al., 2020; Yang et al.,
2020).

LCs are intermediate state of matter between mobile isotropic
liquids and anisotropic solids. The ordering of LC molecules at
interfaces is sensitive to the presence of interfacial adsorbates.
Changes in the orientation of LC can be amplified into optical
signals with the help of polarized optical microscopy (POM)
(Gupta et al., 1998; de Gennes and Prost, 1995). Interfaces formed
between LC and aqueous phase have been widely utilized for the
study of various biochemical interactions at the interfaces
including  DNA-hybridization, = aptamer-target  binding,
adsorption of proteins and antigen-antibody interactions etc.
(Price and Schwartz, 2008; Lin et al., 2011; Ma et al., 2015;
Wang et al, 2015; Eimura et al, 2016; Popov et al, 2016;
Verma et al., 2019; Pani et al.,, 2020; Munir et al, 2016;
Verma et al.,, 2020; Devi et al, 2021). The sensing platforms
based on LC interfaces are cost effective, robust, easy to handle
and can be used in remote locations away from the laboratories by
using simple smartphones (Nandi and Pal, 2018). In our previous
report, we have integrated the CTAB decorated LC-aqueous
interface with aptamer (Pb** specific SRNA) to design a LC
aptasensor for the detection of Pb** (Verma et al., 2019). Here,
Pb>" specific SRNA forms the G-quadruplex in presence of Pb**
which facilitates the self-assembly of CTAB at LC-aqueous
interface and triggers the LC reorientation. Following a similar
strategy, in this work, we aimed to detect OTA using aqueous LC
interface decorated with an OTA specific aptamer. We have
investigated the sensitivity of our LC aptasensor towards the
detection of OTA. We have also demonstrated the applicability of
our approach using real world samples like tap water and
apple juice.

Liquid Crystal Aptasensor for Ochratoxin A

2 MATERIALS AND METHODS

2.1 Materials
Chemicals such as LC [4-cyano-4'-pentylbiphenyl (5CB)],
hexadecyltrimethylammonium bromide (CTAB), thioflavin T
(ThT), DMOAP (N,N-dimethyl-N-octadecyl-3-
aminopropyltrimethoxysilyl chloride), HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid), and OTA used
for present study were bought from Sigma-Aldrich (St.
Louis,MO). Sodium chloride (NaCl), hydrogen peroxide
(H,0,, 30% w/v), and sulfuric acid (H,SO,4) were bought from
Merck (Mumbai, India). Ethanol (EtOH) was bought from
Changshu Hongsheng Fine Chemical Co., Ltd. Deionized
water (DI) was used for all the studies which was deionized by
Milli-Q-system (Millipore, Bedford, MA). Gold transmission
electron microscopy (TEM) grids (283 um grid spacing, 50 um
wide bars, and 20 um thickness) were bought from Electron
Microscopy  Sciences  (Fort Washington, PA). Glass
microscopic slides were bought from Fischer Scientific
(Pittsburgh, PA).

Single-stranded DNA (OTA specific aptamers) with sequence
GGGGTGAAACGGGTCCCG (OTA wt) was purchased from
Europhins Genomics India Pvt. Ltd.

2.2 Experimental Methods

2.2.1 Preparation of Aqueous Solutions of CTAB,
Aptamer, and Ochratoxin A

Aqueous solutions of CTAB (1 mM) and OTA (1.24 mM) were
prepared by dissolving an accurately weighed amount in 1 mM
HEPES (pH = 7.4). A stock solution of OTA specific aptamer
(425 uM) was diluted with 1 mM HEPES solution containing
10mM NaCl (pH = 7.4) at room temperature for further
experiments. A complex of CTAB and aptamer was prepared
by incubating certain volumes from their stock solutions for
30 min to yield the desired final concentration. To detect the
OTA, equal volumes of aqueous solution of OTA and aptamer
were incubated for 1.5 h followed by the addition of same volume
of CTAB stock solution. The final concentration of CTAB and
aptamer remains 7 uM and 100 nM respectively with different
concentrations of OTA (250-0.01 nM). A similar procedure was
followed to study the effect of ionic strength and pH of HEPES
buffer by varying the pH from 5 to 9 and ionic strength of buffer
from 1 to 100 mM.

Samples for the detection of OTA in tap water and apple juice
were prepared by spiking the tap water and apple juice with
250 nM OTA. Apple juice was diluted with same volume of 1 mM
HEPES buffer before use.

2.2.2 Pretreatment of Glass Slides with DMOAP

Prior to DMOAP coating, glass slides were treated with piranha
solution [consist of 70% H,SO, and 30% H,O,] for 45 min at
80 °C according to the reported procedure (Brake and Abbott,
2002). Then the glass slides were washed with an excess amount
of DI water and ethanol followed by drying under N, stream.
Then, the glass slides were kept in an oven at 120 °C for 3-4h
(Note: Piranha solution reacts with organic materials that may
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cause explosion. Therefore, it should be handled with extra care
and neutralized carefully before disposal. Never keep the piranha
solution in closed vessels.) The “piranha-cleaned” glass slides were
further modified with DMOAP following a previous report
(Verma et al,, 2019). Briefly, at room temperature, the glass
slides were placed in aqueous solution of DMOAP (0.1%, v/v)
for 30 min. After this, the glass slides were washed with excess
amount of DI water to remove the extra DMOAP from the glass
surface and dried under N, stream before heating at 100 °C
for 3-4 h.

2.2.3 Preparation of LC Films and Optical Cells

The cleaned gold TEM grids were mounted on the DMOAP
treated glass slide of size 1.5 x 1.5 cm®. Then, 1 pL of 5CB was
poured onto TEM grid using a Hamilton microsyringe and the
extra 5CB was removed by using a syringe to obtain uniform
distribution of 5CB on the surface. DMOAP induced the
perpendicular alignment of LC to the glass substrate which
gives dark appearance under crossed polarizers. A drop of
100 pl aqueous solution of interest was carefully made on to
the TEM grid hosted with LC at DMOAP coated glass substrate
(Verma et al, 2019). The orientational changes of LC were
analyzed under a Zeiss polarizing microscope (Scope. Al).
Images were obtained with an AxioCam camera. Average
grayscale intensity of the images obtained from polarized
microscope was measured by processing at least 4 squares of
TEM grid using Image] free access software developed by U. S.
National Institutes of Health, Bethesda, MD.

2.2.4 Steady-State Fluorescence of ThT

Fluorescence spectra were measured on fluorescence
spectrophotometer (Shimadzu RF-6000) at M. (excitation
wavelength) of 440 nm. Final concentrations of OTA specific
aptamer, OTA, and ThT were 500 nM each. Samples were
prepared by incubation of OTA specific aptamer and ThT for
1.5 h followed by addition of OTA.

2.2.5 Circular Dichromism Measurements

The CD spectra were obtained from Chirascan CD
spectrophotometer (Applied Photophysics, United Kingdom)
in a scan range of 250-280nm and step size of 1nm. A
quartz cell (1 mm path length) was used for recording the CD
spectra of solution. CD spectra of CTAB, preincubated mixture of
OTA specific aptamer and CTAB in presence and absence of
OTA were recorded. Final concentrations of CTAB, aptamer, and
OTA are 7 uM, 5 uM, and 5 pM, respectively. For each sample,
the spectra were corrected against the buffer signal and averaged
over 3 scans using the ProData software of CD instrument.

3 RESULTS AND DISCUSSION

3.1 Fabrication of LC Aptasenosr at
Aqueous Interface

Previous studies showed that the orientation of LCs at LC-
aqueous interface is influenced by the presence of various
amphiphiles (lipids and surfactants etc.) (Brake et al, 2003;

Liquid Crystal Aptasensor for Ochratoxin A

Price and Schwartz, 2007). Therefore, our first set of
experiment was designed to determine the minimum desirable
concentration of a cationic CTAB to obtain a homeotropic
orientation of LC. For this, LC film was prepared by
introducing 5CB onto the gold TEM grid which was
supported on a DMOAP functionalized glass slide. DMOAP is
a well-known alignment agent that induces a homeotropic
alignment of LC (dark image under crossed polarizers) at LC-
air interface (Verma et al., 2019). In presence of aqueous solution
(HEPES buffer, pH = 7.4), a bright image was obtained under
crossed polarizers that corresponds to the planar/tilted alignment
of the LC molecules. However, on introduction of aqueous
solution of CTAB, LC molecules adopt a homeotropic
alignment that gives a dark optical micrograph as shown in
Figure 1A. This homeotropic alignment of LC in contact with
CTAB is a result of hydrophobic interactions between LC and
alkyl chains of CTAB which favors the self-assembly of the CTAB
at LC-aqueous interface (Brake and Abbott, 2002; Brake et al.,
2003; Price and Schwartz, 2007). On varying the CTAB
concentration (0-9 uM), we found that 7 uM is the minimum
desirable concentration of CTAB at which homeotropic
orientation of LC is attained within 1 min and remains stable
up to 30min (observed time), as shown in Figure 1A;
Supplementary Figure S1. Therefore, for further experiments,
7 uM CTAB concentration was used to decorate the LC-aqueous
interface (Verma et al., 2019). Our next aim was to observe the
alignment of the LC in contact with CTAB and OTA specific
aptamer (i.e, formation of CTAB-aptamer complex) at LC-
aqueous interface. For this, we prepared the OTA specific
aptamer solution in HEPES buffer containing 10 mM sodium
chloride (NaCl) to minimize the repulsive interactions of base
pairs of the aptamer (Xu et al., 2020). It was observed that on
varying the concentration of OTA specific aptamer from 300 to
50 nM in pre-incubated CTAB-aptamer complex, LC remained
in planar orientation upto 30min at higher aptamer
concentrations (300-100 nM) (Figure 1B; Supplementary
Figure S2). However, at lower aptamer concentrations, LC
orientation turned more towards homeotropic alignment.
These results indicate that 100 nM aptamer concentration was
sufficient for effective adsorption of the aptamer at aqueous-LC
interface. This can be attributed to the ionic interactions between
the CTAB and aptamer perturbing the organization of CTAB at
LC-aqueous interface (Price and Schwartz, 2008). Hence, for
further experiments, the optimum concentration of OTA
specific aptamer used was 100 nM.

3.2 Detection of OTA Using LC Aptasensor
Our next step was to examine the ordering of LC at CTAB-OTA
specific aptamer decorated aqueous-LC interface in presence of
OTA. In the presence of 250 nM OTA, planar orientation of LC
(due to complexation of CTAB-OTA specific aptamer at LC-
aqueous interface) transitioned to homeotropic immediately
within 1min that leads to the dark optical image under
crossed polarizers (Figure 1C). This change in orientation of
LC is probably due to the change in the configuration of DNA
structure induced by the presence of the OT A which facilitates the
self-assembly of surfactant at the LC-aqueous interface. This self-
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FIGURE 1 | Polarized optical images of LC-aqueous interface in contact with (A) 7 uM CTAB after 30 min, (B) preincubated mixture of CTAB and OTA specific
aptamer (final concentration 7 uM and 100 nM, respectively) after 30 min, and (C) preincubated mixture of CTAB, OTA specific aptamer, and OTA (final concentration
7 UM, 100 nM, and 250 nM, respectively) after 1 min. Scale bar =200 um. (D) Schematic representation of proposed design of label free detection of OTA using aptamer

assembly of CTAB results in homeotropic ordering of LC with
dark appearance under crossed polarizers. Figure 1D illustrates
the schematic representation of the designed LC aptasensor for
the detection of OTA at LC-aqueous interface corresponding to
the optical images shown in Figures 1A-C. To examine the
configurational changes in the secondary structure of DNA in
presence of OTA, we performed CD measurements in solution
phase. We recorded the CD spectra of CTAB, pre-incubated
mixture of aptamer and CTAB in the presence and absence of
OTA (Figure 2A). In presence of OTA, a change in ellipticity has
been observed that reveals the stabilization of G-quadruplex
configuration of aptamer in presence of OTA (Lv et al., 2017).
These results were further supported by the ThT binding assay.
ThT is a non-emissive, water soluble dye that is known to bind
selectively with G-quadruplexes, and result in significant
enhancement of fluorescence intensity. We have observed that
ThT is non-emissive in buffer solution while in presence of
aptamer emits strong fluorescence at 485 nm at Ao = 440 nm.
However, upon addition of OTA to the above ThT-aptamer
solution, fluorescence intensity of ThT decreased significantly.
This confirmed the release of ThT upon the competitive binding
of OTA into the G-quadruplex (Figure 2B). Our results are in
good agreement with a previous report (Wu et al., 2018). This
suggests that OTA strongly binds and stabilizes the G-quadruplex
motif in aptamer and displaced the ThT from the complex
formed by ThT and aptamer as shown in Figure 2C. The
above experimental results suggest that hydrophobic
interactions between LC and alkyl tails of CTAB molecules

results in the dark appearance of LC (homeotropic ordering).
In presence of the aptamer, electrostatic interactions take place
between aptamer and CTAB to form CTAB-aptamer complex.
Hence, self-organization of CTAB at aqueous-LC interface is
precluded resulting in a tilted/planar orientation of LC (bright
image). However, the ordering of LC changes to homeotropic in
presence of OTA which is mainly due the competitive binding
between OTA and CTAB with aptamer at LC-aqueous interface.

3.3 Response Time and Detection Limit of
LC Aptasensor

Next, we were interested to investigate the sensitivity and response
time of LC aptasensor towards the detection of OTA. We varied the
concentration of OTA and measured the response time of LC at
aqueous interface. Figure 3 reveals that response time of LC-
aptasensor increases with decrease in the concentration of OTA.
At higher concentration of OTA (250 nM) homeotropic orientation
was observed within 1 min. At OTA concentrations of 100-50 nM,
homeotropic orientation was observed within 5-10 min. Similarly,
for 30-10nM OTA, response time increased to 20 min. Further
decreasing the concentration of OTA increased the response time to
30 min. However, at concentrations of 1-0.1 nM OTA, we could not
observe complete homeotropic alignment of LC at 30 min (mostly
homeotropic alignment of LC). Below this OTA concentration, we
did not observe a homeotropic alignment of LC. Based on these
results, the detection limit of LC aptasensor towards the detection of
OTA was found to be 0.1 nM. The performance of the LC aptasensor
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FIGURE 2 | (A) CD spectra of CTAB, pre-incubated mixture of aptamer and CTAB in presence and absence of OTA,; (final concentration of CTAB, aptamer, and
OTA: 7 uM, 5 uM and 7 uM, respectively). (B) Fluorescence spectra of ThT (500 nM), ThT (500 nM) incubated with aptamer (500 nM) in the absence and presence of
OTA (500 nM). (C) Cartoon schematic illustrates the OTA triggered displacement of ThT from the aptamer G-quadruplex that results in the quenching of ThT
fluorescence.

is dictated by the competitive binding between CTAB-aptamer and
aptamer-OTA. From our experiments, we found that aptamer-OTA
interactions direct the self-assembly of CTAB at aqueous-LC
interface. At higher concentration of the OTA, aptamer-OTA
interactions are higher, hence, CTAB is easily available to self-
assemble at LC-aqueous interface that result in the fast response,
and reorientation of LC. On decreasing the concentration of OTA,
the self-assembly of CTAB at LC-aqueous interface is prolonged
resulting in slow ordering transition of LC, and hence slow response
time of LC aptasensor. Our observations indicate that the response
time of the LC-aptasensor towards the detection of OTA mainly
depends upon the kinetics of the CT AB self-assembly at LC-aqueous
interface.

For the quantitative analysis, we measured the GI (average
grayscale intensity) of optical images captured at different time
intervals for different concentrations of OTA. From Figure 4A it
can be seen that GI decreased immediately for the concentration
of 250 nM OTA. For 100-50 nM concentrations of OTA, GI
decreased within 5-10 min. GI values decreased to lowest within
15-30 min for 30-5 nM concentrations of OTA. For 1-0.1 nM
OTA concentrations, GI decreased slowly. On further decreasing
the concentration to 0.01 nM of OTA, there was no significant

change in the GI values. Supplementary Figure S3 reveals the
comparison of GI at different concentrations of OTA after
30 min. It was observed that GI values remain lowest from
250 to 5nM OTA corresponding to the homeotropic
orientation of LC. For 1-0.1 nM concentrations of OTA, GI
increased and becomes highest at 0.01 nM OTA. This suggests
that at 1-0.1 nM OTA, the orientation of LC is not perfectly
homeotropic (intermediate between homeotropic and planar).
At 0.01 nM concentration of OTA, highest GI corresponds to the
planar orientation of LC. These results are in good agreement
with optical images. Figure 4B reveals a linear correlation
between GI and logarithm of OTA concentration in the range
of 0.1-250 nM. Based on our results, detection limit of designed
LC aptasensor for the detection of OTA was found as 0.1 nM
(0.037 ppb) with detection range of 0.1-250 nM (0.037-92 ppb)
which is well below the maximum permissible level for OTA
concentration in apple juice (20 ppb) (Al-Hazami, 2010).
Therefore, the analysis of GI provides a tool for the
quantification of OTA concentration. We have compared the
detection limit of the designed aptasensor based on LC-aqueous
interface with the recently reported aptasensors based on
different approaches in Table 1.
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FIGURE 3 | Polarized optical images of LG-aqueous interface decorated with 100 nM aptamer and 7 M CTAB showing dynamic response of LC upon
introduction of different concentrations of OTA (0.1-250 nM) at different time intervals. Scale bar = 200 um.
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3.4 Effect of pH and lonic Strength of Buffer
Towards Detection of OTA

Next, we were interested to see the effect of pH and ionic
strength of the buffer towards the detection of OTA using
LC-aptasensor. We found that in presence of 7 uM of CTAB,
LC remains homeotropic at pH 5 to 9 presented in

Supplementary Figure S1, S4. In presence of aptamer,
homeotropic orientation of LC triggers to planar orientation
at pH 5 and 7.4. However, at pH 9 in presence of aptamer, we
observed mixed domains of planar and homeotropic orientation
of LC (Supplementary Figure S2, S5). Hence, we performed the
experiment for the detection of OTA (250 nM) at pH 5. We
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TABLE 1 | Comparison of aptamer-based methods for the detection of ochratoxin A.

Detection method

Liquid crystal at a solid
interface

Fluorescence
Fluorescence

Colorimetric

Fluorescence

Chemiluminescence

Strategy

Topological change on the binding of OTA to immobilized aptamer at solid surface

The binding of OTA and aptamer on magnetic beads inhibited its hybridization with
complementary DNA and subsequently initiated the strand displacement reaction
G-quadruplex formation in aptamer and energy transfer to OTA

Based on enzyme-induced gold nanoparticles aggregation to detect activity of alkaline
phosphatase (ALP) and applied to construct an aptasensor to monitor OTA.
Interaction between OTA-triggered antiparallel G-quadruplex and (N-methyl-4-pyridy)
porphyrin (TMPyP) release CdTe quantum dots from TMPyPthat result in fluorescence
enhancement

G-quadraplex bridged triple-helix aptamer probe (TAP) strategy

Liquid Crystal Aptasensor for Ochratoxin A

Detection
limit (nM)

2.23 (0.9 ng/mL)
1.56 (0.63 ng/mL)
4.95 (2 ng/mL)
5

0.4 (0.16 ng/mL)

0.17 (0.07 ng/mL)

Reference

Hong and Jang, (2021)
Han et al. (2021)
Armstrong-Price et al
(2020)

He et al. (2020)

Liu et al. (2019)

Wang et al. (2019)

Electrochemical Folding of aptamer in presence of OTA and subsequently released the aptamer- 0.19 (78.3 pg/mL)  Mazaafrianto et al. (2018)
methylene blue-OTA complex from the surface
Colorimetric aggregation of AuUNPs was caused by the specific recognition of aptamers with OTA 49.5 (20 ng/mL)  Yin et al. (2017)
Fluorescence G-quadruplex formation in aptamer 16.5 Lv et al. (2017)
Liquid crystal at aqueous G-quadruplex formation in aptamer 0.1 Present work
interface
CTAB + aptamer

CTAB CTAB + aptamer

>

Tap water

O

Apple juice

+OTA

FIGURE 5 | Detection of OTA in presence of (A-C) tap water and (D-F) apple juice. Polarized optical images of LC-aqueous interface laden with (A,D) 7 uM CTAB,
(B,E) 7 uM CTAB and 100 nM aptamer, and (C,F) 7 uM CTAB, 100 nM aptamer, and 250 nM OTA. All the images shown here were captured after 30 min of addition.
The time lapse polarized optical images for tap water and apple juice have been shown in Supplementary Figures S11, $12, respectively. Scale bar = 200 pym.

observed the LC reorientation from planar to homeotropic in
presence of 250 nM OTA at pH 5. However, the response of the
LC aptasensor was found to be slow at pH 5 in comparison to
pH 7.4 (Figure 3; Supplementary Figure S6). Next, we
performed the experiments to see the effect of ionic
strength of the HEPES buffer in the range of 1-100 mM.
We observed that at 1-100 mM range of ionic strength of
HEPES buffer, LC remained homeotropic in presence of 7 pkM
CTAB (Supplementary Figure S7). In presence of CTAB-
aptamer complex, LC shows the planar orientation at
1-30 mM buffer, on the other hand, at higher buffer

strength, coexisting bright and dark LC domains were
observed (Supplementary Figure S8). These results are in
good agreement with our previous report (Verma et al., 2019).
It was shown previously that the higher ionic strength of the
buffer screened the electrostatic interactions between the
CTAB molecules that leads to the tight packing of
surfactant monolayer at LC-aqueous interface (Noonan
et al., 2013). As LC remained planar with bright appearance
at 1, 10, and 30 mM buffer in presence of CTAB-aptamer
complex, therefore, we performed experiments for the
detection of OTA at 1-30 mM buffer strength. As shown in
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Figure 3; Supplementary Figures S9, S10, homeotropic
orientation of LCs was observed in presence of OTA (250
and 100 nM). The response time of the designed LC aptasensor
increased with increase in ionic strength of HEPES buffer.

3.5 Practical Applicability of LC-Aptasensor
High sensitivity of the LC aptasensor motivated us to investigate
the practical applications of designed LC aptasensor for detection
of OTA in real samples (tap water and apple juice). We spiked the
tap water and apple juice with 250 nM OTA. We observed that
the LC remained homeotropic when 7 uM CTAB was incubated
with tap water and apple juice respectively (Figures 5A,D;
Supplementary Figures S11A, S12A). In presence of pre-
incubated 7 uM CTAB, 100 nM aptamer, and tap water/apple
juice (without OTA), LC exhibits the planar orientation (Figures
5B,E; Supplementary Figures S11B, S12B). However, when tap
water/apple juice spiked with OTA (250 nM) was pre-incubated
with aptamer and CTAB, LC orientation changed to homeotropic
with dark optical appearance (Figures 5C,F; Supplementary
Figures S11C, S12C). These results suggest the applicability of
the designed LC aptasensor towards the detection of OTA in real
samples.

4 CONCLUSION

We reported a simple, label-free, and robust LC sensor for the
detection of OTA using aptamer as a recognition probe in
aqueous medium. The design of this sensor is based on the
distinct orientations obtained by the LC that depends on the
stabilization and formation of G-quadruplex by OTA which is
proved by CD measurements and ThT binding assay. The
detection limit of OTA was found to be 0.1nM. We
investigated the performance of our LC aptasensor at variable
pH and ionic strength. Lastly, we demonstrated the applicability
of our LC aptasensor towards the detection of OTA in real
samples such as tap water and apple juice. This designed LC
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