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Gastropods, such as snails and slugs, can excrete mucus to aid in movement and
adhesion. However, very few studies have examined the physical relationship
between mucus composition and function. Here, we explore the role of mucus
polymers (specifically their proteins) and their influence on the material properties
of locomotive mucus. Using a range of spectroscopic, thermal, and rheological
analytical tools, we characterised locomotive mucus from six gastropod species
across four families. We report that all mucus tested consisted of 97%–99%water,
and the remaining 1%–3% solid content contained a range of proteins
(41–377 kDa, 18 of which are previously undocumented), which we propose
contribute to its weak gel behaviour (1.58–36.33 Pa•s at 1 rad/s). Our results
indicate that mucus properties are also grouped at the family level, suggesting
that niche-specific adaptation occurs in these materials. We expect our study to
offer a broader approach to how a correlation between properties is crucial for
understanding the stability and functionality of snail mucus.
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Introduction

Most natural materials remain inside or close to the body, allowing for repair and
reconfiguration. However, some species have evolved the ability to produce and use materials
outside their bodies. Termed ecto-secretions, these are a remarkably overlooked yet
important class of materials that are selected to perform in extreme environments and
facilitate a range of biological functions, from structural (silks) to chemical (venoms)
(Casewell et al., 2013; Flórez et al., 2015; Avella et al., 2021). Gastropod mucus is a
prime example of such an ecto-secretion that when excreted as a thin layer (10–20 µm)
aids locomotion, adhesion, and defence; prevents desiccation and infection; and in some
cases, even serves as a substrate for microbial “farming” (Chase et al., 1980; Luchtel et al.,
1991; Peck et al., 1993; Kim et al., 1996; Perez-vilar and Hill, 1999; Smith and Morin, 2002;
Thornton, 2004; Artacho and Nespolo, 2009; Lai et al., 2009; He et al., 2016; Dhanisha et al.,
2018). However, despite its natural ubiquity and utility, only a handful of studies have
specifically focused on gastropod mucus alone (Denny, 1980; Denny, 1984; Denny and
Gosline, 1980; Bretz and Dimock, 1983; Deyrup-Olsen et al., 1983; Hawkins, 1992; Cottrell
et al., 1994; Davies and Hutchinson, 1995; Davies and Hatcher, 1999; Smith et al., 1999,
Smith et al., 2009; Skingsley et al., 2000; Smith and Morin, 2002; Struthers et al., 2002;
Pawlicki et al., 2004; Ewoldt et al., 2007; Werneke et al., 2007; Ewoldt et al., 2009; Braun et al.,
2013; Newar and Ghatak, 2015; Zhong et al., 2018; Fung, Gallego Lazo, and Smith, 2019;
O’Hanlon et al., 2019). This limited amount of knowledge surrounding the composition and
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structure of gastropod mucus is further compounded when
considering its material and mechanical properties.

Although gastropods have captivated researchers for
centuries, it was not until the 1970s that Denny (1973) and
Denny (1984) systematised the study of gastropod mucus with a
broader vision and through a combination of experimental and
theoretical studies related a range of mucus’ physical properties
to the animal’s biology and habitat (Denny, 1984). Denny was the
first to study the mechanical (rheological) properties of
gastropod locomotive mucus, demonstrating that in the slug
Ariolimax columbianus, its shear stiffness is indirectly
proportional to its water content (degree of hydration)
(Denny, 1984). He proposed that the mucus polymers in
gastropod locomotive mucus contributed to these properties
by responding to their degree of hydration. For example, as
the water content of mucus is reduced, the preferential
interactions of the mucus polymers with water begin to switch
to interacting with other mucus polymers, increasing the number
of intermolecular associations and, therefore, stiffness.

Twenty years after Denny’s studies, Ewoldt et al. (2007)
extended this line of research and compared the non-linear
rheological properties of locomotive mucus from a snail (Helix
aspersa) and a slug (Limax maximus). Their significant findings
suggested that the timescale by whichmucus is deformed determines
whether it behaves as an adhesive or a lubricant. Using a novel
rheological fingerprinting technique, they categorised mucus as
having viscoelastic properties and behaving as a non-Newtonian
gel (Ewoldt et al., 2007). More recently, Fung, Gallego Lazo, and
Smith (2019) attributed the rheological properties ofArion subfuscus
adhesive mucus to a double network of protein chains with sacrificial
bonds and carbohydrates interacting with metal ions, both of which
can readily reform if broken.

In addition to the degree of hydration or concentration, from
a polymer science perspective, molecular weight (i.e., polymer
chain length) could be equally, if not more, influential in
determining flow properties (Ferry, 1980). However, this link
has been somewhat overlooked to date. Most mucus
compositional studies have tended to use the simplicity of
SDS-PAGE to identify the molecular weight of proteins in
gastropod mucus, for example, characterising the marine
snails Lottia limatula and Haliotis diversicolor; terrestrial slugs
Arion subfuscus and Arion ater; and the garden snail Helix
aspersa (Cottrell et al., 1994; Smith et al., 1999, Smith et al.,
2009; Smith and Morin, 2002; Pawlicki et al., 2004; Ewoldt et al.,
2007; Werneke et al., 2007; Guo et al., 2009; Wilks et al., 2015).
However, more specialised mass spectroscopy and
chromatography have also been used for determining the
molecular weight of components in the marine snails Patella
vulgata and Dendropoma maxima; terrestrial slug A. subfuscus;
and terrestrial snails H. aspersa, Eobania vermiculata, Thebe
pisana, and Monacha obstructa (Davies and Hatcher, 1999;
Pawlicki et al., 2004; Werneke et al., 2007; Smith et al., 2009;
Sallam and El-Wakeil, 2012; Klöppel et al., 2013). However, the
link between mucus polymer morphology and its influence on
mucus performance remains to be determined.

Hence, a cohesive understanding, within an appropriate
evolutionary context, between mucus’ molecular components and
flow behaviour across a range of species is currently missing.

Therefore, to differentiate between the factors that could
influence mucus rheology, we propose using UV-vis spectroscopy
to determine protein concentration or hydration level between
samples and SDS-PAGE to identify proteins and their molecular
weight. The approach proposed here has not been explored
previously, as most studies incorporating SDS-PAGE with UV-vis
tend to focus on a specific protein of interest, not probing the entire
composition of mucus. In addition, to the authors’ knowledge,
something as seemingly trivial as mucus protein concentration
has surprisingly not been reported.

Our hypothesis is that mucus polymers influence the mucus
phenotype, and in line with our wider classification of these
materials as ecto-secretions, mucus proteins will be a key
component in helping deliver functionality for the required
timescale of use by the animal. Hence, this work presents an
initial foray into this area through a combination of thermal
(thermogravimetric analysis (TGA) and rheological ramp
temperature tests), compositional (UV-vis and SDS-PAGE), and
functional (rheology) techniques to characterise and compare
locomotive mucus across six different terrestrial gastropod
species: Achatina fulica (Lissachatina fulica), Cornu aspersum,
Cepaea nemoralis, Arion ater, Arion hortensis, and Limax flavus.

Materials and Methods

Materials

Three species of terrestrial snails (A. fulica, C. aspersum, and C.
nemoralis) and three terrestrial slugs (A. ater, A. hortensis, and L.
flavus) were included in this study. Apart from the snail A. fulica,
which is native to Africa, all other species are found in Europe. A.
hortensis, A. ater, C. nemoralis, C. aspersum, and L. flavus were
collected in Hillsborough Park, Hillsborough, Sheffield (53.4080° N,
1.5015°W). A. fulica snails were purchased as juveniles and reared in
house. All species were kept in plastic containers (39 × 48 × 20 cm)
with ~6 cm of vermiculite layering the bottom of the box at 22°C ±
1°C and high humidity. Animals were fed ad libitum twice weekly
with cucumber, lettuce, and sweet potatoes.

For each species, three specimens were removed from the
containment area, cleaned using type II water, and placed in an
empty and clean plastic container. Animals were then allowed to
move freely across a clean sheet of glass for 5 min to avoid collecting
adhesive mucus. After that, locomotive mucus was collected from
the glass surface using two razor blades (cleaned using ethanol and
then type II water), kept in a 2.0-ml polypropylene-graduated
centrifuge tube with a cap, stored at room temperature, and
subjected to analysis on the day of collection.

Methods

Thermogravimetric analysis

TGA tests were conducted using an MX-50 (A&D Instruments,
United Kingdom) moisture content analyser. An alumina crucible
(9.5 mm diameter and 14 mm high, Almath Crucibles Ltd.,
United Kingdom) with 1 ml of fresh native mucus collected as
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described previously was used for all experiments. The heating rate
was 1°C/min, from 25°C to 120°C, with a data interval of 15 s. All
experiments were repeated three times per species, with separate
samples collected for each test from the same group of individuals at
the same time.

UV-vis spectroscopy

With concentrations obtained from TGA analysis, dilutions
were prepared for all species, and samples were set to the same
concentration of ~1 mg/ml. Type II water was used as a solvent,
and native mucus was collected as described in Materials and
Methods. Then, all samples were analysed at room temperature
(22°C ± 1°C) using a UV-300 Spectronic Unicam spectrometer
(Thermo, United Kingdom) in 1 cm path-length polystyrene
cuvettes. Type II water was used as a blank, and mucus samples
were manipulated using a 1,000-μL micro-pipette. Scans were
performed from 200 to 500 nm at a scan speed of 240 nm/min
and 300 steps in total.

We deliberately chose to use offset absorbance wavelength
values to determine protein concentration in order to analyse the
peak maximum in the UV range because A. fulica mucus shows a
shift to lower wavenumbers of its protein absorption peaks, most
likely due to differences in phenylalanine (Phe) chromophores.
Therefore, concentrations can be estimated for each sample,
using maximum absorbance at 215, 225–230, and 260 nm, as
follows (Walker, 2002; Liu et al., 2009):

Concentration mg/ml( )� 0.183 × A230nm( )– 0.075 × A260nm( ), (1)
Concentration µg/ml( ) � 144 × A215nm –A225nm( ). (2)

The use of Eqs 1, 2 depends on the presence of peaks at 215 nm
with absorbance values <2.0 (Walker, 2002). To corroborate the use
of Eqs 1, 2 for each species based on maximum absorption peaks,
deconvolution of UV-vis spectra and curve fitting were performed
between 200 and 350 nm, and a 10-point multipeak Gaussian fitting
(every 10 nm) was performed using Origin software, v2020
(Supplementary Figure S1). Eq. 1 was used for C. aspersum, C.
nemoralis, A. ater, A. hortensis, and L. flavus (snails and slugs native
from the United Kingdom), whereas Eq. 2 was used for A. fulica.

SDS-PAGE

Gastropod locomotive mucus was collected as described in
Materials and Methods. Samples were weighed, placed in 2-ml
polypropylene-graduated centrifuge tubes, and diluted with type
I water to 5.92 mg/ml, based on the lowest dry weight measured
previously by TGA. Aliquots of 20 µL were taken and mixed with
an equal volume of a solution containing sodium dodecyl
sulphate and β-mercaptoethanol, according to the method of
Laemmli (Walker, 2002). Aliquots of 20 µL of the resulting
solutions were resolved on 4%–20% Tris-glycine gel under
reducing conditions, using a mini gel tank Invitrogen (Thermo
Fisher Scientific, United States) and power supply PS 250
(Hybaid Ltd., United Kingdom), over 100 min at 120 V.
Protein bands were visualised by staining with 0.25%

Coomassie Brilliant Blue R-250 (VWR Chemicals,
United States) and imaged using a Scanjet G2710 scanner (HP
Inc., United States). A HiMark Pre-Stained Protein Standard
(Thermo Fisher Scientific, United States) was used as a ladder.

Rheology

Rheological measurements (frequency sweep and temperature
ramp tests) were performed using an AR-2000 (TA Instruments,
Delaware, United States) rheometer equipped with a Peltier
temperature-controlled bottom plate and cone-plate upper
geometry (diameter 40 mm, cone angle 2°, and 55 μm truncation)
or a cross-hatched parallel plates for validation of non-slip
conditions (20 mm diameter, 0.7 mm gap). Native mucus,
sufficient to completely fill the geometry gap, was placed onto
the bottom plate, and the geometry was lowered to the
truncation gap at the slowest speed to avoid any undue shearing
of the sample. An isolated environmental chamber using a water
trap andmoistened tissue was used to avoid the native mucus drying
out and minimise temperature variations during the tests.
Oscillatory frequency sweep tests were performed from 0.6 to
62.8 rad/s (0.1–10 Hz) at 10% strain at 25°C (chosen to be within
the linear viscoelastic region of the materials; Supplementary Figure
S2). Single-frequency oscillatory tests were then conducted at
0.63 rad/s 10% strain between 15°C and 80°C using a ramp
temperature of 5°C/min.

Statistical analysis

Statistical analysis was performed using Student’s t-test and p <
0.05 significance level (Origin software, v2020, United States).

Results and discussion

The results from a comparative study of gastropod locomotive
mucus relating compositional, thermal, and functional properties
are given in the following sections.

Compositional properties

TGA, UV-vis, and SDS-PAGE were performed to determine the
compositional properties of gastropod locomotive mucus. In
addition, total solids and protein concentrations were determined
using TGA and UV-vis, respectively, to gain an initial and broad
appreciation of composition (Table 1).

Our findings agree with previous studies where pedal mucus in
terrestrial snails and slugs has been shown to consist of
approximately 91%–98% water, with the remaining mass
corresponding to inorganic material and high-molecular-weight
organic compounds, mucus polymers, such as proteins and
carbohydrates (Denny, 1973, 1984; Hausdorf, 2001; Smith, 2002).
For all species tested here, water composition in gastropod mucus
lay between 97.4% ± 0.013% in the slug A. hortensis and 99.4% ±
0.005% in the snailA. fulica. The snailsC. aspersum and C. nemoralis
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have the closest percentages of water, 98.62% ± 0.043% and
98.79% ± 0.014, respectively, and notably, they are from the
same family Helicidae. Simply inverting the TGA data from %
water to solids concentration, the lowest total solids value
corresponds to the African snail (A. fulica) with 5.97 mg/ml,
whereas the highest value to the slug A. hortensis is 25.15 mg/ml.

UV-vis was used to determine the total protein concentration to
determine the constituents of the total solids proportion of mucus.
From Figure 1A, concerning the protein-to-total solids ratio, it is
apparent that proteins only account for <5% of the total solids
present. The remaining solids are assumed to be primarily
carbohydrates, as previous studies have found <1% of mucus dry
mass to be inorganic (Liudmyla et al., 2022).

Comparing species, if we first investigate the three slugs, we
immediately identify a lower solids-to-protein ratio in the slug L.
flavus from the Limacidae family, compared to the other two slugs,
A. ater andA. hortensis, both of the Arionidae family. In terms of the
three snails, a similar pattern is observed, which overall suggests that

members of the same family show similar solid-to-protein ratios.
With a value of 0.007, the African snail A. fulica has the lowest ratio,
whereas the highest one is for the slug A. hortensis, with 0.042, which
represents a significant difference (p = 0.0030) and one we attribute
to the amount of aforementioned carbohydrates present in the
mucus samples.

Upon closer inspection of UV-vis spectra, it is possible to
observe some finer details. Figure 1B depicts a consistent main
band at 225–230 nm associated with the presence of proteins for all
species. However, there appears to be a shift in this band in the snail
A. fulica to 215 nm (assigned to π → π* bonds), which is thought to
represent a proportional increase in the aromatic amino acids
phenylalanine (Phe), tryptophan (Trp), or tyrosine (Tyr). This
species may have a markedly different amino acid composition
compared to the other snails and slugs (Crammer and Neuberger,
1943; Schmid, 2001; Lesniak et al., 2013; Antosiewicz and Shugar,
2016; Radicioni et al., 2016; Bansil and Turner, 2018; Petrou and
Crouzier, 2018; Butnarasu et al., 2019). Furthermore, in the slug A.

TABLE 1 Table showing % total water and gravimetric total solids concentration; and UV-vis protein concentration measurements for locomotive mucus collected
from A. fulica, C. aspersum, C. nemoralis, A. ater, A. hortensis and L. flavus.

Species % Water Total solids concentration, mg/ml Protein concentration, mg/ml

L. flavus 98.91 ± 0.098 10.93 ± 1.254 0.29 ± 0.006

A. hortensis 97.49 ± 0.013 25.15 ± 0.180 1.07 ± 0.070

A. ater 98.41 ± 0.015 15.95 ± 0.396 0.67 ± 0.021

C. nemoralis 98.79 ± 0.014 12.10 ± 0.250 0.43 ± 0.008

C. aspersum 98.62 ± 0.043 13.78 ± 0.464 0.47 ± 0.108

A. fulica 99.40 ± 0. 005 5.97 ± 0. 057 0.04 ± 0.004

FIGURE 1
(A) Protein-to-total solid concentration ratio and significant differences between A. fulica and A. hortensis (p < 0.05) are indicated with black asterisk
brackets. Standard deviation error bars correspond to a series of three experiments per species. (B) UV-vis spectra of native locomotive mucus.
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ater, there is a shoulder in the band at approximately 260 nm, which
is thought to represent an increase in the essential amino acid
phenylalanine in the mucus (Moran et al., 1983). This is unusual
given the relative metabolic expense of excreting this amino acid,
leading to the assumption that its presence has endowed a specific
selective advantage for the species (Moran et al., 1983; Pakay et al.,
2002; Yoo et al., 2013; Watz and Nyqvist, 2022).

We analysed our samples using SDS-PAGE to further compare
these species and determine the molecular weight of proteins in their
locomotive mucus (Figure 2).

Overall, most bands observed are unreported to date, and
there appears to be little consistency across species. However, in
general, proteins with molecular weights ranging from 41 to
377 kDa were seen and could be separated into 2–9 main bands
(Table 2). Where assignments of protein bands were possible
based on previous research, they are named within the table
(Ulagesan and Kim, 2018).

Lower-molecular-weight proteins identified include
haemocyanin at 78 kDa, normally present in the haemolymph
(Huang et al., 2008) and reported for C. aspersum, which well ties
our findings (Ballard et al., 2021). Achacin at 96 kDa, which is the
glycoprotein associated with the antimicrobial activity of the
African snail mucus and only seen in our A. fulica sample (Ogawa
et al., 1999; Cilia and Fratini, 2018), and the metalloproteinase-
like ADAM family of proteins between 66–67 and 52–51 kDa,
which play a key role in protein degradation (Edwards et al.,
2009; Ballard et al., 2021), which were evident in A. ater and
C. aspersum. Interestingly, collagen (~250 kDa) was observed for
C. aspersum and C. nemoralis and is most likely to be variants II,
III, and XI, which are mostly related to locomotive mucus.
However, it could be collagens IV, IX, and X, which have been
found in the locomotive, adhesive, and defensive mucus (Sripriya

and Kumar, 2015; Ballard et al., 2021; Tachapuripunya et al.,
2021; Cerullo et al., 2022).

Finally, a ~350-kDa high-molecular-weight protein band was
present in all our samples. Previously, this has been attributed to
lectins (proteins that bind to carbohydrates) (Ito et al., 2011) but
could readily be an unidentified mucus protein (McDermott et al.,
2021). We believe that this protein could be a primary contributor to
the rheological properties of mucus, given its length and possible
carbohydrate-binding interactions (Fung, Gallego Lazo, and Smith,
2019).

Functional properties

To relate mucus composition to function (i.e., flow properties
and stability), we conducted a range of rheological tests. First, a
rheological “fingerprint” was captured for each species where linear
viscoelastic moduli were measured across a range of timescales of
deformation (obtaining the storage modulus G′ and loss modulus
G′′, Figure 3) (detailed information is included in Supplementary
Figure S3). Before venturing into a discussion of these results, it is
important to note that we have accounted for experimental artefacts
that can arise in rheological measurements when undertaking
analysis on low-viscosity samples as a result of instrument and
sample inertia and low-torque limits (Ewoldt et al., 2015)
(Supplementary Figure S4 and Figure 3).

Our analysis indicates that all mucus samples behave as
viscoelastic gels over the range of angular frequencies tested, with
G′ > G′′ (Peters et al., 2021), a finding similar to mammalian mucus
(Innes et al., 2009; Schuster et al., 2013; Murgia et al., 2016; Huck
et al., 2019; Peters et al., 2021). The results from the previous two
studies analysing mucus from slugs L. maximus and A. columbianus
are included in Figure 3 for further reference (Denny and Gosline,
1980; Ewoldt et al., 2007). Both pioneering works reported modulus
values within the overall range we report for our species, although
these studies collected and tested their mucus samples under
conditions different from ours (see Methods). For example,
Ewoldt et al. (2007) tested slug mucus using a 2 cm plate with
sandpaper, 200 µm gap, and at 22°C. Denny and Gosline (1980)
collected slug mucus using a glass rod, and tests were performed at
temperatures between 21°C and 24°C. In summary, we note that the
overall spread of rheological properties reported for locomotive
mucus to date is considerable, with a two-order-of-magnitude
variation in modulus, but this is not unsurprising given the
infancy of this field (Holland et al., 2006).

It is also possible to extract a complex viscosity (resistance to
flow) from these fingerprinting tests (Figure 4). Akin to many
polymeric materials, gastropod mucus clearly exhibits non-
Newtonian shear thinning fluid properties (Perez-vilar and Hill,
1999), with viscosity dependent on the deformation rate. This was
also the case when synthetic mucus was tested and used as a
viscoelastic biofluid (Aghakhani et al., 2022). Our results show
that A. fulica exhibits the lowest overall complex viscosity,
whereas A. hortensis represents the highest. To corroborate if
slippage occurred in our measurements due to the use of a
smooth cone plate geometry, we tested C. aspersum locomotive
mucus using a 20 mm cross-hatched geometry (Ewoldt et al., 2015).
Results indicated values in similar ranges when comparing cone-

FIGURE 2
Electropherogram of gastropod locomotive mucus. Lines
correspond to A. fulica,C. aspersum,C. nemoralis, A. hortensis, A. ater,
and L. flavusmucus. Molecular weights corresponding to ladder bands
are indicated.
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plate geometry measurements with those performed under a rough
surface (Supplementary Figure S5).

Figure 5 attempts to establish whether this rheological diversity
is related to the total solids or protein content in gastropod mucus.
There is a positive relationship between solid concentration and
viscosity (Figure 5A). However, the same is seen for protein
concentration (Figure 5B), indicating that proteins are most
likely linked to mucus rheology.

If previous assumptions and observations on different kinds of
mucus are valid, and mucus polymers and their protein constituents
(e.g., lectins and their carbohydrate-binding ability) are the main
factors governing the rheological behaviour of mucus (Bansil and
Turner, 2006; Hill et al., 2014), then an examination of viscosity as a
function of temperature could add valuable information. The
hypothesis is that thermal transitions, such as protein glass
transition and, ultimately, denaturation, disrupt overall gel
strength and subsequent flow properties. Figure 6 shows the
average complex viscosity versus temperature. As a precaution,
Lauger et al. (2002) described the importance of obtaining
reliable rheological data when performing tests as a function of
temperature. Therefore, we complemented our temperature ramp
tests with experiments performed at a lower heating rate, using a

cross-hatched geometry and the same environmentally isolated
chamber to account for any temperature gradients that may arise
from our tests. Reassuringly, our findings showed no major
differences compared with the data in Figure 6 (Supplementary
Figure S6).

Figure 6 shows that mucus across all species retains up to 80% of
its original viscosity from 15°C to 30°C presumably to maintain
consistency in flow behaviour during the natural habitat
temperature ranges these animals encounter. Between 45°C and
48°C, a 50% reduction in viscosity is observed for A. hortensis, A.
ater, C. aspersum, and L. flavus. A. fulica is an exception; compared
to the other European species, it continues a steady decline in
viscosity until 60°C before quickly dropping. Once viscosity has
fallen for all species, potentially as a result of the change in protein
conformation, it appears to plateau before beginning to rise again
slightly. This lower plateau represents the minimum level of
viscosity and, thus, minimal mucus polymer molecular
interactions in the mucus. We attribute the subsequent rise to
one of two scenarios: the unlikely possibility that the samples are
slightly drying out and forming a skin at the edges of the gap, or
there may be protein structures undergoing denaturation, leading to
dehydration and aggregation, resulting in the reformation of a

TABLE 2 Identities of specimens in each lane andmain bands observed. Coloured cells indicate the presence of that protein group (GP). GP1, GP6–GP15, GP17 and
GP18 are unknown protein groups of bands not identified before in gastropod mucus.

kDa Protein group A. fulica C. aspersum C. nemoralis A. ater A. hortensis L. flavus

41 GP1

51
ADAM

66

78 Haemocyanin

96 Achacin

100 GP6

104 GP7

113 GP8

128 GP9

145 GP10

151 GP11

165 GP12

179 GP13

194 GP14

229 GP15

249 Collagen

260 GP17

271 GP18

333

Lectins347

377
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newer, phase-separated, and stronger gel structure, consistent with
recent FTIR observations (Barajas-Ledesma and Holland, 2023).

There is a clear difference between A. fulica and the other five
species. Mucus from this snail exhibits a higher stability in viscosity
when the temperature increases, and the drastic viscosity drop
occurs at 15°C higher than the other samples. Here, it is also
important to remember that Figure 6 depicts relative changes
based on the original viscosity of the mucus, and A. fulica
already has the lowest viscosity tested (Figure 4). Hence, this
variation could result from A. fulica having the highest water

content of all mucus tested and the lowest ratio of proteins to
total solids. In this instance, the other mucus polymer components,
such as carbohydrates, could contribute more to the locomotive
mucus viscosity ofA. fulica and hence the different thermal response
or the smaller amount of proteins present could have a higher
thermal tolerance by comparison (Towns, 1995; Petrou and
Crouzier, 2018).

This can be rationalised through an evolutionary context, as
whilst terrestrial snails and slugs stem from the same common
ancestor in the Stylommatophora clade (Wade et al., 2006), it is
highly likely that specific adaptations of mucus to certain habitats
have arisen. This is evidenced in a recent FTIR study of mucus
biodiversity, showing that species identification can be made based
on the unique chemical fingerprint of locomotive mucus alone
(Barajas-Ledesma and Holland, 2023). In our results, A. fulica has
a more stable mucus under thermal stress, implying its mucus
polymers maintain their function over a wider range of
temperatures, which is consistent with the observation that this
African species is native to a region with higher average
temperature compared to the other five European species
included in this study (Albuquerque et al., 2008). Furthermore,
FTIR spectra of A. fulica indicates that its Amide III region differs
from the other species tested, suggesting the specialisation of the
proteins present in the mucus (Barajas-Ledesma and Holland,
2023).

Conclusion

This study takes some initial steps toward the broad
characterisation of a range of compositional and functional

FIGURE 4
Complex viscosity vs. angular frequency of A. fulica (brown
hexagon), C. aspersum (red down triangle), C. nemoralis (orange left
triangle), A. ater (magenta half up left triangle), A. hortensis (black
sphere), and L. flavus (cyan half up hexagon). Standard deviation
error bars correspond to a series of three experiments per species.

FIGURE 3
Average linear viscoelastic moduli, (A) G′ and (B) G′′, of locomotive mucus from A. fulica (brown hexagon), C. aspersum (red down triangle), C.
nemoralis (orange left triangle), A. ater (magenta half up left triangle), A. hortensis (black sphere), and L. flavus (cyan half up hexagon), including digitised
data reported previously by Ewoldt et al. (2007) and Denny and Gosline (1980), corresponding to L. maximus (grey square), and A. columbianus (blue star)
for comparison purposes. Standard deviation error bars correspond to a series of three experiments per species. Two main regions are indicated in
blue and grey, corresponding to the experimental window (reliable data) and inertia effects.
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properties of gastropod locomotive mucus. It reports and
discusses for the first-time fundamental aspects of the
material, such as concentration and protein content, and uses
this information to account for differences in the mechanical or
flow properties of the mucus. The different compositional and
rheological tests presented here support our hypothesis that

mucus may have been adapted to specific environments. In
particular, the marked differences between the African snail
A. fulica and the European snails and slugs suggest that not only
can the morphology or genotype of gastropods be used to infer
evolutionary relationships but also the materials they produce
can be used.

FIGURE 6
Normalised complex viscosity vs. temperature of native locomotive mucus from A. fulica (brown hexagon), C. aspersum (red down triangle), C.
nemoralis (orange left triangle), A. ater (magenta half up left triangle), A. hortensis (black sphere), and L. flavus (cyan half up hexagon). Standard deviation error
bars correspond to a series of three experiments (each normalised to its first value of complex viscosity taken at 0.63 rad/s, η*0) for all the species.

FIGURE 5
(A) Average complex viscosity at 10 rad/s vs. total solid concentration. (B) Average complex viscosity at 10 rad/s vs. protein concentration of A. fulica
(brown hexagon),C. aspersum (red down triangle),C. nemoralis (orange left triangle), A. ater (magenta half up left triangle), A. hortensis (black sphere), and
L. flavus (cyan half up hexagon). Standard deviation error bars correspond to a series of three experiments per species.
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