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A long-standing debate regarding the dynamics of silo discharge revolves around
the use of mono-dispersed circular or spherical grains in simplified two-
dimensional models. It is well-known that granular systems composed of
particles of the same size can generate crystal or quasi-crystal domains with
specific structural and dynamic behaviors. Can this ordering affect the flow rate to
an extent that monosized systems cannot be goodmodels for realistic materials?
In this work, we present simulations of the discharge of two-dimensional silos
filled with binary mixtures of circular grains that conserve the samemean particle
size. We address the question of how ordering affects the mass flow rate, in
particular considering the limit of mono-sized systems. We find that the typical
hexagonal order observed does not affect the flow rate significantly. However,
the flow rate does exhibit a weak, nonmonotonic dependence on packing
bidispersity that correlates with changes in the outpouring speed of grains in
the vicinity of the orifice.
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1 Introduction

In many studies of soft materials, model systems (in the laboratory or in silico) are built
using monosized entities. Such systems are prone to structural ordering (An et al., 2011).
This is so for bubbles (which form foams), colloidal particles (which form gels), cells (which
form tissues), and grains (which form bulk solids) alike. Ordering is particularly evident in
two-dimensional (2D) systems (Dickinson et al., 1989). In conventional solids, ordering
influences strength and deformation under shear; in granular systems, ordering generally
increases packing fraction and creates well-defined failure planes under shear. At the same
time, the apparent ordering of grains in a granular packing does not correspond to well-
defined ordering of contacts and forces between grains. As discussed by Duran (Sands,
2000), a “stack of cannon balls” may look like a very ordered geometrical arrangement.
However, if the balls are rigid, not all neighboring balls need to be in contact to have a stable
stack since the isostatic point is achieved with only four contacts per particle. There are thus
many different contact configurations compatible with a given ordered arrangement
(Grindlay and Opie, 1995); geometrical ordering does not imply ordering at the contact
level, and by extension, the transmission of forces (Radjaï et al., 1996; Geng et al., 2003).

Since contacts are responsible for the transmission of forces and ultimately for the
resulting dynamics of the system, it is natural to wonder if geometrical ordering–that is,
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ordering of particle positions which is visible to the naked eye–is at
all meaningful to the flow of grains beyond the obvious effect on
packing fraction. Recently, attention has been paid to the ordered
domains during flow (Cervantes-Álvarez et al., 2023). These authors
consider a monosized system of disks in a quasi-2D experiment and
identify ordered domains that compete during discharge. The main
objective of this work was to identify some signature in the dynamics
of the ordered domains that may serve as precursors to clogging; the
emphasis was not on the discharge rate of grains between clogs.

Prompted by the concern that clearly visible ordering in
monosized systems may provide results that are not
representative of more realistic situations, researchers tend to
implement strategies to prevent ordering, typically by introducing
some degree of polydispersity to the size of the components of the
material (Tsuchikusa et al., 2023). There are many open questions
around this approach, however. How much polydispersity is needed
to eliminate ordering? Does ordering need to be eliminated fully? Is
polydispersity affecting the results in ways not related to ordering
(e.g., size segregation (Gray, 2018))?

Themass flow rateW of a discharging silo is mostly independent
of the height of the granular column in the silo and is well-described
by the Beverloo correlation (Beverloo et al., 1961). In a 2D system
this is

W � Cρb
��
g

√
D − k�d( )3/2, (1)

where D is the length of the orifice, �d is the mean size of the grains, g
is the acceleration of gravity, and ρb is the 2D bulk density of the
granular material in the silo. The non-dimensional constants C and
k are usually determined by fitting available data and vary with
properties such as particle shape and particle-particle friction. For
disks with friction coefficients above 0.3 it is found that k ≈ 2.0 and
C ≈ 1.5 (Aguirre et al., 2010; Goldberg et al., 2015; Tang and
Behringer, 2016). The 2D bulk density is estimated as the bulk
packing fraction, roughly 0.8 in frictional random packings,
multiplied by the 2D material density.

The discharge of monosized disks has been considered in a
number of experimental and simulation studies (Sakaguchi et al.,
1993; Langston et al., 1995; Mankoc et al., 2007; Aguirre et al., 2010;
Goldberg et al., 2015; Tang and Behringer, 2016; Ashour et al., 2017;
Cervantes-Álvarez et al., 2023). In all cases the Beverloo scaling with
the 3/2 power of the orifice size has been confirmed. The Beverloo
exponent remains the same for polydisperse systems (Zhou et al.,
2015; Madrid et al., 2017; Reddy et al., 2021; Anyam and Anki
Reddy, 2022) and even for non-circular particles (Liu et al., 2014;
Goldberg et al., 2015; Börzsönyi et al., 2016; Gao et al., 2023), with
one known exception being elongated grains in narrow silos that
may display a flow rate which increases as the silo discharges (Pongó
et al., 2022).

The flow of polydisperse mixtures has also been studied, though
not in connection with the state of ordering. Zhou et al. (2015)
considered the discharge of 2D binary mixtures of disks using
Discrete Element Method (DEM) simulations. As other authors
have done in 3D experiments and simulations (Artega and Tüzün,
1990; Humby et al., 1998; Benyamine et al., 2014; Madrid et al.,
2017), these authors consider the change in flow rate when fine
grains are added into the mixture. Naturally, ordering of the initially
monosized system has to be altered by the addition of fine grains.
However, since the mean particle size in the mixtures is not kept

constant when fine grains are added, the differences in the flow rate
cannot be directly attributed to a change in ordering but mainly to
the effective reduction of the mean particle size. More recently,
Jacobs-Capdeville et al. (2023) studied the discharge of log-normal
polydisperse systems of spheres in 3D silos. In this case, the authors
varied the spread of the particle sizes but held the median particle
diameter fixed, an approach that inspires the current work as a way
to decouple the effects of ordering from the effect of mean particle
size �d on the mass flow rate. However, these authors did not
investigate the role of ordering in their polydisperse packings and
did not focus on small perturbations to the system’s dispersity away
from monodispersity, instead varying the polydispersity in
large steps.

In this work we study the flow rate of 2D binary systems of disks
discharging from a rectangular flat-bottom silo, varying bidispersity
with fixed mean particle size in order to directly isolate the effects
that spatial ordering of particles in the silo has on the outpouring
rate. The limiting case of monosized disks presents clear ordered
regions. To consider the effect of such ordering, we simulate binary
mixtures with the same mean particle size as the monosized
reference system; experiments varying dispersity in such a well-
controlled manner are not as feasible as computational simulations.
We vary the size dispersion within a narrow range in fine increments

FIGURE 1
Snapshot of a simulation with a α= 1.31 binarymixture composed
of 5,000 large (dL = 1.1239, blue) and 5,000 small (dS = 0.8584, red),
disks. The exiting grains are re-injected at the top at random locations
above the free surface in the silo.
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in order to observe the flow rate with dispersity as the system
smoothly varies from a highly ordered state to a disordered, liquid-
like state. We use the Q6 bond order parameter (Steinhardt et al.,
1983) to characterize ordering and show that there exists a
nonmonotonic correlation with the flow rate. We then measure
the density and velocity profiles along the orifice to evaluate if the
origin of our observed changes in the flow rate are connected to
packing fraction–another indicator of spatial ordering in granular
systems–or changes in the outpouring velocity of grains at
the orifice.

2 Simulations

We simulate the discharge of disks from a 2D rectangular silo
using a nonsmooth rigid body DEM implemented with the Box2D
library (Catto, 2005). A typical snapshot of our simulation is
presented in Figure 1. For a monosized system, disks have
diameter d and mass m, and the discharge is driven by the
acceleration of gravity g pointing in the downward direction. The
silo has dimensions of 180d in height and 71d in width, with an exit
hole of diameter D = 16.9 d located at the center of the base. (While
we primarily focus on this large orifice size in the analysis to follow,
in Section 3.4 we include results for a much smaller orifice in order
to demonstrate the robustness of our findings with orifice size.) For
binary mixtures, we introduce in the silo two types of disks: NL large
disks with a diameter of dL and NS small disks with a diameter of dS.
We define the size ratio of the packing as α = dL/dS. The mass of a
grain mS,L is proportional to its area, and the area density for both
species is set to 4m/(πd2) = 4/π. In the rest of the paper we will use d
and m for the monosized system as unit length and unit mass,
respectively. The friction and restitution coefficients are the same for
the interaction between particles (regardless of their species) and
between particles and walls, with values of μ = 0.5 for friction and ϵ =
0.1 for restitution.

The Box2D library employs a constraint solver to handle the
dynamics of interacting rigid bodies (Catto, 2005). Box2D is an
implementation of a nonsmooth DEM (Moreau, 1988), in which the
contact between particles is only defined by a restitution coefficient
and friction coefficient instead of a force law, and the particles are
considered to be infinitely stiff. In our simulations, we perform a
maximum of 60 iterations at each time step to resolve contact
dynamics between particles using a Lagrange multiplier scheme. The
equations of motion are then advanced (with a time step of
0.01

���
d/g

√
) using a symplectic Euler algorithm, which takes into

account solid friction based on the Coulomb criterion. Box2D has
been used previously to successfully study a range of processes in
granular materials such as stick-slip dynamics (Carlevaro et al.,
2020), silo discharge of polygonal grains (Goldberg et al., 2015),
tapping (Carlevaro and Pugnaloni, 2011), and soil mechanics (Pytlos
et al., 2015).

In a single trial, the grains are poured into the silo with the orifice
plugged, and the system is allowed to settle until all grains come to
rest. The system is defined to be at rest once every grain’s
translational speed drops below a threshold of 0.01d

���
g/d

√
and

angular speed drops below a threshold of (0.035 rad) ���
d/g

√
.

Then, the exit orifice is opened and grains begin to flow out of
the silo. The grains that have exited the silo and fallen a vertical

distance 12d below the orifice plane are re-injected to the top of the
silo at random locations in order to maintain a stationary flow rate.
The time step at which the centroid of any given particle crosses the
orifice line is recorded, and these data are used to calculate the
discharged mass time series. Additionally, particle positions and
velocities are saved every 1,000 time steps (10

���
d/g

√
, during which

roughly 700 particles are discharged) to sample the steady-state
particle dynamics as well as structural properties like packing
fraction and Q6. We ensure that steady-state dynamics are
achieved before analyzing particle-scale data by waiting 10

���
d/g

√
from the time the orifice is unplugged. In any given realization about
15,000 particles flow out before we end the simulation.

In order to make the flow rate of different binary mixtures (as
well as the monosized system) comparable, we keep the mean
particle diameter �d the same, with minor variations due to the
discrete nature of the number of grains, in all simulated systems. If
the mean particle size changes, we would expect a change in the flow
rate based on the Beverloo scaling (Eq. 1) (Beverloo et al., 1961) due
to the empty annulus correction term −k�d. Thus, by keeping �d
constant, changes of the flow rate that may occur when varying size
dispersion can be attributed to other effects, such as ordering. For
binary systems, we use �d � d10 � (NLdL +NSdS)/(NL +NS),
weighting based on the relative number of particles of each
species (Allen, 2013). (Of course, other definitions are possible,
such as weighting based on mass (i.e., d32 (Allen, 2013)) instead of
particle number. We will revisit this point in the following section.)
If we fix �d andN =NL +NS, then two free parameters remain (say,NL

and dL). In order to vary just a single free parameter we consider two
alternative additional constraints:

• Case I (NL = NS): In this case we set the number of grains of
each species the same. The total mass of each species varies
and depends on the selected value of the free parameter (dL).
Table 1 summarizes the set of simulations that were run
for this case.

• Case II (ML = MS): In this case we set the total mass of each
species (Mi � Niπd

2
i /4, with i = S or L) equal. The number of

grains of each species varies and depends on the selected value
of the free parameter (dL). Table 2 summarizes the
corresponding set of simulations.

We have run simulations of the binary mixtures listed in Tables 1, 2
corresponding to Cases I and II keeping �d � 2�r ≈ 1.0. Note that due to
the discrete number of particles, the actual mean particle diameter is not
always exactly 1.0. We keep the variation of �d from 1.0 less than 3.4%
across all trials. For eachmixture we run 20 realizations of the discharge
with different random initial positions of the particles and report mean
values over realizations and fluctuations defined by the corresponding
standard deviations.

3 Results

3.1 Ordering

To quantify the order in the system we use the Q6 bond order
parameter, which characterize the local order around a given particle
(Steinhardt et al., 1983). For a grain, the bond order parameter can
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be defined either through the contact vectors (the vectors from its
center to each contact with its touching neighbors) or through the
nearest neighbor (NN) vectors (the vectors from the particle center
to the center of each nearest neighbor, irrespective of whether the
particles touch). As we mentioned in Section 1, the ordering that
usually concerns researchers is appreciated by naked eye in the
systems of interest and does not take into account the real contacts.
Therefore, we use the NN vectors for the calculation of Q6. For any
given particle with NN vectors r, Q6 is defined as

Q6 � 4π
13

∑6
m�−6

| �Q6,m|2⎡⎣ ⎤⎦1/2. (2)

�Q6,m is the mean over all branch vectors r of the spherical harmonic
Q6,m(r) = Y6,m(θ(r), ϕ(r)), with θ and ϕ the Euler angles of r. For a 2D
system, θ = π/2.

Figure 2A shows a snapshot from one of the monosized
simulations with particles colored according to their Q6 value, as
calculated from Eq. 2. This snapshot shows large regions with the
typical, clearly visible hexagonal order observed in such systems. The
probability distribution function (PDF) of Q6 taken over all particles
in this snapshot is shown in Figure 2B. The peak at around
0.75 correspond to the large number of particles with neighbors
in hexagonal arrangement: a hexagonal arrangement yields Q6 ≈
0.740829 (Steinhardt et al., 1983).

In Figure 3 we show some snapshots of monosized and binary
systems during the steady state of the discharge with particles
colored according to their Q6 values. Monodisperse systems show
clear ordered regions, especially at the stagnant zones at each side of
the orifice and upstream away from the orifice. Close to the orifice,
the system needs to dilate to be able to flow, and this leads to
disorder. For binary systems, the ordering is significantly reduced:
the larger the particle size ratio, the less order is observed. The PDFs
of Q6 for each mixture simulated are shown in Figure 4. These PDFs
are built from the set of snapshots taken during the simulations in
the steady-state discharge. For α close to one, the PDF displays a
clear peak atQ6 ≈ 0.74 that corresponds to a hexagonal arrangement
of the neighbors (Steinhardt et al., 1983). As α increases, this peak
drops quickly and lower Q6 values are populated, indicating a loss of
hexagonal order in the bulk of the material.

To quantify ordering globally, we measure the height of the peak
of the Q6 PDF at ≈ 0.74. In Figure 5 we plot the peak height as a
function of α, which demonstrates that a relatively small size
dispersion (α > 1.2) suffices to significantly reduce the strong
hexagonal ordering observed in a monosized system.
Interestingly, ordering is affected in the same way for a given α

regardless of whether the number of particles in each species is fixed
(Case I) or the mass of each species is fixed (Case II), suggesting that
the size ratio is more significant than relative composition in
determining ordering.

TABLE 1 Set of parameters of themixtures prepared for simulations of Case I, i.e.,NL =NS. The diameter di of each species and themean diameter �d � d10 are
listed along with the size ratio α and the number Ni of grains and total mass Mi of each species.

Case I dL dS
�d � d10 α NL NS ML MS

01 1.0000 1.0000 1.0000 1.0000 5,000 5,000 5,000.0000 5,000.0000

02 1.0130 0.9868 1.0000 1.0266 5,000 5,000 5,131.5744 4,868.4173

03 1.0260 0.9734 0.9996 1.0540 5,000 5,000 5,263.1543 4,736.8370

04 1.0388 0.9598 0.9992 1.0823 5,000 5,000 5,394.7377 4,605.2548

05 1.0514 0.9460 0.9986 1.1114 5,000 5,000 5,526.3056 4,473.6908

06 1.0638 0.9318 0.9978 1.1417 5,000 5,000 5,657.9054 4,342.1135

07 1.0760 0.9176 0.9968 1.1726 5,000 5,000 5,789.4826 4,210.5177

08 1.0882 0.9032 0.9958 1.2048 5,000 5,000 5,921.0485 4,078.9415

09 1.1002 0.8886 0.9944 1.2381 5,000 5,000 6,052.6403 3,947.3745

10 1.1122 0.8736 0.9928 1.2731 5,000 5,000 6,184.2102 3,815.7974

11 1.1240 0.8584 0.9912 1.3094 5,000 5,000 6,315.7785 3,684.2185

12 1.1356 0.8430 0.9892 1.3471 5,000 5,000 6,447.3690 3,552.6381

13 1.1470 0.8272 0.9872 1.3866 5,000 5,000 6,578.9397 3,421.0510

14 1.1584 0.8112 0.9848 1.4280 5,000 5,000 6,710.5186 3,289.4809

15 1.1698 0.7948 0.9822 1.4718 5,000 5,000 6,842.1134 3,157.8994

16 1.1810 0.7780 0.9794 1.5180 5,000 5,000 6,973.6869 3,026.3111

17 1.1920 0.7608 0.9764 1.5668 5,000 5,000 7,105.2736 2,894.7375

18 1.2030 0.7434 0.9732 1.6182 5,000 5,000 7,236.8390 2,763.1583

19 1.2140 0.7254 0.9698 1.6736 5,000 5,000 7,368.4216 2,631.5771

20 1.2248 0.7072 0.9660 1.7319 5,000 5,000 7,499.9893 2,499.9945
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3.2 Flow rate and mean particle diameter

The mass flow rate is measured by plotting the mass of grains
that crosses the orifice plane as a function of time, as shown in

Figure 6, and fitting a straight line to the portion of the curve where
the flow rate is constant to avoid the initial transient.

In Figure 7 we show the total mass flow rateW as a function of
α for cases I and II, determined both from the mass of grains

TABLE 2 Set of parameters of the mixtures prepared for simulations of Case II, i.e.,ML =MS. The diameter di of each species and the mean diameter �d � d10
are listed along with the size ratio α and the number Ni of grains and total mass Mi of each species.

Case II dL dS
�d � d10 α NL NS ML MS

01 1.0000 1.0000 1.0000 1.0000 5,000 5,000 5,000.0000 5,000.0000

02 1.0130 0.9874 1.0000 1.0259 4,872 5,128 5,000.2105 4,999.8000

03 1.0260 0.9760 0.9996 1.0512 4,750 5,250 5,000.0000 5,000.0000

04 1.0388 0.9654 0.9994 1.0760 4,634 5,366 4,999.8421 5,000.1364

05 1.0514 0.9556 0.9988 1.1003 4,524 5,476 5,000.2105 4,999.8261

06 1.0638 0.9464 0.9984 1.1240 4,419 5,581 5,000.4474 4,999.6458

07 1.0760 0.9380 0.9976 1.1471 4,318 5,682 4,999.7895 5,000.1600

08 1.0882 0.9302 0.9970 1.1699 4,222 5,778 4,999.7368 5,000.1923

09 1.1002 0.9230 0.9962 1.1920 4,130 5,870 4,999.4737 5,000.3704

10 1.1122 0.9162 0.9954 1.2139 4,043 5,957 5,000.5526 4,999.6250

11 1.1240 0.9098 0.9944 1.2354 3,958 6,042 4,999.5789 5,000.2759

12 1.1356 0.9036 0.9936 1.2568 3,878 6,122 5,000.5789 4,999.6333

13 1.1470 0.8980 0.9926 1.2773 3,800 6,200 5,000.0000 5,000.0000

14 1.1584 0.8926 0.9916 1.2978 3,725 6,275 4,999.3421 5,000.3906

15 1.1698 0.8876 0.9908 1.3179 3,654 6,346 5,000.2105 4,999.8788

16 1.1810 0.8828 0.9898 1.3378 3,585 6,415 5,000.1316 4,999.9265

17 1.1920 0.8784 0.9888 1.3570 3,519 6,481 5,000.6842 4,999.6286

18 1.2030 0.8740 0.9876 1.3764 3,455 6,545 5,000.6579 4,999.6528

19 1.2140 0.8700 0.9866 1.3954 3,393 6,607 5,000.2105 4,999.8919

20 1.2248 0.8660 0.9856 1.4143 3,333 6,667 4,999.5000 5,000.2500

FIGURE 2
(A) Snapshot of a simulation of 10,000 disks of the same diameter d. Particles are colored according to their Q6 bond order parameters. (B)
Probability distribution function (PDF) of Q6 in the snapshot shown in part a.
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crossing the orifice over time and from spatial analysis, as
described in Section 3. Beyond run-to-run fluctuations, W
clearly varies nonmonotonically with α despite the mean
particle size being roughly the same in all mixtures. Given

that hexagonal order decays monotonically with α, we
therefore cannot conclude that there is a correlation between
ordering and flow rate. The variation of W is about 8%, which is
discernible considering the error bars (standard deviation over
realizations) and beyond the variations in mean particle size from
1.0 discussed in Section 2. Monosized (or close to monosized)
systems present the lowest flow rate and a maximum is observed
at α ≈ 1.15. Interestingly, for the largest size ratios the flow rate
cannot be distinguished from that of the monosized system
considering the fluctuations among realizations. It is
important to note, however, that the monosized system
presents larger run-to-run fluctuations in comparison with
bidisperse mixtures with α > 1.2.

Jacobs-Capdeville et al. (2023) has shown a monotonic variation
for constant median particle size as the width of the log-normal particle
distribution (in the log-normal distribution the size ratio is defined by
the sizes of the 10th and 90th percentiles of the distribution) is increased
for 3D silos. However, the size ratios investigated (2.0 < α < 8.0) in their
study are outside the range we consider here, which are closer to the
monodisperse limit. (And, of course, we study a 2D system.)
Interestingly, in Ref. (Jacobs-Capdeville et al., 2023). the flow rate
increases with α if the size distribution is particle number-based
(equivalent to our Case I) but decreases with α if it is particle
volume-based (equivalent to our Case II).

FIGURE 3
Snapshots of simulations with binary mixtures of same �d for different size ratios: (A) α= 1.0 (monosized), (B) α = 1.214 (Case II C-09) and (C) α = 1.414
(Case II C-19). Particles are colored according to their Q6 values.

FIGURE 4
PDF ofQ6 formixtures withNL =NS (A, Case I) andML =MS (B, Case II) for varying α (see color scale). The thick black line corresponds to the α-value at
which the maximum flow rate is observed (see Figure 7).

FIGURE 5
Height Qpeak

6 of the peak at Q6 ≈ 0.74 of the PDF of Q6 as a
function of α for the two considered cases.
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The Beverloo equation (Eq. 1) can be used to estimate the flow rate
of a mixture using �d as the mean particle diameter of the mixture
(Artega and Tüzün, 1990; Humby et al., 1998). If we use our definition
�d � d10, and provided that all simulations were done with fixed �d, the
flow rate predicted by Eq. 1 should be constant with varying α. In
practice, our systems have a small variation in �d as seen in Tables 1, 2.
We have plotted W from Eq. 1 in Figure 7 (green solid line) using the
exact value of �d used in the simulations for the given α. Since the curves
for Case I and II are indistinguishable, we just show the curve for Case
II.) To fit the flow rate for the monosized sample (α = 1.0) we set C =
1.24 and k = 2.0, which is consistent with values reported by others
(Aguirre et al., 2010; Goldberg et al., 2015; Tang and Behringer, 2016).
As we can see, the predicted flow rate increases mildly due to the small

decrease in �d and does not show a maximum. Therefore, the
nonmonotonic variation in flow rate that we observe cannot be
attributed to the small variations in �d in our simulations.

As wementioned in Section 2, themean particle size can be defined
in many different ways. Artega and Tüzün (1990) used a volume (area
in 2D) weighted definition �dArtega � d32 � (NLd

3
L +NSd

3
S)/

(NLd
2
L +NSd

2
S). Later, Humby et al. (1998) found that a more

accurate prediction of the experimental flow rate is achieved using
an area (perimeter in 2D) weighted definition �dHumby � d21 �
(NLd

2
L +NSd

2
S)/(NLdL +NSdS). We have plotted the flow rate

predicted by the Artega and Humby definitions of �d in Figure 7
considering the actual simulated mixtures using the same values of
C and k as above. Again, the nonmonotonic behavior observed in the
simulations is not predicted by the Beverloo equation given any of these
definitions of �d. This implies that the variations in flow rate cannot be
simply attributed to changes to the mean particle size of any form
(i.e., number, area, or perimeter weighted mean value).

FIGURE 6
Dischargedmass as a function of time for different α for some sample simulations of Case I (A) andCase II (B), with themixtures as defined in Tables 1,
2, respectively. Inset: “Instantaneous”mass ratioML/MS discharged as a function of time for the largest value of α studied in each case. The instantaneous
mass ratio is sampled over short intervals of time during which roughly 100 particles flow out.

FIGURE 7
Total flow rateW as a function of α for Case I (NL =NS) and Case II
(ML = MS). Error bars correspond to the standard deviation over
20 realizations of eachmixture. The flow rate is calculated both via the
slope in Figure 6 (circles) and via the spatial analysis (SA) of density
and velocity profiles in Figure 10 (squares). Solid lines correspond to
the Beverloo equation corrected by setting themean particle diameter
�d using various proposed definitions defined in the main text: d10, d32
(Artega and Tüzün, 1990), and d21 (Humby et al., 1998).

FIGURE 8
Total flow rate W as a function of the descriptor of global order
Qpeak

6 for binary mixtures with same mass (ML =MS) and same number
of grains (NL = NS) per species.
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Figure 8 depicts the flow rate as a function of the global
hexagonal order Qpeak

6 of the system. In this plot it becomes
more clear that the most hexagonally ordered system (the
monosized one) yields, within fluctuations, the same W as the
system with almost nonexistent hexagonal order. The maximum
flow rate corresponds to the binary mixture with the Q6 distribution
highlighted in Figure 4. After Qpeak

6 drops below ≈ 4.0,
configurations other than the hexagonal arrangement become
more frequent. This prevalence of less ordered configurations
corresponds with a minor, though clearly discernible, reduction
in the flow rate of ≈ 8%. In principle, one may be tempted to
conclude that a monosized system of disks is inappropriate to model
the flow rate of a realistic system because diminishing the degree of
hexagonal order leads to a slightly higher flow rate. However, as we
observe, when size dispersion is increased beyond α > 1.5 the system
yields indistinguishable flow rates from that of the monosized
system. Hence, the use of a binary mixture with a small size
dispersion (1 < α < 1.5), although reducing hexagonal ordering,
leads to flow rates that depend on α. A monosized system seems to
be a reasonable model for a mixture with larger size dispersion. Of
course, the nonmonotonic flow rate may be the result of competing
mechanisms, and we cannot make a prediction for α > 2. To consider
the possible competing mechanism we study density and velocity
profiles at the orifice in the next section.

Before proceeding, we note here that we do not observe
segregation during discharge as we vary the dispersity of the
system. As a demonstration, in the insets to Figure 6, we show
the instantaneous ratio between the discharged mass of each species
(ML/MS) as a function of time for the largest α simulated in each
case. As we can see, this ratio remains constant, albeit fluctuating,
during the simulation.

3.3 Spatial analysis: packing fraction and
velocity profiles along orifice

In order to investigate the origin of the small effect on flow rate
caused by size dispersion in binary systems, we have measured the
packing fraction ϕ(x) and vertical velocity v⊥(x) profile at the plane
of the orifice. For a continuum, the mass flow rate is calculated from
the integral

W � ρ∫D/2

−D/2
ϕ x( )v⊥ x( )dx, (3)

where ρ is the 2D material density of the particles. To estimate W
from simulation data, we measure packing fraction and velocity
profiles along the orifice and carry out a discrete summation.

The packing fraction and velocity profiles at the orifice are
obtained from a series of snapshots saved during the simulations (as
described in Section 2) which contain the particle positions and
velocities. The orifice cross-section is binned in rectangles d/2-wide
and d/2-tall, with the top edge of each bin along the orifice plane, as
depicted in Figure 9. The packing fraction in each bin in a single
snapshot is determined as the area occupied by grains that overlap
with the bin divided by the area of the bin. The average packing
fraction in a given bin is then computed across all snapshots. The
velocity of grains in each bin in a single snapshot is determined by
averaging the velocities of any grains that intersect with the bin area.

Then, as with packing fraction, the average velocity vector for the
steady state flow is computed across snapshots. We note that the
mass flow rate obtained using this method will depend on the height
of the sampling box and its vertical position with respect to the
orifice. If the bins fall within the silo area, not all of the flow rate in
the plane at the bottom of the silo is captured.

Figure 7 serves as a validation that the flow rate extracted from
the profiles coincides with that obtained from the count of particles
crossing the orifice line over time. From Figures 10A, C it is apparent
that the packing fraction profile is not affected by α nor the mix rate
used (see also Figure 10E). Indeed, the main difference caused by the
size dispersion is variation in the velocity profiles (Figures 10B, D).
The velocity profile conserves its functional form as α grows, but the
maximum velocity (at the center of the outlet) varies (see
Figure 10F) in the same proportion as the flow rate (cf.
Figure 7). This observation is consistent with previous studies
that show a stronger change in particle velocity at the orifice
than in packing fraction as the composition of a binary mixture
is varied, even with non-constant �d (Zhou et al., 2015).

A constant packing fraction profile at the orifice plane is a strong
indication that some intuitive predictions for mixed particle sizes are
unwarranted. A mix of particle sizes tends to produce higher packing
fractions in the bulk (Artega and Tüzün, 1990). Naturally, this may
mislead us to expect a higher flow rate. However, Figures 10A, C clearly
show that the relevant packing fraction that defines flow rate, i.e., that
measured at the orifice plane, is in fact unaffected.

Currently, we cannot offer a plausible mechanism for the
nonmonotonic variation of the particle velocities at the outlet with
size ratio α. However, we argue that this cannot be related with
hexagonal ordering in the bulk. The particle velocities at the orifice–a
region were the material is dilated–are likely not determined by the
existence or lack of ordering in the bulk of the container.

3.4 Small orifice size

The results shown in the preceding sections correspond to
discharges through an orifice of size D = 16.9d, large enough to
be well beyond the clogging regime. To assess if our main
observations hold for small orifices, we have run simulations for
Case I using the smallest orifice for which we observed steady-state
flow without clogging across all α: D = 7.3d. In Figure 11A, we show
the PDF ofQ6 for each α during the steady state. The trends observed
for the larger orifice are also present here, though we do observe a
smaller height of the main peak for the monosized case in
comparison with the larger orifice. As observed in the snapshot
displayed in the inset to Figure 11A, this smaller peak seems to be
associated with a large number of small, ordered regions with
boundary defects in-between. The flow through larger orifices is
likely to help “anneal” these defects and increase the size of the
ordered domains. However, detailed study of these domains is
beyond the scope of the current work.

We plot the flow rate through the small orifice as a function of α
in Figure 11B. As for the large orifice, the flow rate is nonmonotonic
and presents a maximum at α ≈ 1.15. Again, the difference between
the maximum flow rate and the monosized case is around 8%, and
for larger values of α the flow rate is indistinguishable from the
monosized system. Therefore all of the features presented in this
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FIGURE 9
Sample diagram of the binning used to calculate the velocity and packing fraction profiles through spatial analysis. The blue vectors correspond to
the average velocity in a bin for a single simulation realization; shading of the bin indicates the average packing fraction for a single realization.

FIGURE 10
Spatial analysis profiles across the silo orifice of the packing fraction (A,C) and the vertical velocity (B,D) in Cases I and II. Error bars, computed as the
standard deviation across all 20 realizations per condition, are shown for the α = 1 profiles and are representative of the scale of error bars on the other
profiles. (E,F) show the packing fraction and vertical velocity at the center of the orifice profile as a function of α; error bars denote standard deviation
across realizations.
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work for a larger orifice hold even for a small orifice near the
clogging regime.

4 Conclusion

Wehave simulated 2D binary systems of granular disks discharging
through an orifice at the bottom of a silo. We have prepared systems
with a fixed (number weighted or mass weighted) mean particle
diameter. Bidisperse systems can prevent the formation of hexagonal
order regions in 2D systems. However, the flow rate is only partially
affected. Some binary mixtures (with a little hexagonal order) present
up to 8% higher flow rates. Interestingly, other mixtures with no
hexagonal order display the same flow rate as a monosized system
that presents highly ordered domains. These observations are valid,
both for large and small orifices.

The small change in flow rate when varying size ratio seems to be
entirely due to a change in the velocity of the flow rather than
different packing fractions at the orifice. For a static sample, when a
monosized system is replaced by a bidisperse mixture, one expects
an increase in packing fraction. However, the packing fraction of a
granular material flowing through a constriction does not need to
follow this rule. Since the local packing fraction at the orifice is not
correlated with ordering in the bulk, we argue that changes in the
flow rate, which are only explained by particle velocities, are not
likely to be correlated with ordering that is observed away from the
outlet. Our results suggest that, for some purposes, using a
monosized system of grains that displays clear ordering may be
as representative of a realistic system as a mixture that shows no
obvious ordering.
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FIGURE 11
(A) PDF of Q6 for mixtures with NL = NS (Case I) with D = 7.3d for varying α (see color scale). Inset: Snapshot during the discharge of a monosized
sample. Particles are colored according to theirQ6 bond order parameters. (B) Total flow rateW as a function of α for Case I. Error bars correspond to the
standard deviation over 20 realizations of each mixture.
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