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Soil carbon (C) is a major driver of soil health, yet little is known regarding how sensitive
measures of soil C shift temporally within a single growing season in response to short-
term weather perturbations. Our study aimed to i) Examine how long-term management
impacts soil C cycling and stability across a management intensity and plant biodiversity
gradient and ii) Assess how sensitive soil health indicators change temporally over the
course of a single growing season in response to recent weather patterns. Here we
quantify a variety of sensitive soil C measures at four time points across the 2021 growing
season at the W.K. Kellogg Biological Station’s Long Term Ecological Research Trial
(LTER) located in southwest Michigan, USA. The eight systems sampled included four
annual soybean (Glycine max) systems that ranged in management intensity
(conventional, no-till, reduced input, and biologically-based), two perennial biofuel
cropping systems (switchgrass (Panicum virgatum) and hybrid poplars (Populus nigra x
P.maximowiczii)), and two unmanaged systems (early successional system and a mown
but never tilled grassland). We found that unmanaged systems with increased perenniality
enhanced mineralizable C (Min C) and permanganate oxidizable C (POXC) values.
Additionally, all soil health indicators were found to be sensitive to changes in short-
term weather perturbations over the course of the growing season. The implications of this
study are threefold. First, this study assess indicators of labile and stable C pools over the
course of the growing season and reflects the stability of soil C in different systems.
Second, POXC, Min C, and ß-glucosidase (GLU) activity are sensitive soil health indicators
that fluctuate temporally, which means that these soil health indicators could help
elucidate the impact that weather patterns have on soil C dynamics. Lastly, for effective
monitoring of soil C, sampling time and frequency should be considered for a
comprehensive understanding of soil C cycling within a system.
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INTRODUCTION

A primary motivation for enhanced soil carbon (C) is improved
soil health, which is intimately connected with short-term
outcomes like increased crop productivity and long-term
outcomes such as soil fertility and C sequestration (1, 2). Soil
health is the ability of the soil to provide essential services such as
plant and animal health, water and air quality, and plant
productivity (3). Soil C is the most important underlying
property of soil health because it drives biological, chemical,
and physical processes in the soil. For instance, greater soil C
pools are associated with a greater abundance of bacteria and
fungi (4–6). Soil C is also associated with aggregate stability and
improved soil structure, which allows soils to retain more
nutrients (7). Soil C accumulation is also vital for climate
mitigation (8, 9). In order to reach short and long-term soil
health outcomes, assessing the trajectory of soil C in a given
system is essential.

Soil C is a large and dynamic pool with several moving
components. To better understand the mechanisms that drive
soil C decay and accumulation, it’s imperative to separate out
pools that are functionally different from one another. The soil
health framework is a conceptual model that is based on the
collection of an array of biological, chemical, and physical soil
health indicators that are then used to inform management
decisions (10). The soil health framework provides several soil
health indicators that reflect functionally different pools of C. For
instance, mineralizable C (Min C) strongly reflects a more labile
or active pool of C and is critical for nutrient mineralization and
crop productivity (1, 11, 12). Additionally, ß-glucosidase (GLU)
enzymes breaks down cellulose into glucose which can then be
utilized by the microbial community (13). Therefore, GLU
activity can indicate the rate of decay of organic material and
the available C for microbial use. In contrast, permanganate
oxidizable C (POXC) reflects a more processed pool of C and is
more closely correlated with the total soil organic C pool (12, 14).
Several studies have demonstrated that Min C and POXC reflect
different pools of C (11, 15, 16). For instance, (17) reports that
Min C is able to detect larger differences between perennial
polycultures and annual row crops relative to POXC. This
demonstrates that Min C may serve as an indicator of a more
labile pool of C that represents C mineralization processes,
whereas POXC may reflect a slower pool of C that takes a
longer period of time to respond to management and reflects C
stabilization processes. Residuals from a linear regression model
of Min C and POXC can be used to visualize if a system trends
more so towards C stabilization processes (POXC) or C
mineralization processes (Min C) (11, 18).

Soil health indictors that reflect functionally different pools
have been measured across a wide range of managed and
unmanaged systems (15, 19, 20), yet we have a limited
understanding of how Min C, POXC, and GLU respond to
short-term changes in temperature and precipitation at the field
scale. Previous laboratory-based experiments have widely
demonstrated that labile and protected pools of C respond
differently to changes in moisture and temperature (21–23).
For instance, Cates etal. (23) found that low molecular weight
Frontiers in Soil Science | www.frontiersin.org 2
C storage was impacted by temperature and moisture, while
more protected pools of C were solely altered by moisture.
Similarly, Benbi and Khosa (21) found that labile C pools were
more sensitive to temperature relative to mineral associated
organic matter. Currently, little is known regarding how these
soil C pools function in relation to precipitation and temperature
within a field setting, as most experiments have been conducted
within a laboratory setting. Exploring how POXC, Min C, and
GLU respond to seasonal temperature and precipitation changes,
could provide further insight into their functionality and ability
to reflect soil C stability.

Seasonal trends in POXC, Min C, and GLU have been
reported in row-crop agriculture and generally demonstrate
that these indicators are heavily influenced by plant growth
and nutrient demand (1). For instance, Martin etal. (24)
demonstrated that fine root production and decay in corn-
based systems influence labile pools of C and N more so than
processed pools of C. However, soil C cycling under contrasting
management juxtaposed with intense climatic conditions is
largely unknown at the field scale. Numerous studies have
demonstrated that increases in soil organic matter contribute
to yield stability in drought conditions (25–28). Additionally,
Acosta-Martıńez etal. (29) reported increased enzyme activity in
agricultural soil when under drought conditions. However, many
of the studies that report impacts of drought on soil C have been
conducted in laboratory conditions or simulated within the field.
Thus, more information is needed regarding how drought may
naturally impact soil C pools and which mechanisms and
kinetics lead to this stability in soil C over short and long-term
time frames. Can soil health indicators help to uncover within
season soil C dynamics that contribute to ecosystem resilience
and long-term soil C accumulation?

Here we explore soil C dynamics over the course of a single
growing season in systems that have undergone long-term
management. The aim of this study is to i) Examine how long-
term management impacts soil C cycling and stability across a
management intensity and plant biodiversity gradient and ii)
Assess how sensitive soil health indicators of soil C change
temporally over the course of a single growing season in
response to recent weather patterns. We hypothesize that
systems with high diversity and reduced management intensity
will have greater soil C stability over the course of a single
growing season and exhibit greater C accumulation relative to
systems dominated by annual row crops. Second, we hypothesize
that soil health indicators reflecting labile C pools (i.e. Min C and
GLU) will be more responsive to within season weather patterns
relative to POXC, which will remain more stable throughout the
growing season because it reflects a more processed pool of C.
METHODS

Site Description
This study was conducted at the W.K. Kellogg Biological
Station’s (KBS) Long-term Ecological Research site (LTER),
located at 85° 24’W, 42° 24’ N. The LTER lies on the
July 2022 | Volume 2 | Article 917885
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Kalamzoo and Oshtemo soil series. Both soil types are a mixed
mesic Typic Hapludalf. The main difference between the two soil
series is the thickness of the B/Bt horizon. Daily precipitation and
temperature values were obtained from the KBS National
Weather Service Station, located at 85° 23’W, 42° 24’ N at an
elevation of 277.4 meters. The average annual temperature for
months January-December is 9.74°C and the average annual
precipitation for months January-December is 1005 mm a
year (30).

Experimental Design
The KBS LTER Main Cropping System Experiment (MCSE)
consists of four annual cropping systems, two perennial systems,
and two unmanaged systems. The four annual cropping systems
were established in 1989 and range in management, including a
conventional, no-till, reduced-input, and biologically based
Frontiers in Soil Science | www.frontiersin.org 3
system. The two perennial systems are switchgrass (Pancium
virgatum) and poplar (Populus nigra x P.maximowiczii) which
were established and sampled in 1989. The two unmanaged
communities are an early successional community, which was
abandoned from row-crop agriculture in 1989 and a mown
grassland (never tilled) which was established on a cleared
woodlot in 1959. The four annual cropping systems, two
perennial systems, and the early successional community
comprise the LTER Main Cropping System Experiment
(MCSE). Systems are situated in a randomized complete block
design, with 1 ha (90 x 110 m) plots that are each replicated in six
blocks. The mown grassland is located 200 m to the south of the
LTER main site with 15 x 30 m plots, replicated four times.

Management varied within each system and detailed
information on timing can be found in Figure 1. The four
annual systems move through a corn (Zea mays)-soybean
B
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A

FIGURE 1 | Management events over the course of the 2021 growing season across eight systems at the KBS LTER.
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(Glycine max)-wheat (Triticum aestivum) rotation. In 2021, the
systems were in the soybean phase of the rotation and were
planted with Roundup Ready soybeans at 67 kg ha-1. The
conventional system was chisel plowed and received standard
chemical inputs. The no-till system received the same standard
chemical inputs as the conventional system but has been under
permanent no-till conditions since trial establishment. In 2021,
conventional systems were fertilized with 228 kg ha-1 of 28%
UAN, 4 kg ha-1 of ammonium sulfate, 135 kg ha-1 of 0-46-0
phosphorus, and 168 kg ha-1 of 0-0-60 potassium. No-till
systems were fertilized with 3.5 kg ha-1 of ammonium sulfate,
112.5 kg ha-1 of 0-46-0 phosphorus, and 168 kg ha-1 of
potassium. Conventional system had 3.51 kg ha-1 of Warrant
and 4.5 kg ha-1 of Roundup Power Max (48% glyphosate)
applied. No-till systems had 7.5 kg ha-1 of Roundup Power
Max (48% glyphosate), 4.68 kg ha-1 of 2,4-D Enlist One, and
1.17 kg ha-1 of Fierce MTZ applied. The reduced input systems
are managed to reduce synthetic chemical inputs through the
use of a cover crop and nitrogen fertilizer reductions.
Specifically, the reduced input system receives 33% of the
nitrogen fertilizer and chemical inputs that the conventional
system and no-till systems receive. In 2021, the reduced in-put
system was fertilized with 4 kg ha-1 of ammonium sulfate,
113 kg ha-1 of 0-46-0 phosphorus, and 147 kg ha-1 of 0-0-60
potassium. The reduced input system also had 2.25 kg ha-1 of
Roundup Power Max (48% glyphosate). Additionally, the
reduced input system is chisel plowed and has a winter cover
crop of red clover (Trifolium pratense) or annual ryegrass
(Lolium multiflorum) that is plowed under prior to planting
during corn and soy years. The crop rotation cycle in the
reduced input system is a corn-ryegrass-soybean-winter
wheat-red clover rotation. The biologically based system is
managed without the application of synthetic chemical
inputs, this system is chisel plowed, under mechanical weed
control, and has a corn-ryegrass-soybean-winter wheat-red
clover rotation. Additionally, there is no manure or compost
applied. For conventional, no-till, reduced input, and
biologically based systems the average 2021 soybean yield was
4226, 4180, 4094, and 2005 kg ha-1.

The switchgrass system is in a 5-year rotation with winter
wheat as a 1-year break crop. This perennial system was
planted with alfalfa from 1989-2019 and has since been
moved to a switchgrass perennial system starting in 2019.
Switchgrass was planted at 10 kg ha-1. In 2021, switchgrass was
in its third year. Switchgrass was fertilized with 4 kg ha-1 28%
UAN. The average aboveground biomass was 7367 kg ha-1 in
2021. The poplar system was established in 1989 and is planted
with hybrid poplar trees that are harvested on a 10-year harvest
cycle. The poplar system was last harvested in 2018, and a new
crop was planted in 2019. Poplar yields in were 46543 kg ha-
1in 2018.

The early successional community was historically tilled and
abandoned in 1988, this system is unmanaged however the
system is burned every spring to control for woody species.
The mown grassland is predominantly unmanaged except for
annual fall mowing to control for woody species.
Frontiers in Soil Science | www.frontiersin.org 4
Field Sampling
Soil sampling occurred four times over the course of the growing
season within each system (Figure 1). Sampling time is defined
as the point of the growing season in which samples are collected
(i.e., May, June July, or August). System is defined as the
management system that samples were taken from (i.e.,
Conventional soy, no-till soy, reduced input soy, biologically
based soy, poplar, switchgrass, early successional, or mid-
successional). During each sampling, soil cores were taken
using a 1.9 cm diameter push probe down to a 10 cm depth.
Soil cores were taken from five randomly chosen sampling
stations within each system plot. Five soil cores were taken at
each station. Ultimately, 25 cores were taken per each 1 ha plot
and composited. Soils were then immediately processed for
gravimetric soil moisture content (Table S1; 31).

Soil Health Indicators
Permanganate oxidizable C reflects a more processed C pool and
was analyzed using methods adapted by Weil etal. (32) and
Culman etal. (14). Soils were dried at 40°C, ground, and sieved to
2 mm prior to analysis. Potassium permanganate (0.02 M)
(KMnO4) was added to soil (2.5 g), shaken (2 min), and then
settled (10 min). Supernatant was removed and diluted to a 99:1
deionized water to supernatant ratio. Absorbance was measured
in 96-well plate reader spectrophotometer at 550 nm.

Mineralizable C represents the soil C pool that is available to
the microbial community within the soil. Mineralizable C was
measured using methods adapted from Franzluebbers etal. (33)
and Hurisso etal. (34). Prior to analysis soil was dried at 40°C,
ground, and sieved to 2 mm. Soil (10 g) was rewetted to 50%
water-holding capacity with deionized water and incubated
(25°C) for 24 hrs. To measure the concentration of carbon
dioxide headspace air (1 mL) was injected into a LI-820
infrared gas analyzer (LI-COR, Biosciences, Lincoln, NE).

The enzyme activity, ß-glucosidase (GLU), was determined
using the fluorescence microplate enzyme assay (35). Soil was
prepared by blending 2.75 g of soil and 91 mL of 50 mM acetate
buffer. Soil was then poured into a glass bowl and placed on a stir
plate where the soil was mixed on low. Standards of 0, 0.0005,
0.001, 0.002, 0.005, 0.01, and 0.02 µmols were prepared for each
sample by combining 4-methylumbelliferone (MUB) (200 µL)
and prepared soil (800 µL) in a well of 96-well plate. Soil (800 µL)
and 4-MUB- ß-D-glucopyranoside substrate (200 µL) was
combined in a separate 96-well plate. Standard and GLU
enzyme assay plates were sealed, inverted ten times, and
incubated at 35°C for 1.5 hrs. Plates were centrifuged for
2 min at 1500 rpm and 250 µL of solution from each well was
pipetted into a black 96-well plate. Sodium hydroxide (0.5 M
NaOH) was then added to each sample. Fluorescence was
measured on an H1 synergy Biotek microplate reader at an
excitation wavelength of 365 and emission wavelength of 450.

Statistical Analysis
An analysis of variance (ANOVA) was performed using the lme
function from the {lem4} package (36) in R version 4.1.0, where
system, sampling time, and the interaction between time and
July 2022 | Volume 2 | Article 917885
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system were fixed effects and replicate was a random effect.
Sampling time point was treated as a repeated measure to control
for the variability of measurement within each timepoint.
Normality of the data was determined via studentized residual
plots with {MASS} in R (37). Mineralizable C was log
transformed to obtain greater normality of the data. Tukey’s
pairwise comparison means separation was obtained through the
emmeans function using the {multcomp} package in R (38).
Significant differences were determined at a=0.05.

To assess soil C stability in this study, we used a linear
regression model adapted from Hurisso etal. (11). This model
utilized Min C as a predictor variable and POXC as a response
variable. Residuals were then extracted from the model output.
Positive residuals depict systems trending towards POXC or C
stabilization, whereas negative residuals indicate systems
trending towards Min C or mineralization processes.

Multiple linear regressions were performed between
independent variables of average temperature and precipitation
and dependent variables of POXC, Min C, and GLU. For all
models, systems were combined to solely test for effects of
weather. For each sampling timepoint the average monthly
Frontiers in Soil Science | www.frontiersin.org 5
precipitation and temperature was used as the independent
variable. Multiple linear regressions were executed using the lm
function in R (Supplemental Materials). Graphing was
conducted using {ggplot2} in R (39).
RESULTS

Weather
Daily average temperature and daily precipitation measurement
readings were obtained from the KBS LTER weather station
located at 42.408537, -85.373637. The 2021 cumulative
precipitation and the 32-year average was calculated for,
March 1-August 30, to encapsulate the sampling time points
and key months during the growing season. Cumulative growing
degree days (GDD) were calculated from the average daily
temperature using a base of 10°C (40). The growing season in
2021 was characterized as abnormal compared to the 32-year
average. From April through the end of June, cumulative
precipitation was 57% lower in 2021 than the 32-year average
(Figure 2A). Large rain events in July caused precipitation to be
B

A

FIGURE 2 | (A) Cumulative precipitation from March-August in 2021 (dashed) and the 32-year average (green). (B) Cumulative growing degree days from March-
August in 2021 (dashed) and the 32-year average (green).
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8% greater from July to August in 2021 compared to the 32-year
average (Figure 2A). Additionally, throughout the entire
growing season average temperatures were 22% higher than
the 32-year average, which resulted in a greater number of
GDD over the course of the growing season (Figure 2B).

Mineralizable Carbon
System significantly affected Min C (p<0.05; Table 1), where
differences in management intensity and perenniality had a
strong influence. When averaged over the growing season Min
C was 68% greater in unmanaged systems that consisted of a
mown grassland and early successional community, compared to
all other systems (Table S2; Figure 3). Additionally, perennial
systems had 41% greater mineralizable C than conventional and
no-till systems (Table S2; Figure 3). Biologically-based and
reduced input soy systems were found to have comparable
levels of Min C to those of perennial systems (Table
S2; Figure 3).

Mineralizable C significantly changed over the course of a
single growing season (p<0.05; Table 1). Overall, unmanaged
and perennial systems appeared to experience more drastic
shifts in Min C levels compared to annual systems (Figure 3).
From May to June, Min C decreased two-fold, within the
perennial and unmanaged systems (Figure 3). Likewise, Min
C decreased in most annual systems between May and June but
to a lesser extent (Figure3). After the sharp decline in Min C
that occurred in June, measurements proceeded to increase in
July and August within all systems except the conventional
system (Figure 3).

b-Glucosidase
Sampling time point but not system was found to have a
significant effect on GLU activity (p<0.05; Table 1; Table S2).
Generally, GLU activity decreased two-fold over the growing
season in unmanaged systems, whereas GLU activity in
perennial and annual systems still decreased but to a lesser
extent (Figure 4).

Permanganate Oxidizable Carbon
System had a significant effect on POXC (p<0.05; Table 1).
When averaged across timepoint the unmanaged systems had
37% greater POXC than compared to all other systems, when
averaged (Table S2). When averaged across timepoint, both
perennial systems had 31% greater POXC compared to no-till
and conventional systems, when averaged (Table S2). The
reduced input and biologically based systems had similar levels
of POXC compared to the perennial systems but significantly
greater POXC levels relative to the conventional system.
Frontiers in Soil Science | www.frontiersin.org 6
Time had a significant effect on POXC (p<0.05; Table 1), with
POXC levels fluctuating over the course of a single growing
season (Figure 5). Permanganate oxidizable C decreased by two-
fold by July within unmanaged, perennial, and reduced input
systems (Figure 5). In addition, POXC levels also decreased over
the growing season in biologically, no-till, and conventional
systems but to a lesser degree (Figure 5).

Residuals
In general, systems with greater perenniality and reduced
management intensity were found to trend towards C storage,
whereas the annual dominated systems trended towards C
mineralization (Figure 6). When averaged over the growing
season mown grasslands, switchgrass, poplar, and biologically
based systems had positive residuals that indicated C storage
(Table S2). In contrast, the conventional, no-till, early
successional, and reduced input systems had negative residuals
indicating that these systems trended towards C mineralization.
However, averages over the growing season may have been
biased given the broad range of fluctuation of the residuals
within a single growing season.

Additionally, the extent to which systems mineralized versus
stabilized C, shifted over the course of the growing season. All
unmanaged and perennial systems were found to trend towards
C stabilization in May and June (Figure 6). In the second half of
the growing season however, both perennial systems as well as
the early successional system trended towards C mineralization
(Figure 6). The mown grassland system was the only system that
trended towards C stabilization over the entire growing season
(Figure 6). The annual cropping systems all trended towards C
stabilization in May, except for the conventional system
(Figure 6). However, over the rest of the growing season, most
annual systems trended towards C mineralization (Fig 6).

Effect of Climate on Carbon Cycling
A series of multiple linear regressions were conducted to investigate
the effect that precipitation and temperature had on the various soil
health indicators. Through taking the monthly averages of
precipitation and temperature that corresponded to each
sampling period we were able to account for changes in
precipitation and temperature over the growing season. The Min
C model found that precipitation had a significant effect on Min C,
while temperature did not. In general, we found that increased
precipitation decreased Min C (ß= -0.12; Table 2). The GLUmodel
indicated that both temperature and precipitation had a significant
effect on GLU activity (Table 2). Specifically, increased temperature
was found to decrease GLU activity (ß= -1.39) and increased
precipitation was found to increase GLU activity (ß=0.27).
TABLE 1 | F-statistics and levels of significance of system, time, and the system x time interaction for mineralizable carbon (mg kg-1), ß-Glucosidase (umol g-1 h-1),
permanganate oxidizable carbon (POXC), and residuals. ****p<0.00001 ***p<0.0001 **p<0.001 *p<0.05.

Factor Mineralizable C ß-Glucosidase POXC Residuals

System 28.9**** 0.72 38.6631**** 7.05****
Time 15.9*** 5.69** 20.1349*** 17.19***
System x Time 12.51**** 1.04 3.2767**** 1.77**
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FIGURE 3 | Mineralizable carbon (mg kg-1) from May-August within eight systems faceted by system type (annual crop, perennial, and unmanaged). Color
represents a different system. Standard error bars represent one standard error of the mean (n=6).
FIGURE 4 | ß-glucosidase (nmol g-1 soil h-1) from May-August within eight systems faceted by system type (annual crop, perennial, and unmanaged). Color
represents a different system. Standard error bars represent one standard error of the mean (n=6).
Frontiers in Soil Science | www.frontiersin.org July 2022 | Volume 2 | Article 9178857
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Moreover, temperature appeared to have a greater effect on GLU
activity. The POXC model found that both temperature (ß=0.27)
and precipitation (ß=-22.17) had a significant effect on POXC,
where precipitation had a greater effect on POXC relative to
temperature (Table 2).
DISCUSSION

Reduced Management Intensity Fosters C
Stabilization Across Systems
Our results indicate that systems with greater perenniality and
diversity can enhance C cycling and C stability. Overall,
unmanaged systems had consistently greater Min C and
POXC, which supported our first hypothesis that systems
under reduced management intensity would have greater C
stability and cycling. Most noteworthy, is that the monoculture
perennial systems had similar Min C and POXC values to those
of the annual row crop systems. These results are like others who
have reported that it is plant perennial diversity that may cause
greater accumulation of labile and stabile C pools rather than just
perenniality (41–43). It is also important to note that the
aboveground biomass of all annual and perennial switchgrass
systems were harvested, this removal of biomass may have also
contributed to reduced soil C pools in these systems as less
organic matter was available for assimilation into C pools. The
addition of nitrogen (N) fertilizer to the soil within conventional
and switchgrass systems may have also contributed to reduced
Frontiers in Soil Science | www.frontiersin.org 8
soil C pools due to potentially increasing soil organic
mineralization (44, 45). However, it is more likely that the
contribution of belowground biomass from extensive and
diverse root systems had the largest effect on enhancing soil C
accumulation across these systems (46–51). For instance, Rasse
etal. (47) reports that the mean residence time of C derived from
roots is 2.4 times greater than C derived from shoots, due to
increased recalcitrance and the protection of C by root hairs and
mycorrhizae in aggregates. Diverse perennial systems have also
been found to have increased aggregate stability due to lack of
mechanical disturbance (52). Enhanced aggregate stability can
lead to greater macroaggregates and physically protect processed
pools of soil C, which can result in increased C stabilization and
accumulation (53, 54).

Differences in root production between varying systems may
have had a significant impact on soil C pools. For example,
switchgrass systems have been found to increase soil C stocks
when compared to soybean systems because of their deep root
systems that have higher C/N ratios (55). Soybean systems have
shallow roots with low C/N ratios and low biomass, which adds
less organic matter to soil systems (56). Additionally, the low C/
N ratios may cause increased C mineralization rather than C
stabilization (55). Moreover, within early successional and mid-
successional systems root biomass comprises a majority of plant
standing biomass (57), where the decomposition of root biomass
has been shown to increased microbial activity and the
assimilation of organic matter into soil C pools (58). Moreover,
plant diversity can also accelerate root production due to plant
FIGURE 5 | Permanganate oxidizable carbon mg kg-1) from May-August within eight systems faceted by system type (annual crop, perennial, and unmanaged).
Color represents a different system. Standard error bars represent one standard error of the mean (n=6).
July 2022 | Volume 2 | Article 917885

https://www.frontiersin.org/journals/soil-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/soil-science#articles


Martin and Sprunger Temporal Trends in Soil Health
complementarity from legumes (59). To our knowledge, root
production has never been measured within this experiment.
That said, multiple studies have demonstrated that perennial
cropping systems produce significantly more root biomass
compared to annuals crops (60, 61) and this often leads to
greater C pools within perennial systems (12, 43, 62, 63).

Soil C trends across the management intensity gradient were
assessed through the calculation of residuals, where positive
trends indicate C stabilization and negative trends indicate C
mineralization (11, 18). The conventional system had the largest
negative residuals across all systems, which indicates that these
systems trend towards C mineralization. Mown grassland
systems had the greatest positive residuals when compared to
all other systems. Surprisingly, early successional communities
substantially differed frommown grasslands as early successional
systems trended towards C mineralization. Our results indicate
that early successional systems may foster a greater labile C pool,
but more processed C pools may be suppressed. Likewise,
Frontiers in Soil Science | www.frontiersin.org 9
Sprunger and Robertson (43) also indicate that early
successional systems have similar slow C pools to those of
annual systems. Moreover, the mown grassland has never been
disturbed and fosters a diverse perennial community whereas the
early successional system is dominated by annual plant species,
which likely reduces fine root productivity and ultimately
C accumulation (59). Additionally the early successional
system was managed intensely until 1989. Ward etal. (64)
reported that legacy effects of previous management intensity
can have a substantial effect on soil C inventories. Our
results indicate that both plant community composition as well
as past management disturbance likely influence long-term
C stabilization.

Our results also indicate that long-term management rather
than within season management perturbations influenced labile
and more processed C pools, given that soil C indicators were not
altered after planting and tillage events took place. For instance,
all three soil C indicators within the biologically based system
FIGURE 6 | Visualization of residuals from May-August within eight systems faceted by system type (annual crop, perennial, and unmanaged). Color represents a
different system.
TABLE 2 | Multiple linear regression models between independent variables (Mineralizable C, ß-Glucosidase, POXC) and dependent variables (temperature and
precipitation). For this specific analysis, temperature and precipitation effects were performed on all eight systems combined.

Model Independent Variable Dependent Variable r2 ß F p

Mineralizable C Mineralizable C Temperature 0.04 0.97 4.8 0.33
Precipitation -0.12 0.004

ß-Glucosidase ß-Glucosidase Temperature 0.08 -1.39 6.5 4.3 x 10-4

Precipitation 0.04 0.011
POXC POXC Temperature 0.14 0.27 16.2 5.61x 10-7

Precipitation -22.61 0.014
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remained relatively static over the course of the growing season
and did not decrease, even following frequent mechanical
disturbance (Figure 1). These results are consistent with others
that have found larger C pools in the biologically based systems
relative to the conventional system (62, 65, 66). The greater C
levels despite frequent disturbance may be due to continuous C
inputs from the cover crops included in the rotation (62). Like
our study, Culman etal. (1) reports that long-term rotational
diversity and cover cropping rather than within season
management perturbations had a substantial effect on soil C
pools over the course of a growing season. It was also surprising
that GLU was not responsive to system. The lack of differences
between GLU in system varying in management intensity may
have been caused by the effect of weather perturbation from
drought confounding system effects (67). Additionally, GLU
activity is highly variable because it reflects the microbial
community decomposition of cellulose in a specific moment in
time. This variability brings into question whether GLU activity
is reflecting C decay based on long-term management or on the
rapid changes of the microbial community that are consistently
taking place within all systems.

Short-Term Weather Alters Soil C Pools
and Stability Over a Single
Growing Season
The sensitive soil health indicators measured in this study were
clearly influenced by weather patterns over the course of the
growing season. Our results indicate that measures of labile and
more processed C pools were significantly impacted by both
precipitation and temperature partially disproving our
hypothesis that only Min C would demonstrate temporal
variability. Our results indicated that measures of the labile C
pool were sensitive to precipitation but not temperature, whereas
measures of C decay and processed pools of C were impacted by
both precipitation and temperature. Given that moisture and a
minimum temperature is essential for aggregate formation, it is
not surprising that both precipitation and temperature would
affect processed C pools, as increased aggregation can lead to the
protection of processed C pools (23, 68–70). Precipitation has
been found to alter labile C pools, reduced precipitation shrinks
soil water films and increases the soils ionic strength to C, which
results in a decrease of labile C (71, 72). Temperature may have
affected POXC and GLU as increased temperature has been
found to enhance microbial activity and the decomposition of
complex C (73, 74). These results differ from others who report
that labile C pools are impacted by temperature and moisture,
and stable C pools are affected by only moisture (21, 23, 75). Our
results may differ from others simply because precipitation
swings during the 2021 growing season may have
overwhelmed temperature effects (23, 75). That being said,
within season fluctuations in soil C pools may have also been
impacted by short-term management perturbations and not just
weather events. Our findings demonstrate that more research is
needed to understand how labile and stable C pools function in
response to temperature, precipitation, and short-term
management perturbations at the field scale.
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Seasonal temperature and precipitation changes were also
found to alter soil C stability. Drought periods within a growing
season were found to substantially decrease both labile and more
processed C pools. However, re-wetting periods after drought
were found to increase Min C pools, while POXC remained
reduced. Thus, it was not surprising that systems trended
towards mineralization processes at the end of the growing
season. These results are like others that have found that
wetting events that follow droughts result in rapid respiration
due to the rewetting of destabilized C from drought events (76–
78). These rewetting events then transport soluble C via soil
water, which changes the bioavailability of the C and potential
for decomposition (71, 79). Increased temperatures may have
also played a role in prompting mineralization processes within
most systems, as warmer temperatures have been reported to
increase the microbial respiration costs associated with
maintaining enzyme production and biomass (80). In addition
to changes in weather, plant nutrient demand (81) as well as
increased root turnover (59) may have caused increases in the
labile C pool at the end of the growing season.

The extent to which soil C cycling fluctuated over the course
of a growing season in response to weather events differed across
the eight systems. While all systems were impacted by weather
perturbations, unmanaged systems always maintained greater
POXC and Min C levels over the course of the growing season
than compared to perennial and annual systems. Moreover, the
mown grassland system always trended towards C stabilization,
even when experiencing large precipitation swings. These results
indicate that increased plant diversity and reduced disturbance
are key in enhancing mechanisms that foster soil C stability,
including belowground C transfer between functionally different
plants and aggregation (82, 83). Such rhizosphere interactions
are critical to stabilizing C and could explain why more diverse
systems are resilient to weather perturbations. Surprisingly,
perennial monoculture systems had similar Min C and POXC
values as annual systems over the growing season and trended
towards C mineralization. This finding is like Syswerda etal. (62)
and indicates that although perennial systems may have greater
C input through root biomass (46), most of this C is in a labile
form that is susceptible to loss (61). Changes in weather over the
growing season appeared to have a minimal effect on soil C pools
in the conventional system. One may speculate that because the
conventional system is consistently losing soil C over time
(Cordova et al., under review), weather disturbances have
minimal effects on soil C pools within a single growing season.

Given that soil health indicators were only measured over the
course of a single growing season our study is limited in the
extent to which we can infer how soil health indicators may shift
in the absence of roots and dormant perennial roots. The
measurement of soil health indicators between growing seasons
is important as the presence of cover crop or dormant perennial
roots can stimulate the microbial community and enhance
nutrient cycling (43). Additionally, the crop that is currently
growing in rotation may have influenced the soil health
indicators, more studies that measure soil C indicators over the
course of an entire crop rotation could be useful to
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comprehensively understand how soil C pools are shifting.
Conclusions on the extent in which weather can alter soil C
indicators are limited in this study, given that only one long-term
field site in southwest Michigan was used. A study that uses
multiple field sites in regions that vary distinctly in weather shifts
could be compared to determine assess weather pattern effects on
soil C more concretely. In addition, our model was limited in its
ability to account for the effect of management in combination
with weather on soil C measures within a single growing season.

Implications for Future Soil Health
Sampling
The soil health community has made significant advancements in
recent years by identifying indicators that are sensitive to recent
changes in management (84). These sensitive indicators are critical
for informing agronomic performance and assessing C
sequestration potential (1, 18). Furthermore, as C markets
continue to expand, it will be critical to find indicators that
accurately reflect C stabilization within agroecosystems (85). This
study demonstrates that soil health indicators are not only sensitive
to long-term management but clearly respond to weather
perturbations as well. This sensitivity to extended periods of
drought and large precipitation events has practical implications
for soil health sampling and interpretation. While it has been noted
that soil biological health indicators are susceptible to temporal
variation over a single growing season (86, 87), the conversation is
rarely extended to how this variability might impact soil health
testing, interpretation, and recommendations to farmers. Based on
our results, we recommend that soil health testing should occur at
the same time every year. Moreover, given that weather patterns
can strongly dictate these sensitive measures of soil C, it may be
beneficial to increase the frequency of soil sampling and take
multiple samples within a growing season to comprehensively
understand how within season perturbations may be impacting
C stabilization, nutrient availability, and overall soil health.
CONCLUSION

Our study found that diverse perennial systems under long-term
management can enhance both labile and more processed C
pools. Moreover, systems with greater perennial diversity were
able to consistently trend towards C stabilization over the course
of a single growing season. In addition, POXC and Min C were
both found to fluctuate over the course of the growing season and
Frontiers in Soil Science | www.frontiersin.org 11
were affected by major precipitation events and temperature. Our
study indicates that 1) long-term management can substantially
affect C cycling and stability 2) Increased perenniality combined
with greater plant diversity can foster soil C pools that are
resilient to extreme variability in temperature and precipitation
and 3) Soil health testing should take place at the same time every
year given that sensitive indicators can heavily vary over the
course of a growing season. Data Availability Statement
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