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FOUNDATIONS OF PEDOMETRICS AND DIGITAL SOIL MAPPING

The discipline of pedometrics combines pedology (i.e., understanding of the physical, chemical,
and biological soil properties, patterns, and their genesis) and quantitative modeling of soils.
Pedometrics research has focused extensively to model soil properties and associated uncertainties
from field to large landscape scale (1, 2). Artificial intelligence (AI), specifically machine learning
(ML), and deep learning (DL) algorithms, have advanced a profound transformation of the
discipline with new challenges.

The conceptual frameworks underlying pedometrics and digital soil mapping (DSM) have
been rooted in factorial models that relate soils and factors that influence soil formation, so-
called soil-environmental covariates (3, 4). These soil factorial frameworks have moved from the
conceptual CLORPT soil formation model1 (5, 6), the spatially and temporally explicit SCORPAN
framework2 (7) toward the spatially and temporally explicit STEP-AWBH model frame3 (8–11).
The general approach of soil-factorial modeling using STEP-AWBH input variables to predict a
soil property or class is showcased in Figure 1. This latter mental frame accounts for soil-landscape
conditions (STEP factorsiii) and the dynamics of the atmosphere/climate (A), water/hydrosphere
(W), biosphere (B), as well as human activities (H) in the social, cultural, economic, and political
domains (e.g., land management, carbon credit markets, economic incentives and programs,
human resource capital). For example, the STEP-AWBH frame facilitates the incorporation of
short-term temporally varying AWBH factors such as short-duration climatic variables (e.g.,
rainfall-runoff events preceding soil observations) and also long-term climatic patterns and
variations (e.g., 40-year average annual precipitation and the 40-year amplitude of temperature
variation preceding soil observations) that have impacted pedogenesis in a study region. The STEP-
AWBH frame is anchored in system theory that views the totality of an ecosystem integrating
a multiplicity of domains. Thus, STEP-AWBH has moved factorial models closer to mechanistic
Earth simulation models through the incorporation of pedological, biogeochemical, socio-cultural,
economic, and political factors in the modeling process of soils.

1CLORPT soil formation model with CL, climate; O, organisms; R, relief; P, parent material; and T, time to form soils (5, 6).
2SCORPAN model with S, soil class or soil attribute; O, organism (fauna, flora, vegetation, or human activity); R, relief

(topography, landscape attributes); P, parent material, lithology; A, age or time factor, and N, space, spatial position (7).
3STEP-AWBH model with S: Ancillary soil properties (e.g., soil texture, soil spectral data), T, Topographic properties

(e.g., elevation, slope, curvature, compound topographic index); E, Ecological/geographic properties (e.g., physiographic

region, ecoregion); P, Parent material; geologic properties (e.g., geologic formation); A, Atmospheric properties (e.g.,

precipitation, temperature, solar radiation); W, Water properties (e.g., surface runoff, infiltration rate); B, Biotic properties

(e.g., vegetation/land cover, land use, land use change, spectral indices derived from remote sensing, organisms); H,

Human-induced forcings (e.g., contamination, greenhouse gas emissions) (8).
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FIGURE 1 | Overview soil-factorial modeling based on the STEP-AWBH model [after (8)].

In general, conceptual factorial soil models have been
implemented using purely spatial quantitative approaches (e.g.,
geostatistical methods), environmental correlation approaches
(e.g., fitting methods such as multivariate regression, ML,
and DL), and hybrid methods (e.g., regression kriging) (12–
14). Purely mechanistic space-time simulations of soil genesis
are still at the frontiers of pedometrics due to the following
challenges (1) labor and costs to collect soil data and up-to-date
soil-environmental datasets, (2) algorithms that appropriately
model the pedosphere across spatial and temporal scales, (3)
the subjectivity and idiosyncrasy of human’s impact onto
landscapes that varies widely due to needs, people’s values and
beliefs, and (4) insufficient incorporation of social, cultural,
economic, and political dimensions into the modeling process.
Although factorial soil models intended to provide a mechanistic
framework for soil formation they have been used predominantly
as functional fit models which formalize relationships between
soil-forming factors and the resulting soils.

KNOWLEDGE VS. DATA-DRIVEN
SOIL-FACTORIAL MODELING

Knowledge-Based Soil-Factorial Models
Factorial soil prediction models have dominated the field of
pedometrics to assess soil quality, security, health, fertility,
productivity, and more (15, 16). From a pedological perspective,

these kinds of models are one-directional and aim to predict soils
(S) across space: Soil-forming factors → S. Thus, such CLORPT
inspired soil prediction models are deterministic assuming
causality between soil-environmental covariates (cause) and
soils (effect). The underlying philosophical paradigms are (1)
constructivism focused on the integration of new knowledge
and understanding of soils that are part of the totality of the
environment, and (2) participatory epistemology which asserts
that meaning arises through the participation of humans with
the environment. For example, for a soil scientist meaning arises
through the study of soils, for a farmer meaning arises through
cropping and sustainability of soils, for an environmentalist
meaning arises through care and protection of soils. The
constructivist and participatory paradigms view humans and
all life forms as agents that participate in the formation and
use of soils (B and H → S); and vice versa, soils shape land
use, impact water flux, influence climatic conditions, etc. (S
→ SCORPAN; STEP-AWBH). Such knowledge-oriented view
acknowledges feedback loops between soil-forming factors and S
adopting an integrative system perspective that honors meaning,
connectivity, and understanding of soil-people relations (17).

Challenges remain in knowledge-based soil-factorial models
to populate SCORPAN and STEP-AWBH factors, especially
B and H factors. A vast amount of DSM applications have
populated the B factor and H factor using land cover, land use,
or spectral signatures derived from proximal sensors or remote
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sensors [e.g., (12, 14, 18–21)]. These soil prediction models fall
short to give voice to the diversity of anthropogenic impacts
onto soils and reduce the H factor to a quantifiable variable
in the environmental system; or worse, neglect to populate the
H factor. Such commodification of B and H factors ignores
how socio-cultural spheres (e.g., land use management, people’s
beliefs and valuation of nature and soils) and economic-political
domains (e.g., conservation programs, cash crop markets, and
environmental regulations) interact with soilscapes.

Data-Driven Soil Factorial Models
The adoption of AI-ML and AI-DL into soil science has pivoted
research goals from understanding of soil formation and patterns
toward the search for “the best” performing soil prediction
model. Literally, “running the machine” to identify the ideal
relations between SCORPAN or STEP-AWBH variables and a
target soil property (S). Recently, Padarian et al. (22) provided
a comprehensive review of digital soil models using DL and
Khaledian and Miller (23) reviewed ML methods for predictive
soil mapping.

Generally, prediction refers to the prediction of a future
state, although factorial soil models are unsuitable to forecast
or backcast because pedological understanding conveys that the
relations between soil-forming factors and S change over time
(24). Thus, factorial models have been predominantly used in
digital soil mapping to compute spatially explicit predictions
of soil properties. For example, geospatial soil predictions for
soil organic carbon, bulk density, cation exchange capacity,
pH, soil texture fractions, and depth to bedrock were made
by Hengl et al. (25) using Random Forest, Gradient Boosting,
and neural networks. Padarian et al. (22) used Convolutional
Neural Networks and Cubist to predict soil layers and soil organic
carbon, while (26) used various ML algorithms (among them
Random Forest, Bagged Regression Tree, Boosted Regression
Tree, Support Vector Machine) to predict soil total carbon and
multiple carbon fractions.

The soil factorial modeling approach is not suitable to
project soil properties into the future because this would involve
extrapolation of soil predications that are associated with high
uncertainty. Thus, there are limitations of factorial soil modeling
to address Grande challenge such as the assessment of future
soil and food security. Instead, state-of-the-art factorial models
are now widely used in the pedometrics community to compute
relations between soil-forming factors and S and apply these
machine-fitting models to unsampled locations within a given
study region. For example, Minasny et al. (27), Ross et al. (28),
Wadoux et al. (29), Xiong et al. (11), and Yang et al. (30)
computed soil organic carbon using various AI machine-fitting
algorithms with Random Forest being one of the most popular
method in soil science. AI-ML and AI-DL technology is poised
to optimize through brute fitting of inputs and outputs (31).

The implications of AI-based factorial soil modeling are
striking. AI models aim to compute the “perfect” connections
between soil-forming factors and S to describe the soil-
ecosystem adopting a purely empirical data-driven perspective.
Computational advancements have fostered to apply AI-DL
algorithms, which refers to ML using multiple layers, nodes,

and weighting factors of adjustable computing elements (32).
Artificial neural networks, such as Convolutional Neural
Networks (CNN), adopt the DL paradigm to fit inputs (soil-
forming factors) and output (a specific soil property or class)
accounting for the complexity of real-world soil-ecosystems (e.g.,
CNN-DSM application by 28). According to Liao (33), “deep
learning announces its prediction without explaining (in human
terms) how it arrived at that prediction” (p. 7). AI-DL soil models
idealize the R2 of 1.0 and are able to minimize error metrics
like no other statistical or geostatistical method. AI-DL models
use nodes or layers of nodes to represent pedological knowledge
in abstract form that lacks transparency for soil scientists, land
managers, and the general public.

Importantly, this movement from knowledge-based toward
data-driven AI-based soil-factorial modeling is a profound
paradigm shift from earlier research focused on understanding
of the humans-soil-environmental domain toward soils
mapped into machine code. AI-based soil modeling relaxes
deterministic-mechanistic assumptions of causality between
soil-environmental covariates (cause) and soils (effect); instead,
associations between covariates and soil(s) are optimized to
identify the best performing model(s). The latter associations
may be spurious, lack transparency, human meaning-making
and trust in the model, and have vulnerable sensibility to so-
called one pixel-attacks (33). By changing one pixel in an image,
Harvard researchers were able to get a DL algorithm to classify an
image of a car as a dog (33). How are pixel-attacks impacting soil
maps and models? What are the implications of adding/changing
one soil observation or a covariate (e.g., one pixel in a remote
sensing image) in an AI-DL soil prediction model?

What Is “the Perfect” Soil Model of the
Future?
The pivotal shift from pedological knowledge-discovery of
soil-landscape patterns and genesis toward machine optimized
soil models has created enthusiasm, critique, and controversy
in the pedometrics research community. Wadoux et al. (34)
demonstrated that ML can find relevant soil patterns even with
meaningless pseudo-variables, such as digital portrait photos of
pedometricians, that successfully predicted soil organic carbon
using the machine learning algorithm Random Forest.

The prevalent trends in SCORPAN and STEP-AWBH
facilitated modeling of soils entail increased usage of (1) latent
variable and AI-ML methods, specifically the popular Random
Forest approach [e.g., (35, 36)], (2) hidden nodes, layers, and
weighting factors in AI-DL methods [e.g., (29, 37)], and (3)
applications of automated mapping techniques at global scale
(25, 38) to identify the best fit between soil, soil-environmental
covariates and spectral data, minimize uncertainty and bias, and
optimize the accuracy and precision of soil predictions. Such
machine-focused research applications reveal “the perfect” soil
model in terms of error and uncertainty metrics. However, these
kind of machine-generated soil models are rooted in abstract
soil-environmental relations of high-orders of dimensionality
and complex non-linear interactions among input and output
variables. Challenges remain to enhance the transparency and
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meaning of AI soil models. In AI, black-box (AI-DL) or gray-
box (AI-ML) conceptual frameworks are adopted, the former
AI-DL limiting insights into the soil-environmental relations
that govern the soil prediction model. In contrast, “the perfect”
soil models using non-AI approaches aim to maximize soil
knowledge discovery (e.g., assessing soil carbon or identifying
which STEP-AWBH variable relates most strongly with a specific
S) which is meaningful to people and researchers alike.

The challenge for future soil-factorial model applications is
to account for—prior selection of relevant soil-environmental
covariates (i.e., SCORPAN or STEP-AWBH factors) based on
pedological knowledge as well as rigorous posterior soil model
interpretation. Xiong et al. (11) provided a holistic soil-landscape
modeling framework that combines knowledge and data-driven
AI approaches to assess soil organic carbon in Florida. Xiong
et al.’s strategic approach is able to discern (1) all-relevant
sets (i.e., strongly and weakly relevant STEP-AWBH variables
to assess S which has value to understand the mechanisms
underlying the formation of S), (2) minimal-optimal set (i.e., to
identify a parsimonious and transparent model for end-users),

and (3) irrelevant variables (e.g., pseudo-variables that are not
meaningful to explain pedological processes). Challenges remain
to harmonize and reconcile knowledge-based and data-driven
AI soil modeling approaches to account for the diversity of soil-
landscapes.
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