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Catenoid necks, as minimal surfaces with zero mean curvature (K � 0), minimize
bending energy and serve as geometric scaffolds for scissional membrane
remodeling. We apply the Canham–Helfrich model of flexible membranes to
analyze deformable spontaneous curvature (K0), a key regulator of membrane
scission events in cellular compartmentalization. Tomodel functional membrane
necking, we examine deformed catenoidal shapes with variable mean curvature
(δK ≠ 0) near the minimal-energy catenoid (K � 0), which varies along either the
constrictional or elongational pathways. Using the Euler–Lagrange equilibrium
equations, we derive inhomogeneous catenoid solutions, revealing metastable
singularities departing from the critical catenoid of the maximal area—a tipping
point (TP) for scission. Using functional second-derivative analysis, we further
examine how inhomogeneous K0 affects stability. The transition between
frustrated constriction and abscissional elongation is numerically analyzed
through conformal solutions to the governing inhomogeneous K0− field.

KEYWORDS

membrane neck, catenoidalminimal surface, Canham–Helfrich energy, inhomogeneous
membranes, spontaneous curvature

1 Introduction

Necking processes—crucial for membrane compartmentalization—are essential to cell
physiology (Morgan, 2007). Scissional pathways involve cytokinetically controlled
membrane remodeling, forming cellular compartments connected by deformable necks
(Morgan, 2007; Moeendarbary and Harris, 2014; McMahon and Gallop, 2005). Necking
mechanisms operate within conserved membrane geometries across diverse organisms,
guided by biophysical constraints (Burton and Taylor, 1997; Kozlov et al., 2014; Carlton
et al., 2020; Banani et al., 2016; Westermann, 2010; Frolov et al., 2000). Mechanobiological
inhomogeneities are key regulators of membrane neck remodeling across all life domains
(Morgan, 2007; Moeendarbary and Harris, 2014; Burton and Taylor, 1997; Frolov et al.,
2000). For instance, cell division (Carlton et al., 2020), membrane budding (Kozlov et al.,
2014; Chan et al., 2022), endocytosis (Kozlov et al., 2014), organelle dynamics (Carlton et al.,
2020; Westermann, 2010), and endomembrane trafficking (Banani et al., 2016) all rely on
the functional regulation of membrane necks under mechanobiological control (Fletcher
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and Mullins, 2010; Eyckmans et al., 2011; Wang and Thampatty,
2006). Understanding inhomogeneous membrane remodeling is key
to revealing how necking forces drive shape-regulatory physiological
mechanisms (Chan et al., 2022). For instance, scissional motor
proteins, including prokaryotic FtsZ (Margolin, 2005; Bisson-
Filho et al., 2017), eukaryotic actomyosin (Rosenthal, 2017; Yano
et al., 1982), and dynamin (Cooke, 1995; Ferguson et al., 2012;
Hinshaw and Schmid, 1995), are known to drive radial forces
through mechanical anisotropies in a constriction ring (Thanedar
and Margolin, 2004; Mingorance et al., 2010; Ramirez-Diaz et al.,
2021; Murrell et al., 2015; Kruse et al., 2024; Zhang et al., 2020;
Antonny et al., 2016). In contrast, the mitotic spindle, a bipolar
microtubule-based structure, directs abscissional axial stretching
(Prosser and Pelletier, 2017; Mitchison and Salmon, 2001),
ensuring proper segregation into daughter cells (Pavin and Tolić,
2016; McIntosh et al., 2012). In synthetic cell biology (Szostak et al.,
2001; Blain and Szostak, 2014) and soft-active matter research
(Ramaswamy, 2010; Palacci et al., 2013; Guillamat et al., 2016),
lipid model membranes are widely used to reconstitute cytokinetic
engines (Szostak et al., 2001), mimicking mechanobiological
inhomogeneities (Osawa et al., 2008; Hutchison et al., 2016;
López-Montero et al., 2012; López-Montero et al., 2013).
Membrane microsystems provide insights into functionally
inhomogeneous pre-scissional states, such as equatorial ring
constriction (Osawa et al., 2008) and axially polarized neck
elongation (Hutchison et al., 2016), both of which contribute to
membrane scission in synthetic cells engineered for cytokinesis
(Blain and Szostak, 2014). Figure 1 illustrates possible necking
mechanisms leading to scission during membrane bending and
compartment remodeling. While these membrane-bending
mechanisms require energy for deformation, a tipping point (TP)
determines the irreversible pathway toward final scission.

Theoretically, membrane inhomogeneity induces mechanical
anisotropies in spontaneous curvature (K0) and surface tension
(σ) (Barrio et al., 2020; Salinas-Almaguer et al., 2022; Beltrán-

Heredia et al., 2017; Horger et al., 2010), both of which are
modulated by microphysical internal stresses under bending
rigidity (Jülicher and Seifert, 1994; Reinhard, 2014; Seguin and
Fried, 2014). Biology-inspired physical models of membrane
remodeling highlight the mechanical coupling between K0 and σ

(Beltrán-Heredia et al., 2017; Jülicher and Seifert, 1994; Erickson,
2009). They often recapitulate necking energy in catenoidal
manifolds, which naturally minimize membrane energy—referred
to asΦ(K0, σ). Catenoidal necks, as minimal surfaces with near-zero
mean curvature (K ≈ 0), minimize membrane energy under
boundary constraints (Spivak, 1979). These minimal-energy
scaffolds enable stable neck-shaping pathways (Jia et al., 2021;
Walzel et al., 2022), where inhomogeneous K0 and σ drive
transitions toward regulated scission (Frolov et al., 2000; Santiago
and Monroy, 2023). Rigid catenoid configurations (ΦR) represent
minimal energy necks with zero mean curvature (K � 0),
dominated by Gaussian curvature (KG) injected from the
boundaries (Santiago and Monroy, 2023; Durand, 1981;
Chabanon and Rangamani, 2018). Under spontaneous curvature
K0(σ), ΦR− surfaces present two extremal solutions with distinct
stability (Spivak, 1979; Walzel et al., 2022): Φ0(K0 � 0), the stable
minimal-area solution, and Φ†(K0 ≠ 0), a metastable critical
catenoid that maximizes area (Sagan, 1992). As supercritical
necks stretch, they gain stability beyond Φ†, resulting in
spontaneous abscission. Once Φ† is overpassed, further neck
elongation induces a topological scission event, leading to the
well-known Goldschmidt solution (Sagan, 1992) (see Figure 1).
More specifically, the critical catenoid Φ† represents an
abscission-like geometry where the supporting membrane neck
reaches its maximum permissible size (Durand, 1981; Chabanon
and Rangamani, 2018), which leads to a critical “tipping point”
determinant for spontaneous scission (Santiago and Monroy, 2023).
Hence, we analyze how mechanical gradients of membrane tension
and spontaneous curvature govern neck flexibility beyond the rigid
catenoid geometry. Φ† separates subcritical constricted necks of
minimal area (A0) from supercritical tubular configurations of
maximized area (Amax >A0), thus playing a key geometric role
in balancing curvatures at a transitional bifurcation (Santiago and
Monroy, 2023). Once geometrically softened, theΦ†− critical trade-
off can exert abscission control, depending on coordinated
curvature–composition adjustments under mechanical
spontaneity (Jia et al., 2021; Walzel et al., 2022).

In this work, we investigate whether optimal abscission
mechanics stem solely from rigid catenoidal neck geometry or
depend on curvature-bending deformability factors, K(Φ), such
as necking elasticity driven by spontaneous curvature (K0); in
general, K(Φ) denotes a constitutional status shaping the neck’s
curvature deformations (Durand, 1981). Using a deformable
catenoidal manifold under the Canham–Helfrich Hamiltonian
(Jülicher and Seifert, 1994; Santiago and Monroy, 2023), we will
analyze K0− perturbed catenoid configurations, Φ ≈ ΦR + αΦD,
near the organizing Φ†−criticality. Henceforth, the small
deformation parameter, α∝Φ −Φ† ∝ δK, defines the
perturbation series as adaptable curvature changes lead to
optimized necking (δK ≠ 0). In a previous paper, the
curvature–elasticity coupling was demonstrated to cause
configurational bifurcation into two critical branches separated
by an energy barrier (Santiago and Monroy, 2023); they evolved

FIGURE 1
Membrane necking processes energetically regulated along
curvature-bending pathways (catenoid-like) toward divisional
scission. High-energy furrow constrictions contrast with abscissional
elongational necks emerging during the energetically uphill
process of membrane remodeling. Mechanical bifurcations may arise
along these pathways, favoring one outcome over another at a critical
tipping point (Φ†) and stabilizing topological change (divisional
Goldstein terminus) through spontaneous abscission.
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from subcritical ring-like constrictional furrows to supercritical
elongated forms, passing through the critical abscissional status
(Φ†) (Santiago and Monroy, 2023). In this study, by analyzing
inhomogeneous necking pathways in deformable catenoids (ΦD) or
D− catenoids, we identify the abscissional tipping point, which is
closely linked to the critical Φ†-catenoid, as a milestone for
spontaneous scission under curvature perturbations (δK ≠ 0).
This deformable state undergoes sharp changes in spontaneous
curvature near criticality while minimizing the expenditure of
bending free energy (first-order energy variation). In addition,
mechanical stability requires inhomogeneous K0 to be concave
upon all of its independent variables (second-order variation)
(Walzel et al., 2022; Chabanon and Rangamani, 2018). Our
findings highlight the energy regulation between catenoidal neck
deformation and inhomogeneous force distribution required for
efficient scission.

2 Methods

2.1 Elastostatic forces: elongational stress
and constrictional torque

In addition to a continuum description, the system is modeled as
two charged particles interacting within the inhomogeneous necking
field (Santiago and Monroy, 2023; Santiago and Monroy, 2020).
Figure 2 depicts the lower edge of an abscissional neck acting as a
“south pole” particle exerting an elongational axial force, while the
upper edge behaves as a “north pole” particle sensing this repulsive
force (corresponding to the neck-connected compartment formed
during abscission).

On one hand, Figure 2 presents tubular solutions
(supercritical), where negative tube-shaping torque (m< 0) is

associated with a predominantly concave spontaneous curvature
(∇2K0 < 0; stable). Radial and axial tensions are positive therein
(Fr > 0 and Fz > 0), indicating effectively repulsive abscissional
forces in each hemi-neck (∇K0 > 0). These elongational forces
represent stable membrane flows of spontaneous curvature
driven from the neck waist toward the bounding
compartments. On the other hand, Figure 3 illustrates ring-
like solutions (sub-critical), where positive neck-shaping
torque (m> 0) arises from a predominantly convex
spontaneous curvature (∇2K0 < 0; unstable). Both radial
(Fr < 0) and axial (Fz < 0) tensions are negative, reflecting
attractive edge forces driven by constrictional gradients
(∇K0 < 0 in each hemi-neck). In biological cells, they represent
constrictive flows shaping the waist ring from an internal
divisional apparatus.

These elastostatic (virtual) charges interact with each
other—either repulsively (elongation; Figure 2) or attractively
(constriction; Figure 3)—through a flexible geometry influenced
by a K0-driven stress field that generates charges at the edge
boundaries (Santiago and Monroy, 2023). Necking shape emerges
from the catenoid-conformal field symmetry driven by an
inhomogeneous K0-elasticity Hamiltonian (Canham–Helfrich
type). In mechanical terms, the south particle experiences
necking stress, Σ, exerted by the north particle through the
inhomogeneous spontaneous curvature’s field (K0) under
membrane energy density (σ). The neck-shaping stress,
Σ � A−1(Fz, Fr), arises from axial tension, Fz � ∂σ/∂z, and radial
tension, Fr � ∂σ/∂r, both generating a local necking torque,
m ≡ Σ × R (A � πR2 represents the edge area where necking
tensions apply). We depict these interactions on both sides of the
critical catenoidal bifurcation (see Figures 2, 3). Therefore, we
explore membrane abscission in critical catenoid necks that are
weakly perturbed from mechanical equilibrium, focusing on
elongational abscissional pathways compared to constrictional
configurations. Hence, curvature-conformal necking distributions
are analyzed in relation to external deformation stresses.

FIGURE 2
Repulsive elongational catenoid configuration. Abscissional
shape in the supercritical regime with border radii �R � 3, equatorial
waist radius �R0 ≈ 0.2, length �h ≈ 2.26, and area �A ≈ 1.25. Radial force Fr
and the axial force Fz that act on the southern border in the case
of a highly tubular-shapedmembrane. Both of them are positive, while
the local shaping torque m (negative) is also shown. It is 0 on the
borders and has the maximum negative intensity at the equatorial
waist. The concave configuration of spontaneous curvature, ∇2K0 <0,
with the minimal value at the neck waist (colored in blue), results in
mechanical stability.

FIGURE 3
Attractive constrictive catenoid configuration. Constrictional
membrane neck with boundary radii �R � 3, equatorial waist radius
�R0 ≈ 1.95, length �h ≈ 0.66, and area �A ≈ 0.80. Schematic
representation of the radial force Fr and axial force Fz that act as
driving flows on the southern border in the case of a highly constricted
membrane. The local constrictional shaping torquem (positive) is also
shown as being maximal at the equatorial waist. The convex
configuration of spontaneous curvature, ∇2K0 >0, with the maximal
value at the neck waist (colored in red), results in mechanical
instability.
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2.2 Necking Canham–Helfrich Hamiltonian:
inhomogeneous shape equation

The starting point for calculating necking forces is the
generalized Canham–Helfrich energy functional (Canham, 1970;
Helfrich, 1973):

H � κ

2
∫dA K −K0( )2 + ∫ dA σ + κG ∫ dA KG, (1)

where spontaneous curvature (K0) and surface tension (σ) are
defined to be inhomogeneous functions across the
necking membrane.

The first term represents the bending energy, where K ≡ 2H
relates the extrinsic curvature (K) with the mean curvature (H)
under homogeneous bending rigidity (κ), which is considered
constant across the membrane. The second term accounts for the
surface energy due to the necking area (A), with the surface tension
(σ) considered an inhomogeneous Lagrange multiplier. The third
term fixes the Gaussian curvature (KG), where a constant saddle-
splay modulus (κG) is assumed as a homogeneous parameter
imposed from the neck boundaries (Capovilla et al., 2002). The
CHmodel describes membranes as effective two-dimensional fluids,
averaging microscopic interactions into globally homogeneous
elasticity κ and κG (Helfrich, 1973; Zhong-Can and Helfrich,
1989). Due to lateral membrane fluidity, global rigidities remain
homogeneous (i.e., κ and κG are constant) (Helfrich, 1973). In other
words, the scalar free energy functional (CH) depends only on the
membrane’s instantaneous geometry, with no memory of past
deformations (Deserno, 2015). The energy first-variation delivers
the Euler–Lagrange derivatives along the normal and longitudinal
direction (Zhong-Can and Helfrich, 1989) and the boundary terms
arising from the CH response of the elastic membrane projected on
the edge boundaries (Capovilla et al., 2002). Under energy
minimization from the generalized CH functional in Equation 1
(δH � 0), the well-known shape equation is given as follows
(Zhong-Can and Helfrich, 1989):

− κ∇2 K −K0( ) − κ

2
K − K0( ) K K +K0( ) − 4KG[ ]

+ σK � ΔP,
(2)

where ΔP represents the normal pressure decrease across the
membrane. For an open neck that connects two separated
compartments, ΔP � 0.

The inhomogeneous shape equation in Equation 2 arises as the
transverse Euler–Lagrange minimizer (Santiago and Monroy, 2023),
where K0 and σ vary along the membrane coordinate. The bending
rigidity (κ) remains constant, representing isotropic fluid forces
distributed in-plane along the membrane neck (Helfrich, 1973).

2.3 Membrane inhomogeneity: longitudinal
membrane tension–spontaneous curvature
connection

Additionally, we derive a key inhomogeneity relationship
connecting changes in spontaneous curvature, K0, with the
necking force generator σ; this is given as follows (Santiago and
Monroy, 2023):

∂aσ � κ K −K0( )∂aK0, (3)
where (∂a) represents the covariant derivatives, linking the spatial
dependence of the two compositional fields (K0 and σ), both
modulated upon extrinsic curvature (K) (a refers to a
generalized membrane coordinate). If K0 is constant, σ must also
be constant, recovering the well-known homogeneous equilibrium
condition (Zhong-Can and Helfrich, 1989).

The membrane in-plane inhomogeneity stated in Equation 3
arises from Euler–Lagrange longitudinal minimization (Santiago
and Monroy, 2023), where K0(a) and σ(a) co-vary together with
local bending curvature stress. The curvature spontaneously
imposed by the K0− field reflects fluid lateral forces distributed
inhomogeneously along the membrane neck area (A), while
membrane tension enforces area conservation (Reinhard, 2014).
Unlike thermodynamic surface tension (γ), which represents
positive surface energy per unit area (A0, the reference area of a
tensionless membrane), the mechanical membrane tension can be
either negative in floppy membranes connected to membrane
reservoirs (σ < 0) or positive when stretched
(σ � γ +KA(A − A0)/A0, with KA being the compressibility
modulus). K0 and excess tension, σ − γ, are intrinsically linked
through the internal membrane pressure field Π(a) (Seguin and
Fried, 2014). This inhomogeneous pressure originates from
variations in membrane density (mosaicity) and compositional
asymmetries between the leaflets (excess area) (Reinhard, 2014;
Seguin and Fried, 2014), both driven by molecular interactions
within the membrane components (Amiral and Markus, 2020).
Membrane inhomogeneities from protein inclusions are
effectively described by the mesoscopic parameters, K0(a) and
σ(a) (McMahon and Gallop, 2005; CampeloF et al., 2008),
representing coarse-grained normal curvature and longitudinal
tension, respectively. These mechanical relationships manifest in
the equilibrium condition established along the longitudinal
direction, as expressed in Equation 3. The transverse (Equation
2) and longitudinal (Equation 3) equilibrium equations describe
quasi-static balance, where the former governs normal necking
shape and the latter captures longitudinal tension, driving
cortical flows. In dynamic approaches, energy dissipation from
intrinsic membrane viscosity must be explicitly considered
(Marino and Antonio, 2009).

2.4 Boundary conditions

Finally, boundary conditions arise from the variational
principle, applied across a continuous membrane symmetry,
referenced to the Darboux frame (Capovilla et al., 2002).

κ K −K0( ) + κGKT � 0, (4a)
σ + κ

2
K − K0( )2 + κGKG � 0, (4b)
κ∇lK � κG _Kτ , (4c)

where KT denotes the extrinsic curvature along the surface
tangent and ∇l represents the curvature gradient in the
longitudinal direction based on the natural moving frame of
the membrane necking surface embedded in the Euclidean space
(Spivak, 1979). Under minimal energy constraints established
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from the membrane edges, the first condition in Equation 4
requires the local torque to vanish at the boundary (Equation
4a). The second equation balances intrinsic and extrinsic
curvatures with surface tension under energy conservation
(Equation 4b). Crucially, an additional third condition arises
from changes in constrictional torque, induced by saddle-splay
elasticity within the deformed membrane, for inhomogeneous
curvature along the longitudinal direction (Equation 4c) (where
the dot symbol refers to the partial derivative with respect to the
longitudinal coordinate, which is evaluated at the neck
boundary). Such an inhomogeneous condition implies a local
balance between extrinsic bending stiffness and intrinsic
torques (Capovilla et al., 2002).

3 Results

3.1 Inhomogeneous necking in minimal
catenoid surfaces: stability conditions

To determine conditions for mechanical stability, we first define
the necking equilibrium relationships governing unperturbed
configurations under the inhomogeneous force fields of
membrane tension (σ) and spontaneous curvature (K0). For
minimal R− catenoid surfaces with zero mean curvature (K � 0),
as applied in the shape equation (Equation 2), the spontaneous
curvature satisfies the inhomogeneous Helmholtz equation, which is
given as follows:

∇2K0 � 2K0KG, (5)
which determines harmonic solutions for the

curvature–composition force field K0(Φ), driven by the
covariant interaction, Φ(l), between spontaneous curvature
K0(Φ) and Gaussian curvature KG, remaining conserved in the
absence of a topological change (l represents an internal membrane
length) (Spivak, 1979). This catenoid form of the shape equation
represents the second-order Euler–Lagrange derivative for
mechanical equilibrium (δ2H � 0), defining the stability
condition for the CH energy of a necked catenoidal membrane
(Walzel et al., 2022). Stability depends on the sign of the
inhomogeneous term in Equation 5. Since KG < 0 for any neck
surface, a concave spontaneous curvature (∇2K0 < 0) ensures
stability for K0 > 0, while a convex distribution (∇2K0 > 0) leads
to instability for K0 < 0. Additionally, we derive the local
relationship between spontaneous curvature, K0(Φ), and surface
tension, σ(Φ), which is systemically governed by the intrinsic
composition-shape conformal field (Φ). For rigid, unperturbed
R-catenoids (K � 0), integrating the inhomogeneity condition in
Equation 3 over the parametric length (ł) along the neck surface
yields the local excess tension, which is given as follows:

σ l( ) − σ0 � −κ
2
K2

0 l( ), (6)

where σ0(l � 0) is an integration constant representing the lateral
tension at the membrane edges. Note that Equation 6 applies to any
value of l along the neck and not just at the boundary, as defined in
Equation 4b.

3.2 Boundary-injected Gaussian energy:
necking axial stress

Interestingly, the closure relationship in Equation 6 mirrors the
boundary condition in Equation 4b; by evaluating both boundary
edges, the south pole edge (BS) and the north pole edge (BN) (at
l � 0), one obtains the connection
−σ00κGKG

(0)(BS) + κGKG
(0)(BN), which is rewritten as follows:

σ Φ l( )[ ] + κ

2
K2

0 Φ l( )[ ] � −κGKG
0( ), (7)

which establishes continuous energy density governed by
the Gaussian edging curvature, KG

(0), as intrinsically connected
on the deformable neck from the external (reservoir)
boundaries.

The constitutive shape Φ(l) locally links normal necking
spontaneous curvature to lateral tension forces regulated by
conserved Gaussian curvature (Spivak, 1979). Positive membrane
rigidness (κ> 0) implies that positive Gaussian energy injected from
the boundaries corresponds to lateral negative tension
(−σ05κGK(0)

G > 0), describing relaxed configurations that expand
the membrane area using boundary reservoirs under elongational
stress (Fz > 0 and m< 0; see Figure 5). Conversely, if negative
Gaussian energy is extracted from the edges, the necking tension
becomes positive (−σ05κGK(0)

G < 0), resulting in stressed necking
configurations that contract the membrane area under constrictive
stress (Fz < 0 and m> 0; see Figure 5). Our previous analysis
examined the mechanical behavior of geometrically rigid catenoid
necks (R−catenoids; K � 0) with a superposed inhomogeneous
spontaneous curvature field, K0(l), leading to a shape-conformal
connection (fundamental Φ0ΦR), under neck-shaping forces (Fz

and m) independent of curvature deformation (Santiago and
Monroy, 2023). This zeroth-order analysis focused on the elastic
stress tensor derived from the homogeneous Euler–Lagrange
minimizer (Capovilla et al., 2002) while assuming axial force
conservation along the minimal catenoid surface (K � 0)
(Jülicher and Seifert, 1994). In this study, we extend a first-order
perturbative problem under linear shape deformation
(Φ ≈ ΦR + αΦD(K)), starting from the rigid R-catenoid (K � 0
and α � 0) as the fundamental state (ΦR). We then consider
deformed configurations (δK ≠ 0, thus α> 0) based on catenoid-
conformal solutions to the deformed state (ΦD), modulated by the
spontaneous curvature field under necking stress (K0). We begin by
analyzing the K0− decorated shape equation near the critical state
for minimal R-catenoid surfaces with axial revolution symmetry.

3.3 Renormalized necking configurations:
critical R†-catenoid

Figure 4 addresses the zeroth-order problem (ΦR; α � 0), where
the necking membrane is parametrized in Euclidean 3D-space using
the axial z− coordinate and the azimuthal angle ϕ; this is given by

X z,ϕ( ) � ρ z( )ρ + zk, (8)
where ρ � (cos ϕ, sin ϕ, 0) and k � (0, 0, 1) are the cylindrical basis
and ρ(z) is the radial coordinate of the surface.
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Henceforth, from Equation 8 the tangential vectors to the
revolution surface are given by ez � ρ′ρ + k and eϕ � ρ ϕ so
that the induced metric is found to be
gabdξ

adξb � (1 + ρ′2)dz2 + ρ2dϕ2, where the prime symbols
indicate parametric derivatives along the z coordinate. Then, the
infinitesimal element of area is obtained as follows:
dA � ρ

������
1 + ρ′2

√
dz dϕ. The unit vector normal to the surface is

obtained using the following formula:
n � eϕ × ez/| · | � (−ρ′k + ρ)/

������
1 + ρ′2

√
. The covariant derivatives,

∂zez � ρ″ρ and ∂ϕeϕ � −ρ ρ, imply the components of the

curvature field Kzz � −ρ″/
������
1 + ρ′2

√
, and Kϕϕ � ρ/

������
1 + ρ′2

√
.

Therefore, we can express the extrinsic mean curvature
(K ≡ 2H) and the intrinsic Gaussian curvature (KG) as functions
of the radial coordinate (ρ), along with its first-order (ρ′) and
second-order (ρ″) derivatives, respectively, as follows
(Durand, 1981):

2H ρ, ρ′, ρ″( ) � − ρ″
1 + ρ′2( )3/2 + 1

ρ
������
1 + ρ′2

√ , (9)

KG ρ, ρ′, ρ″( ) � − ρ″
ρ 1 + ρ′2( )2. (10)

These Equations 9, 10 provide a frame-invariant description of
curvature energy for the variational equations derived from the
Canham–Helfrich Hamiltonian, minimized for the rigid
R-catenoids (fundamental ΦR− state). However, the curvatures
are size-dependent, thus necessitating scale-invariant re-
parametrization.

3.4 Renormalized R-catenoid necking under
spontaneous curvature

For a rigid catenoid surface (K � 0), the minimization
relationship is provided in a scale-invariant form as �ρ � cosh�z,
where �ρ ≡ ρ/R0 and �z ≡ z/R0, with R0 representing the re-
normalizing radius of the equatorial waist (see Figure 4). Unlike
the standard approach based on the boundary edge radius (RB)
(Santiago and Monroy, 2023; Durand, 1981), this renormalized
manifold parametrization expresses spatial lengths relative to the
waist radius (R0) in a dimensionless form as follows:

2 �H �ρ, �ρ′, �ρ″( ) � − �ρ″
1 + �ρ′2( )3/2 +

1

�ρ
������
1 + �ρ′2

√ , (11)

�KG �ρ, �ρ′, �ρ″( ) � − �ρ″
�ρ 1 + �ρ′2( )2, (12)

where �H ≡ R0H and �KG ≡ R2
0KG. In Equations 11, 12, the

derivatives are defined relative to renormalized lengths
(�z � z/R0); for the rigid R-catenoids, one obtains

�K
R( ) ≡ 2 �H R( ) � 0, (13)

�K R( )
G � − 1

cosh4�z
, (14)

under principal curvatures given by �K] � −1/cosh2�z and
�KT � 1/cosh2�z, where �Ki ≡ R0Ki . Thus, the rigid R-catenoid is a
minimal surface (Equation 13), with negative Gaussian curvature
(Equation 14).

Furthermore, the inhomogeneous Helmholtz equation for the
spontaneous curvature field (Equation 5) is expressed in reduced
dimensionless coordinates as follows:

1

�ρ
������
1 + �ρ′2

√ ∂�z
�ρ������

1 + �ρ′2
√ ∂�z

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ �K0 � −2 �K0
�ρ″

�ρ 1 + �ρ′2( )2. (15)

Hence, the shape-conformal spontaneous curvature �K0 ≡ K0R0

satisfies Equation 15 on the renormalized catenoid, reducing to the
scale-invariant hyperbolic form as follows (Durand, 1981):

�K0″ + 2 sech2�z �K0 � 0. (16)

Solutions to Equation 16 are given by

�K0 �z( ) � A1 tanh�z + A2 S �z( ), (17)
where A1 and A2 are amplitude functions that translate the rigid
necking geometry into inhomogeneous forces. The oddness
imparting function A1 in Equation 17 governs governs axial
tensile forces inverted anti-symmetrically at the equatorial waist,
while the evenness amplitude A2 adjusts the spontaneous curvature
to maintain mirror symmetry through the R-catenoid’s
structure factor:

S �z( ) ≡ 1 − �ztanh�z. (18)

These rigid R-catenoid transformations focus on the conformal
shape dependence of the matrix elements (A1, A2) without
including all the underlying physics. Specifically, they describe
the spatial distributions of longitudinal axial interactions (A1)

FIGURE 4
Minimal R-catenoid neck. Geometric elements in the description
of membranes with axial symmetry. The neck is placed at z � 0 (the
equatorial radius R0), while z1 and z2 represent the axial coordinates of
the upper and lower borders, respectively. The Darboux frame,
ν � T × n, adapted to any parallel curve, is shown. The axial force and
local torque exerted by the regionM on the rest of the membrane are
calculated using the stress tensor, as indicated in the text.
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and catenoid torsional shape (A2), which are closely linked to the
internal necking structure. Figure 5 illustrates necking structures
conformally shaped in the rigid R-catenoid, which are given as
follows from Equation 18 (Santiago and Monroy, 2023): (A)
subcritical constriction furrows (Ssub > 0); (B) critical tipping
forms at an abscissional onset (S† � 0); and (C) supercritical
elongational tubes leading to abscission (Ssuper < 0). The necking
shape amplitudes A1 and A2 are set by the boundary conditions in
Equation 4 (following appropriate renormalization in the
deformed case; Equation 4). With the catenoid equatorial
waist positioned at z � 0 and boundary edges at z1 and z2 (see
Figure 4), Equation 17 simplifies to the linear algebraic form
as follows:

K0 � MA, (19)
where the transference matrix holds on the catenoid form
determined from the edge boundaries:

M �z1, �z2( ) � tanh�z1 S �z1( )
tanh�z2 S �z2( )( ), (20)

which transforms the necking vector A � (A1, A2)T into
spontaneous curvatures imposed from the catenoid edges

K0 � ( �K0(�z1), �K0(�z2))T. Thus, the necking solutions can be
determined by inverting Equation 19 as follows:

A � M−1K0, (21)
where an inversion matrix of Equation 21 is given as follows:

M−1 � 1
detM

S �z2( ) −S �z1( )
−tanh�z2 tanh�z1

( ). (22)

Note that the necking amplitudes A1 and A2 in Equation 21 are
well-defined only if detM ≠ 0, with critical singularity occurring at
the configuration where this determinant vanishes (see
Equation 22):

detM† � tanh �z†1 S �z†2( ) − tanh �z†2 S �z†1( ) � 0, (23)

The root-points in Equation 23 implies a singular behavior of
the necking configuration for given spontaneous curvatures �K0.
At this critical point, the catenoid satisfies maximal area
conditions for given boundary constraints (Spivak, 1979;
Sagan, 1992). After resolving the coupled geometry-
composition system, Equation 21, the necking constants are
written explicitly as follows:

FIGURE 5
Renormalized rigid necking configurations relative to the critical R†-catenoid. Schematics of three stages of symmetric catenoids and their
geometric elements for conformal decoration with the spontaneous curvature field �K0. The stages (a) A and (b) B are on the subcritical regime, while the
stage (c) C is on the supercritical regime. (d) Distribution of �K0 as a function of �z along the three stages depicted above. (e) Bending energy �Eb ≡ Eb/(2πκ)
(blue curve) and the total energy �E ≡ E/(2πκ) (red curve). The configurational states A, B, and C identify the necking stages depicted in the panels
above. We used the experimental value κG/κ � −0.7.
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A1 �z1, �z2( ) � S �z2( ) �K0 �z1( ) − S �z1( ) �K0 �z2( )
detM

, (24)

A2 �z1, �z2( ) � −tanh �z2( ) �K0 �z1( ) − tanh �z1( ) �K0 �z2( )
detM

, (25)

We focus on the symmetric case (�z1 � −�z2 � ± �zB), where the
first necking constant equals 0 (A1 � 0), while the second one is
given as follows:

A2 �zB( ) � �K
symm
0 �zB( )
S �zB( ) . (26)

Hence, the critical R†− catenoid emerges as a singularity in
Equation 26 corresponding to the maximal area (Amax ≈ 1.19)
(Santiago and Monroy, 2023), satisfying

S �z†B( ) ≡ 1 − �z†B tanh �z†B � 0, (27)

whose rigid geometric form enforces shape-conformal necking
transformations under critical boundaries renormalized at
± �z†B ≈ 1.2 (Spivak, 1979; Sagan, 1992), corresponding to critical
edge radius �R† ≈ 1.81 (i.e., at S† � 0) (Santiago and Monroy, 2023).
From Equation 27, the constrictive furrow-like shapes correspond to
subcritical conditions (Ssub > 0 for �zB < �z†B and �R> �R†), while
elongated tubular shapes correspond to supercritical conditions
(S†super < 0 for �zB > �z†B and �R< �R†).

3.4.1 Inhomogeneous shape-conformal field: Rigid
necking energy

Figures 5a–c illustrate catenoid-conformal necking
configurations exhibiting distinct axial and radial forces near the
critical catenoid (Santiago and Monroy, 2023). At the edge
boundaries, applying the renormalized boundary condition from
Equation 4a yields �K0(�zB) � A2(�zB)S(�zB) � (κG/κ)sech2�zB.
Consequently, the spontaneous curvature conformal field, �K0,
symmetrically distributes along the renormalized, scale-invariant
catenoid as follows:

�K
symm
0 �z( ) � κG

κ

sech2 �zB( )
S �zB( ) S �z( ), (28)

with dimensionless axial coordinate �z ∈ [−�zB, �zB] ≠ �z†.
As shown in Figure 5d, the catenoid-conformal necking

solutions for the spontaneous curvature in Equation 28 split into
two different branches separated by the critical rigid catenoid (R†),
where spontaneous curvature abruptly changes the sign. In the
subcritical regime (�zB < �z†−), �K0 is negative, reaching a minimum
and spreading broadly across the furrow (curve A). Near the critical
point, �K0 attains its minimum negative value as S(�z†−) → 0 (curve
B). In the supercritical regime (�zB > �z†), �K0 remains positive but
decreases significantly for highly elongated catenoids (�zB ≫ �z†;
curve C). Likewise, the critical K0− singularity appears reflected
in the corresponding bending energy as follows:

Esymm
b ≡

κ

2
∫dA Ksymm

0( )2,
� 2π

κ

2
κ2G
κ2

sech4 �zB( )
S2 �zB( ) ∫�zB

−�zB
d�zcosh2 �z( )S2 �z( ),

� π
κ2G
κ

sech4 �zB( )
S2 �zB( ) f �zB( ),

(29)

where a catenoid-conformal symmetry holds

f �zB( ) ≡ �zB − �z3B
3
− 3
2
�zB cosh 2zB + 1

4
5 + 2�z2B( )sinh 2�zB. (30)

Note that Equation 30 appears by the integration in Equation 29.
Here, the necking work exhibits symmetry under axial revolution in
the catenoid background, with the form f(S,S′,S″) determined by
the shape factor S(�zB) and its higher derivatives S′ and S″. As
shown in Figure 5e, a critical singularity emerges in the bending
energy, Equation 29, at the tipping point �zB � �z†1 ≈ 1.2. However,
including the surface tension energy, Eσ � ∫ dAσ (see Equation 1),
which also behaves inhomogeneously under the spontaneous
curvature field (Equation 7), we obtain

E � Eb + Eσ ,

� κ

2
∫ dAK2

0 + ∫ dA σ

� −κG ∫ dA KG �zB( )
� κG
cosh4�zB

∫�zB

−�zB
d�zcosh2�z,

� 2π κG �zB + cosh�zB sinh�zB( )sech4�zB,

(31)

where we used the continuity condition from Equation 7, assuming
conserved Gaussian curvature on the catenoid surface (Equation
14). Consequently, the total necking energy, Equation 31, becomes
a smooth function, removing singularity (see Figure 5d). Note that
this expression for necking energy is generally valid for any
catenoid surface without topological changes.

3.5 Catenoid-conformal stress under
inhomogeneous spontaneous curvature

The inhomogeneity of the spontaneous curvature, (K0),
induces necking forces on the membrane, which are derived
from the stress tensor, Σ(K,K0, σ), associated with the total
energy, E(K,K0,KG, σ). The membrane-covariant energy
distribution is encoded in the stress tensor (Capovilla and
Guven, 2002; Guven, 2004; Fournier, 2007) decomposed
surface-covariant as follows:

Σa � Σabeb + Σan, (32)
with tangential and normal components, respectively, given
as follows:

Σab � κ K −K0( ) Kab − 1
2

K −K0( )gab[ ] − gab σ,

Σa � −κ∇a K −K0( ).
(33)

Equations 32 and Equations 33 in cylindrical coordinates, the
forces per unit length, along the azimuthal and radial direction, are
given by

F z ≡ Σa]a · k � − 1������
1 + ρ′2

√ F nρ′ + F ]( ), (34)

F ρ ≡ Σa]a · ρ � 1������
1 + ρ′2

√ F n − ρ′F ]( ). (35)

Here, the unit vector field ν � ]aea, as depicted in Figure 4. The
normal and lateral forces unit lenght that appear in Equations 34
and Equations 35 are are, respectively, given by
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F n � κ������
1 + ρ′2

√ − ρ″
1 + ρ′2( )3/2 + 1

ρ
������
1 + ρ′2

√ −K0
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠′, (36)

F ] � −σ − κK2
0

2
+ κ

2
ρ″2

1 + ρ′2( )3 −
1

ρ2 1 + ρ′2( )⎛⎝
+2K0

1

ρ
������
1 + ρ′2

√ ⎞⎟⎟⎟⎠.

(37)

In the case of minimal necking surfaces with a rigid geometry
(R-catenoids; K � 0), they simplify to

F n � − κ������
1 + ρ′2

√ K0′,

F ] � −σ − κK2
0

2
+ κK0

ρ
������
1 + ρ′2

√ ,

� κG KG B1( ) + κK0

ρ
������
1 + ρ′2

√ .

(38)

Here, the K0 − σ connection with conserved Gaussian curvature in
Equation 7 is applied at the “south” generating boundary (BS at �z1),
as specified in the second oulined, Equation 38. In the dimensionless
form, the corresponding catenoid-conformal results, Equations 36
and 37 are expressed in terms of the reduced axial coordinate (�z)
as follows:

�F n �z( ) � − κ

cosh�z
�K0′,

�F ] �z( ) � −κG sech4�z1 + κ �K0

cosh2�z
,

(39)

where �F i ≡ R2
0F n. By substituting Equations 39 in Equation 34, we

obtain the axial force Fz ≡ 2π�ρ �F z,

�Fz ≡
κG
κ

sech4�z1 − A2 �z1, �z2( ), (40)

where A2 is obtained using Equation 25, and the factor 2πκ has been
absorbed into �Fz ≡ Fz/(2πκ).

In the symmetric case (�z1 � �z2 � �zB), the axial force is expressed
in terms of the reduced boundary length (�zB) using the catenoid-
conformal expression as follows:

�F
symm
z ≡

κG
κ

sech4�zB − A2 �zB( ),
� κG

κ
sech4�zB 1 − 1

S �zB( )( ). (41)

The R-catenoid form factor, S(�zB), defines conformal tensional
forces based on the scale-invariant catenoid size (�zB). Hence, from
Equation 41 a force singularity emerges at the critical catenoid,
where �z†B ≈ 1.2 (see Figure 5) (Santiago and Monroy, 2023). In the
subcritical regime (�zB < �z†B), a positive axial force arises (�Fz > 0),
acting as an attractive constrictive force approaching the catenoid’s
edge borders (Figure 5). Conversely, in the supercritical regime
(�zB > �z†B), a negative elongational force (�Fz < 0) indicates repulsive
edge interactions leading to elongational forces in the neck (see 5).
For abscissional catenoids (if �zB ≫ �z†, then S → ∞), the axial force
vanishes, allowing the neck borders to separate freely. Unlike the
axial force, the radial force varies along the catenoid and is described
by the inhomogeneous expression as follows:

�Fρ �z( ) � −A1 + A2 �z( )sech�z + κG
κ

sech4�z1 sinh�z, (42)

where �z ∈ [�z2, �z1]. At the equatorial waist �z � 0, the radial force
evaluates to �Fρ(0) � −A1, thus making the “south pole” shape
constant −A1 (as given by Equation 24, the radial force at the
waist of the catenoid). For a symmetric catenoid (± �z1 � �zB),
A1 � 0, the radial force Equation 42, result in

�F
symm
ρ �z( ) � A2 �zB( ) �z sech�z + κG

κ
sech4�zB sinh�z,

� κG
κ

sech2 �zB( )
S �zB( ) �z sech�z + sech4�zB sinh�z( ). (43)

For �z ∈ [−�zB, �zB], the radial force at the waist is 0, �Fsymm
ρ (0) � 0, as

expected for a generalized asymmetric R-catenoid (Santiago and
Monroy, 2023). Specifically, the radial constriction force, Equation
43, at the lower boundary (south pole at �z � −�zB) is

�F
symm
ρ −�zB( ) � κG

κ

sech3 �zB( )
S �zB( ) �zB + sech4�zB sinh�zB( ). (44)

For rigid R-catenoids (ΦR), necking forces arise from geometric
curvature interactions, leading to elastic-like deformations under
shape-conformal stress �Σ ≡ (�Fz, �Fρ). The axial force �Fz (Equation
40) represents elastic interactions between the edge boundaries,
which are governed by the Gaussian curvature KG (the southern
boundary at �z1 and the northern boundary at �z2, with the waist at
z � 0). It arises from inhomogeneities in the catenoid’s conformal
spontaneous curvature ( �K0) and generates axial necking tension
(�Fz ≡ ∂σ/∂�z). For symmetric catenoids, �Fz is compressive and
intensifies near the critical catenoid. In the supercritical branch,
after overcoming the bending energy barrier, it becomes
elongational and diminishes to 0 under abscission (see Figure 5).
The radial force �Fρ (Equation 40) reflects constrictive necking
interactions driven by the gradient of spontaneous curvature
( �K0′). In the subcritical branch, it is outward (convex furrowing,
�K0′ > 0), while in the supercritical branch, it is inward (concave
tubulation, �K0′ < 0). This can also be seen in the radial force acting on
the edge, Equation 44. Mechanical inhomogeneities also generate
shape-conformal torque, expressed as �m (Santiago and Monroy,
2023); for symmetrical configurations, the neck torsional modulus is
derived as follows:

�m �z( ) � �K0 �z( ) − κG
κ
sech2�z,

� κG
κ

sech2 �zB( )
S �zB( ) S �z( ) − sech2�z( ). (45)

For �z ∈ [�z1, �z2], the shape-conformal local torque for a rigid
R-catenoid peaks at the waist and drops to 0 at the boundaries.
The singular point in Equation 45, shows the bifurcation in the
local torque.

3.6 Deformable necking configurations:
D-catenoids

In elasticity-driven membrane necking phenomena such as cell
division, endocytosis, and pore formation, necking occurs near
catenoidal surfaces of minimal energy (ΦR with �K + δ �K ≈ 0) but
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in excited deformable states under curvature-softening stresses (ΦD

for δ �K≥ 0). This section examines the first-order variational
problem concerning how spontaneous curvature is adaptively
distributed along a deformable membrane in a linearly perturbed
excited state, Φ ≈ ΦR + α(δ �K)ΦD, which slightly deviates from the
fundamental catenoid state to improve abscissional efficiency while
maintaining moderate energy consumption relative to the
fundamental state, i.e., at small α(δ �K) ≈ δ �K/ �K0. The deformable
neck, referred to as a D-catenoid, is parametrized in cylindrical
coordinates as follows (Durand, 1981):

�ρ �z( ) � �RN cosh�z. (46)
For simplicity, we consider the symmetric case, where the waist

necking radius is renormalized as �RN ≡ �R/cosh�zB, with the neck
length �h determined at the boundary edges �zB � �h/2. The
dimensionless overline indicates that �R ≡ R/R0 and �h � h/R0,
which is akin to the rigid R-catenoid. In Equation 46, the
necking domain �z ∈ [−�h/2, �h/2]. Notably, �ρ(± �zB) � �R, which
represents the renormalized border edge radius (see Figure 4). As
a result, Figure 6 shows the configurational landscape of necking
shapes (�RN − �h space), where deformable D-catenoids (ΦD) are
derived by re-normalizing rigid R-catenoids of minimal energy
(ΦR). The fundamental state ΦR− curve represents the smallest
zero-order solutions satisfying �RN � �R/cosh�z1 � 1, such that the
mean curvature is 0 ( �K � 0). The TP represents the critical R†−
catenoid of the maximum size ( �Amax ≈ 1.19 for �R† ≈ 1.81 and
�zB ≈ 1.2), which corresponds to the critical aspect ratio
�h
†
/�R† ≈ 1.33. D-catenoids emerge as renormalized configurations

with a variable aspect. Qualitatively, when the edge radius is fixed
(constant �R), the deformation-renormalized neck radius,
�ρ(0) � �RN(�R, �zB), decreases with �zB, resulting in negative mean

curvatures ( �K< 0) along horizontally departing scissional pathways
(Figure 6; below the R-catenoidal curve). Conversely, by fixing the
neck height (constant �h), the edge radius increases with �R, producing
positive mean curvatures ( �K> 0) along vertically departing
scissional pathways (Figure 6; above the R-catenoidal curve).
According to Equation 46, the D-catenoid’s curvatures are
expressed as inhomogeneous functions as follows:

�K
D( ) ≡ 2 �H D( ) � ±

1 − �R
2
N

�RN

sech�z

R3/2 �z( ), (47)

�KG
D( ) � − 1

R2 �z( ), (48)

note that both, Equations 47 and, 48, are governed by the structural
rigidity factor

R �z( ) ≡ 1 + �R
2
N sinh2�z, (49)

An even positive function defines neck rigidness based on the
catenoid’s shape, remaining flexible near the neck waist (R ≈ 1 for
�z≤ �RN) but being stiffened toward the edge boundaries (R → ∞ for
�z≫ �RN). This shape-conformal function defined in Equation 49,
R � 1 − �R2

N + �ρ2, captures deformational perturbations departing
from the rigid R-catenoid shape ( �K(R) � 0), with RR � 1. Thus, we
define the D-catenoid shapes as geometric shape perturbations
R(�z) � 1 ± δR, where the renormalized deformation is
δR � �ρ2 − �R2

N. Expanding deformability up to the first order, the
renormalized curvatures are approximated as follows:

�K
D( ) ≈ ±

1 − �R
2
N

�ρ
1 ∓ 3

2
δR( ) ≈ ± δ �K, (50)

�K D( )
G ≈ − 1 ± 2δR ≈ − 1 ± δ �KG. (51)

From Equations 50 and 51, we see that at the equatorial waist
(�z � 0, R0 � 1, and �ρ0 � �RN), yielding �K0 � (1 − �R2

N)/�RN and
�KG0 � −1. Therefore, the mean curvature for broad necking radii
(�RN > 1) appears distinctly negative ( �K � �KR − δ �K< 0), which is
quantitatively equivalent to �R> cosh�z1 (which corresponds to
constrictional furrows in the upper leftmost region of the
reference R-curve in Figure 6); however, for narrow necking radii
(�RN < 1), it becomes positive ( �K � �KR + δ �K> 0), corresponding to
�R< cosh�z1 (abscissional tubes in the lower rightmost side of the red
R-curve). The Gaussian curvature is consistently negative in the
saddle-splay region ( �KG ≈ − 1 ± δ �KG), vanishing in absolute
magnitude toward the softened boundaries ( �KG ≈ 0 at �z → ± �zB).

3.6.1 Deformable neck constriction pathway
We first analyze how neck deformability affects constriction in a

divisional furrow characterized by dominant convex curvature
(K< 0). Figure 7 shows numerical solutions for deformable
D-catenoids with constant length (�h � 2) and variable neck radii
from near-critical to highly constricted supercritical (1.4≤ �R≤ 6).
Initially, (�R≳ �R† ≈ 1.2); in other words, the deformable curvature’s
distribution results in a slightly positive mean curvature ( �K≳ 0),
which causes the neck to curve inward, forming a furrow. The
deformation ΦD− pathway (0.7≤ �R/�h≤ 3), intersecting the rigid ΦR

curve above the critical catenoid at (�R/�h)† ≈ 0.75, reveals a
constriction scenario dominated by edge-attractive forces
preventing abscission. This is marked by a spread distribution of

FIGURE 6
Configuration space of deformable D-catenoid necking
configurations renormalized from the rigid R-catenoids of minimal
energy. Some shape membranes from Equation (46) in terms of the
parameters �R and �h � 2�zB . On the R-catenoidal curve, �RN � 1 so
that �R � cosh�h/2 and the basal mean curvature is 0 (�KR � 0).
Deformable D-catenoids are characterized by curvature deformation
(δ �K ≠ 0), departing from the basal curvature (�KD � �KR + δ �K). The value
is negative below the R-catenoidal curve (�K <0 for δ �K <0), while it is
positive above the R-curve (�K >0 for δK >0). The maximal critical MC-
catenoid (�R†) identifies the catenoid of the maximum size, such that
~hmax � �h/�R ≈ 1.32 and ~Amax � �A/πR2 ≈ 1.19, marking the metastable TP
for abscission.
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Gaussian curvature (KG), evolving into strongly negative mean
curvature under extreme constriction ( �K≫ 0 at �R≫ �R†; Figure 6).
The inhomogeneous spontaneous curvature ( �K0) starts as
negative, transitions to positive with increasing constriction,
and exhibits a dip at the waist flanked by peaks, indicating
lateral resistance. The constrictional shaping torque becomes
strongly positive ( �m> 0), following the same distribution as

�K0. The bending energy density increases significantly,
eventually forming a bimodal distribution with a local
minimum at the equatorial waist; this reflects forced
constriction under varying mean curvatures. These analytical
results show that narrow constrictional furrows prevent
spontaneous abscission due to high curvature-induced stress,
sustained by elevated bending energy (Eb ≫ κ).

FIGURE 7
Constriction pathway leading to furrow relaxation. Several stages of constriction along a D-catenoid of constant length �h � 2. Panel (a) corresponds
to a D-catenoid on the left of the catenoidal curve in Figure 6, while (b-e) are on the right. At thewaist, the Gaussian curvature is normalized to �KG � −1. (a)
D-catenoid with border radius �R � 6. Gaussian curvature KG and mean curvature �H as a function of �z (first column); local torque �m and spontaneous
curvature �K0 as a function of �z (second column); density of the bending energy EB � 1/2(K − K0)2 as a function of �z (third column). The experimental
value for Gaussian rigidity, κG/κ � −0.7, was used.
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3.6.2 Shape-conformal deformation under
inhomogeneous spontaneous curvature

We exploit the fact that the axial force, Fz ≡ 2π�ρ �F z, remains
constant along the surface (Jülicher and Seifert, 1994). The term �F z

is identified from Equation 34, where the renormalized necking
forces are expressed in terms of the rigidity structure factor (R)
as follows:

�F ] �
�R
2
N cosh2�z

2R3 − sech2�z

2�R2
NR

+2�RN cosh�z K0 �z( )
2R3/2 − �K

2
0 �z( )
2

+ �σ,

(52)

�F n � − 1

R1/2

sech�z
�RN

− �RN cosh�z
R − �K0( )′, (53)

where the symbol ′ denotes the derivative with respect to �z. Thus,
shape-conformal forces renormalized into D-catenoids are given by

�Fz � − �RN sinh�z

R1/2
�RN sinh�z �F n + �F ]( ), (54)

�σ′ � δ �K − �K0( ) �K0′, (55)
where Equations 52 and 53 must be substituted in Equation 54. The
membrane inhomogeneties are now related by the Equation 55. The
boundary conditions generalized from Equation 4 to renormalize
deformable shape under variable mean curvature evaluated in
D-catenoids, i.e., �K ≈ δ �K(δR):

δ �K �zB( ) − �K0 �zB( ) � −κG
κ
KT �zB( ), (56a)

�σ �zB( ) + 1
2
δ �K �zB( ) − �K0 �zB( )( )2 � −κG

κ
KG �zB( ). (56b)

Equations 56a and 56b account for the inhomogeneous
spontaneous curvature field, �K0, the corresponding surface
tension, �σ, the shaping parameters �RN and �zB � �h/2, and the
constant axial force �Fz ≡ Fz/(2πκ). The no-torque boundary
condition (Equation 56a) determines the constant �Fz. To solve
the geometry-deformability system, we specify the parameters �R
and �zB and integrate the equations from the initial conditions at �zB.
Next, we numerically evaluate the deformation-conformal equations
along the two bifurcation pathways predicted at criticality (Santiago
and Monroy, 2023).

4 Discussion: necking pathways on
deformable D-catenoids

We examine two necking scenarios related to abscissional
processes in deformable D-catenoids characterized by dominant
concave curvature (K> 0). They are driven by inhomogeneous
spontaneous curvature from the critical point imposed by the
rigid geometric configuration (�R† ≈ 1.81 and �h

†
/�R† ≈ 1.33): A)

frustrated constrictional furrows under the terminal energy
barrier (supercritical); B) elongated tubes under quasi-
spontaneous abscissional relaxation (cf. near-critical neck
abscission). Both necking pathways, either supercritical or critical,
are considered under variable aspect radius (�RN), causing bending
torque under axial neck stretching (variable �h at increasing �Fz).
Deformable ΦD− configurations are determined by varying the

aspect ratio while keeping the boundary radius (�R)
constant (Figure 5).

4.1 Constrictional furrows: supercritical
abscissional frustration (�R � 5≫ �R

†)
Figure 8 presents numerical solutions for deformable

D-catenoids with a large neck radius, showcasing broad
constrictional furrows experiencing frustrated abscission. The
elongational pathway, 2.1≤ �R/�h≤ 0.96, which intersects the
catenoidal curve above the critical catenoid, (�R/�h)† ≈ 0.75
(Figure 6), reveals a supercritical scenario of frustrated abscission
driven by the high bending energy in the regime of extreme
constriction. Initially, the furrow displays a negative mean
curvature ( �K< 0), curving inward like a saddle. The Gaussian
curvature ( �KG) remains negative, normalized to unity at the
waist, indicating the saddle’s deepest point. The inhomogeneous
spontaneous curvature ( �K0) is positive, with a dip at the waist
flanked by local peaks, suggesting lateral resistance to deformation.
The bending energy density exhibits a bimodal distribution with a
local minimum at the equatorial waist, promoting constriction
under varying mean curvatures in D-catenoids. As the surface
approaches the R-catenoidal shape of minimal energy (ΦR),
where �K reaches 0, �K0 transitions from oscillating to nearly
vanishing, marking the critical symmetry where tension and
torsional balance at (�R/�h)† ≈ 0.75 (Santiago and Monroy, 2023).
Beyond this critical crossover, the neck transitions across the
R-catenoidal curve; then, �H flips positive, the surface bulges
outward, and �K0 flops negative, peaking at the waist as the
membrane neck elongates. The local torque ( �m) aligns this
curvature flip–flop process, reaching its maximum at the neck
waist, where constriction is greatest. Meanwhile, the bending
energy, which is negligible near the calm catenoidal region,
surges to a high barrier as the neck constricts further, reflecting
the high energy cost of elongational deformation beyond the critical
condition (�h> �h

†). The sharp increase in bending energy halts
further elongation, trapping the system in a frustrated state
unable to overcome the high energy barrier (Eb ≫ κ). This
dysfunctional interplay of balanced curvatures, torque, and
bending energy illustrates a membrane neck that is unable to
undergo abscissional constriction (Φfrust ≈ ΦR + αΦD),
highlighting the deformability limits in D-catenoidal
configurations (α≥ 0).

4.2 Elongational tubes: critical abscission
from the metastable tipping
point (�R � 1.9 ≈ �R

†)
The pathway to abscission under near-critical conditions reveals

a regulated interplay between curvatures and forces, driven by
proximity to the critical catenoid. The long elongational pathway,
1.3≤ �R/�h≤ 0.6, intersects the catenoidal curve near the critical
catenoid (�R/�h)† ≈ 0.75, corresponding to �h

† ≈ 2.4 (Figure 6) and
positioning the system close to critical conditions (Figure 6). This
critical elongational scenario creates a mechanical necking
environment of enhanced geometry sensitivity, where subtle
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changes in the shape’s aspect ratio trigger pronounced mechanical
responses under moderate bending energy. At small neck lengths
(�h ≈ 1.5), the surface remains subdued, with spontaneous curvature
( �K0) requiring minimal intensity under low bending energy
(Eb ≈ κ). Unlike the oscillatory behavior observed in the high-
constriction supercritical regime, here, �K0 forms a modest local
peak at the waist, reflecting a tentative balance between bending and

stretching forces. As the height increases and the shape morphs
closer to the critical catenoid, �K0 escalates sharply, reaching its
maximum intensity at the moment of criticality. The abscissional
bending energy density reaches its critical value, E†

b ≈ 6κ, which is
lower than the high energy barrier, preventing abscission under
supercritical conditions, E(super)

b ≈ 15κ≫E†
b (Figure 8). This critical

configuration (Figure 9C) embodies a transient yet decisive shape-

FIGURE 8
Supercritical frustrated constrictional pathway. Several stages along a D-catenoid with border radius �R � 5. The Panels (a-c) correspond to D-
catenoids on the left of the catenoidal curve in Figure 6, while (e) is on the right. At the Gaussian curvature �KG has been normalized such that KG � −1 at
the waist. Gaussian curvature and mean curvature H as a function of �z (first column); local torque �m and spontaneous curvature �K0 as a function of �z
(second column); density of the bending energy, EB � 1/2(K − K0)2, as a function of �z (third column). (a) D-catenoid of height �h � 2.4 as an initial
constrictive configuration. (d) Catenoidal shape that represents the reversibly bifurcating state with a constrictive torque concentrated in the catenoid
waist, such that the mean curvature nearly vanishes (�δH � 0) under weakly positive spontaneous curvature (�K0 ≈ 0), where the density of the bending
energy approaches 0 (EB ≈ 0). (e) Further constriction into more elongated configurations is blocked by a high bending energy barrier.
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energy equilibrium, where the surface achieves its most
energetically efficient form. Beyond this critical point, a sudden
transformation occurs. The spontaneous curvature undergoes a
sudden reversal, the tipping point for starting abscissional,
becoming negative with a pronounced global minimum at the
waist of the D-catenoid under facilitated bending energy
(Eabs ≈ κ). This inhomogeneous flipping of spontaneous
curvature marks the onset of the supercritical abscissional

regime (Φabs � ΦR − αΦD), where the surface elongates
spontaneously, and the forces driving abscission come to
dominate (α< 0). The bending energy density mirrors these
transitions, remaining subdued for configurations far from the
catenoid but surging intensely as the shape approaches criticality.
The energetic demands at this juncture underscore the system’s
struggle to transition from rigid curvature symmetry to deformable
curvature inhomogeneity, leading to functional abscission.

FIGURE 9
Near-critical elongational pathway leading to neck abscission. Several stages along a D-catenoid with border radius �R � 1.9. Panels (a, b) correspond
to D-catenoids on the left of the catenoidal curve in Figure 6, while (d), and (e) are on the right. At the waist, the Gaussian curvature has been normalized
such that KG � −1. (a) D-catenoid of height �h � 1.5. Gaussian curvature and mean curvature H as a function of �z (first column); local torque �m and
spontaneous curvature �K0 as a function of �z (second column); density of the bending energy as a function of �z (third column). (c) Catenoidal shape
such that the mean curvature �H � 0.
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4.3 Critical bifurcations at the metastable
tipping point: necking stress and torque

Figure 10a evidences the axial force �Fz encapsulating the critical
organized dynamics. For both �R � 5 and �R � 2, a singularity
emerges near the catenoidal region. In the supercritical regime
(�R � 5≫ �R†), the axial force initially exhibits strong repulsion
(�Fz ≪ 0), indicating neck extension. This spontaneously
extensional force relaxes as the system approaches the rigid
catenoid configuration of minimal energy (ΦR), but it intensifies
again near the geometric singularity (�h/�R � 1). Beyond the
singularity, the force becomes attractive (�Fz ≫ 0), peaking
sharply as it reflects the system’s effort to overcome bending
resistance to elongate beyond the unitary aspect ratio (Eb ≫ κ for
�h/�R> 1; Figure 8). Additionally, Figure 10b shows the neck-shaping
torque �m, which is initially constrictive well below the shape
singularity ( �m> 0 for �h/�R< 1) but becomes sharply elongational
above it ( �m< 0 for �h/�R> 1). Although spontaneous constrictive
behaviors also appear near criticality (�R � 2 ≈ �R†), they persist
longer as the system approaches the critical elongational state
(for �h/�R → 1.33), where the energy barrier decreases sharply
(Eb ≈ κ; Figure 9), facilitating access to the elongational
abscission region beyond a tipping point. In this critical regime,
�Fz diminishes, signaling the system’s relaxation into a stable post-
abscission configuration. In other words, the spontaneous process of
critical abscission captures the delicate choreography of curvatures,
forces (stress and torque), and bending energy near the critical

R†-catenoid. The regulated transition from constrictive attractive
symmetry to repulsive asymmetry unfolds with striking precision,
highlighting the mechanical and energetic pathways that govern the
delicately regulated process of abscission.

4.4 Biological implications

These findings regarding catenoidal necking under critical
bifurcations provide fundamental insights into membrane
remodeling processes relevant to various biological functions, e.g.,
cytokinesis, organelle fusion and fission, endocytosis, and vesicle
traffic. The identification of inhomogeneous curvature pathways,
with bifurcation points distributed along the membrane, highlights
the mechanical constraints that govern neck stability during
scissional shape transitions, such as ring constriction and
elongational tube abscission. By demonstrating how spontaneous
curvature accumulation at the catenoid waist drives mechanical
instability, we offer a unifying theoretical framework to describe how
membranes transition from metastable configurations to scission.
Our analytical approach extends previous models of membrane
elasticity by incorporating explicit necking criticality, providing a
deeper mechanistic understanding of membrane-mediated
biological processes.

4.5 Computational modeling

The inhomogeneous CH framework provides a new modeling
perspective for simulation-based studies of membrane deformation,
particularly in the context of necking, leading to spontaneous
scission. Atomistic and coarse-grained simulations have
extensively investigated how differential stress, spontaneous
curvature, and lipid asymmetry shape membrane behavior,
revealing key insights into bending moments and leaflet-specific
mechanical properties (Amiral and Markus, 2020; Pöyry and
Vattulainen, 2016). While these computational approaches
capture microscopic details of lipid organization and stress
distributions, our analytical model offers a mesoscopic, energy-
based perspective on critical bifurcations in deformable
catenoidal membranes. By identifying precise stability conditions
and spontaneous curvature inhomogeneities that drive membrane
remodeling, our results provide a theoretical foundation that can
help interpret and guide future simulations investigating membrane
scission mechanisms. A particularly relevant connection to
simulation studies lies in the role of spontaneous curvature
gradients and differential stress in stabilizing or destabilizing
membrane structures. Prior computational work has
demonstrated that differential stress can significantly impact
bilayer bending rigidity (Amiral and Markus, 2020), which is
analogous to how our model predicts the role of inhomogeneous
spontaneous curvature in shaping the stability of catenoidal necks.
This suggests that spontaneous curvature gradients could serve as a
fundamental geometric mechanism for controlled scission,
complementing computational studies that emphasize charged
lipid redistribution and bilayer asymmetry (Pöyry and
Vattulainen, 2016). By integrating these perspectives, our work
not only reinforces existing simulation findings but also offers

FIGURE 10
(a) Axial force, Fz , as a function of �h/�R. The border radius is fixed
to �R � 5 and �R � 2. A critical point close to the catenoidal region exists
in both cases. (b) Local torque �m on the waist of the neck as a function
of �h/�R. The solid line is shown as a visual guide.
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new directions for modeling membrane remodeling under
biologically relevant conditions, particularly in the computational
study of neck cytokinetic processes.

5 Conclusions

This paper presents a minimal model for understanding
necking deformations in biological membranes at the
mesoscopic scale using the Canham–Helfrich model with an
inhomogeneously distributed spontaneous curvature term, �K0.
The model couples the membrane shape equation with the
equation for �K0, predicting the elastic forces required for
membrane equilibrium and the distribution of spontaneous
curvature along the membrane. We revisit the catenoid case,
considering both rigid minimal energy configurations (K � 0)
and deformable perturbed states (δK ≠ 0), solving the
variational problem of curvature–elasticity. The shape-
conformal equilibrium reduces to the Helmholtz equation for
the inhomogeneous spontaneous curvature field K0, with the
Gaussian curvature, KG, acting as the supporting term that
injects energy from the neck boundaries. Alternatively, the
equilibrium equation can be derived from the translational
symmetry of the rigid catenoids (Santiago and Monroy, 2023).
Both approaches yield equivalent results, but our analysis
highlights the crucial role of geometry in adapting the optimal
pathway for functional abscission. We discuss the geometrically
critical catenoid, which separates two bifurcating branches of
mechanical behavior for �K0. Close to the critical catenoid, both
�K0 and the local torque, �m, are intense and decrease as one moves
away from it. This critical point corresponds to a singularity in the
bending energy. For abscissional catenoids with very thin, tube-
like waists (in the critical regime), �K0 approaches 0, emphasizing
the tight interplay betweenmembrane energy and curvature to lead
functional abscission.

In the second part, we explore deformed shapes near the
catenoid (D-catenoids), which are able to adapt optimal
abscissional pathways. By fixing the boundary radius (�R) and
varying the neck length (�h), we transition from shapes with
negative mean curvature ( �K< 0) to those with positive mean
curvature ( �K> 0), intersecting the catenoid of minimal energy
at a specific point (the bifurcating catenoidal curve). In the region
where �K< 0, �K0 is positive with a local minimum at the waist; it
weakens as it approaches the catenoid, becomes nearly 0 in the
catenoidal region before turning negative with increased intensity
at the waist of the D-catenoid. A similar pattern occurs with the
local torque, which does not become 0 near the catenoidal
bifurcating region. The bending energy is high in the �K< 0
region, decreases to 0 in the catenoidal region, and increases
again for �K> 0. If the boundary radius is fixed near the critical
catenoid, both �K0 and the local torque �m are intense and decrease
as one moves away from the critical catenoid. The bending energy
follows a similar bifurcating trend, leading to successful abscission
or frustrated constriction. Theoretically, solutions along the
catenoid curve belong to one of two branches separated by the
critical catenoid. However, even if the transition does not occur
along the catenoid curve—such as by fixing the boundary radius
and modifying the waist’s radius—a critical point still exists. Very

close to this point, the axial force required to maintain equilibrium
becomes extremely large.

Our theoretical predictions suggest that the inhomogeneous
Canham–Helfrich field, extended to include adaptive spontaneous
curvature, captures not a smooth transition but a sharply defined
“tipping point” for spontaneous necking abscission. This critical
singularity marks the sudden shift from actively forced
constriction to spontaneously functional abscission, representing
a self-organized criticality with the critical catenoid manifold as a
geometric attractor. In physiological membrane necking contexts
or in artificial systems, such as synthetic cells, lipid nanotubes, and
tethered vesicles, the deformation scales analyzed in our model
closely align with those observed, from the initial constrictions
through deformational elongations to terminal scission. The
stability constraints we establish based on spontaneous
curvature gradients and mechanical tension offer predictions
that can be tested in controlled experiments using micropipette
aspiration, membrane pulling with optical tweezers, and force
traction techniques.

6 Outlook

Future work could explore the detailed effects of
inhomogeneous Canham–Helfrich necking forces and the self-
organizing properties of the dynamical system. More
sophisticated models incorporating intrinsic membrane order
from compositional interactions and other sources of
mechanical inhomogeneity (e.g., bending rigidity) could
provide a deeper theoretical understanding of these self-
organizing critical transitions. The inhomogeneous CH
framework offers a powerful tool for designing biomimetic
membrane structures in synthetic biology, where curvature
responses can be precisely tuned by controlling lipid and
protein interactions. By modeling the energy costs and
mechanisms involved in membrane bending, our approach
may enable the engineering of synthetic cells (Vecchio
Domitilla et al., 2016). Through cost-benefit analysis
(Stachowiak et al., 2013), dynamic cellular processes can be
efficiently mimicked, providing valuable insights into the
design of responsive membrane systems for various
biotechnological applications. Our inhomogeneous CH model
may also provide insights into curvature-driven instabilities in
real cells, with potential applications in disease modeling, such as
mitochondrial membrane dysfunctions (Griffin et al., 2006) and
related neurodegenerative disorders (Itoh et al., 2013). Our
findings on catenoidal membrane necking through critical
bifurcations provide a predictive framework that may enhance
our understanding of abnormal mitosis, particularly in the
context of cytokinetic failure and its implications for disease
modeling (Musacchio and Salmon, 2007). Given that defective
cytokinesis can lead to aneuploidy and tumorigenesis, the
identification of critical membrane instabilities and
spontaneous scission pathways provides potential insights into
the physical constraints governing successful cell division. Our
analysis may contribute to understanding how membrane
remodeling errors influence de novo DNA damage formation
during mitotic failure, potentially informing new approaches for
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studying and mitigating cancer-related abnormalities in cell
division. Inhomogeneous CH models could further guide
experimental efforts to detect membrane-driving singularities,
shedding light not only on the normal functioning of natural cells
but also on the spontaneous emergence of complexity in synthetic
biological systems and active soft matter models. From a
biomedical perspective, understanding how membrane shape
criticality leads to necking transitions could aid in designing
synthetic membranes that replicate functional processes. This is
particularly relevant for the development of artificial vesicles for
drug delivery and biomimetic materials for controlled membrane
fusion and fission. Our findings on inhomogeneous necking may
assess therapeutic strategies targeting membrane remodeling in
diseases where endocytosis, cytokinesis, or other membrane
dynamics are dysregulated, such as cancer and viral infections.
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