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Repetitive long-term fertilizer application leads to phosphorus (P) accumulation in
agricultural soils. This can pose environmental risks if the soil’s phosphorus storage
capacity is not well understood and considered when planning nutrient management. We
investigated the P sorption capacity (PSC) in the surface (0-20 cm, n = 23) and subsurface
(20-40 cm, n = 23) of long-term managed podzolic soils in Newfoundland (Nfld), Canada,
through batch adsorption using two P concentrations of 150 and 500 mg P L-1, and
developed pedotransfer functions to estimate PSC using selected soil properties. Also,
the correlation between actual PSC, soil properties, and estimated Phosphorus saturation
index (PSI) and soil P sorption capacity (SPSC) both from standard soil test were
evaluated. The surface and subsurface soils provided similar median PSC (1.34 and
1.32 mg g-1, respectively, p = 0.16) when examined with the 150 mg P L-1 solution. With
500 mg P L-1 solution, the subsurface soils had significantly higher median PSC than the
surface soils of the same fields (2.74 and 2.27 mg g-1, respectively, p = 0.02); and had a
better linear relationship (R2 >0.40, p <0.05) with SPSC than at the lower P concentration.
The surface soils had significantly higher extractable median P in water, citric acid, and
Mehlich-3, higher soil organic matter (SOM), moisture content,Mehlich-3-Fe, -Ca, and -K,
PSI, electrical conductivity, silt, and clay contents, while Mehlich-3-Al, Mehlich-3-Al : Fe
ratio, SPSC, and sand were lower than those in the subsurface soils. All soils had
comparable pH (~6.3). Pedotransfer function revealed that the PSC could be predicted
using SOM, Mehlich-3-Al, and Mehlich-3-PICP and thus may be employed for developing
testable hypotheses relevant to environmentally and economically viable P management
strategies for acidic soils in boreal regions.

Keywords: soil phosphorus sorption capacity, phosphorus saturation index, boreal agriculture, managed podzolic
soils, point phosphorus adsorption capacity
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INTRODUCTION

Phosphorus (P), a critical element for metabolic regulation of all
living cells, is a non-renewable and depleted resource (1).
Following World War II, and with increased access to fossil
fuel (2, 3), P has been heavily mined with ~82% used as fertilizer.
This increased the soils’ legacy P (4).

During the Green Revolution (5), excessive application of
fertilizer led to P accumulation (i.e., legacy P) in agricultural and
pasture soils (6). Since then, and with continued P fertilizer
applications, soil P build-up has become a major agronomic and
environmental concern (7–9). For example, excessive and
repetitive manure application to Dutch fields in the 1980s led
to an average legacy P of 2,050 kg P ha-1 (10, 11). Also, in
Germany, an average of 1,100 kg P ha-1 was reported in 2010
(12). In Newfoundland (Nfld), Canada, lands converted from
boreal forests to agricultural use in the early and mid-20th

century were continually manured to maintain fertility. In
podzolic soils the large application of manure, calculated to
satisfy crop requirements for N, might result in P
accumulation (13). There is a lack of information on the long-
term managed podzolic soil’s P sorption capacity and its
relationships with soil properties in Nfld, a region undergoing
agricultural expansion through land-use conversion on podzolic
soils. The region is similar to other locations in the circumboreal
that might undergo similar transformations (14).

The P accumulated in agricultural soils is either strongly fixed
by clay minerals and sesquioxides of Al, Fe and Ca and
organometallic chelate (6, 15) or loosely adsorbed on the soil
surface. The weakly attached P (labile P) can be easily desorbed
to maintain the P equilibrium in the soil-solution (16). Based on
the soil properties, and mainly to the soil pH, the non-labile P
could be transformed to labile and then to available P and vice-
versa (17). The legacy P can be brought into the available pool to
reduce the need for further P inputs by adjusting the soil pH.

The accumulation of P in soils is thus related to soil buffering
capacity in the context of the management history (6, 15, 18). In
Denmark, century-old managed arable soils, including Podzols,
have higher annual P accumulations (up to 25 kg P ha-1) in
surface soils (0-25 cm) and a higher total P mobility to depths of
up to 75 cm than adjacent deciduous forest soils (19, 20). Long
term (30 years) intensely fertilized Oxisols in Mato Grosso,
Brazil, release 14 kg of legacy P ha-1 annually. However, 75%
of the legacy P may be inaccessible to plants despite the decline of
P sorption by the soils; this might be related to the presence of
high content of reactive Al and Fe oxides (6). For example, the
Ap horizons (plough layer) of long-term managed Podzols in
eastern Nfld have a high P sorption capacity, strongly correlated
with the soil’s high Al content (21). It is thus necessary to
understand P dynamics in long-term managed agricultural
podzolic soils to ensure efficient utilization of P resources and
Abbreviations: Ca, Mehlich-3 extractable calcium; Fe, iron; Al, aluminum; K,
potassium; Nfld, Newfoundland; P, Phosphorus; PSC, batch phosphorus sorption
capacity; PSI, Phosphorus Saturation Index; SOM, Soil Organic Matter; SPSC, Soil
P Sorption Capacity.
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provide environmental stewardship while satisfying crop
requirements (6).

For agronomic or environmental management of P, several
soil P extraction protocols (P-tests), adsorption tests, and indices
were developed to assess the status of P in soils under different
management regimes. Among these, soil P storage capacity
(SPSC) is used as a proximate parameter for assessing and
predicting the P storage and release capacities of soils over
short- or long-term after receiving P fertilizers (10). P-tests
such as Mehlich-1, Mehlich-3, or others, initially developed for
agronomic purposes, have recently been also employed for
environmental risk assessments (22–25). Phosphorus
saturation index (PSI) is calculated from the molar ratio of P
to Al or Al plus Fe which can be used as an alternative tool to
monitor P status relevant to environmental protection (26–28).
The soil’s P sorption capacity has thus been well studied to
determine soil fertility and assess environmental risks for various
soils (29–32). However, site-specific P sorption studies are
required to account for regional specificity of soil and
environmental variations (33). Phosphorus sorption in long-
term managed podzolic soils, particularly the variability in
sorption by the depth, has not yet been thoroughly investigated
for Nfld podzolic soils, representative of circumboreal
podzolic soils.

We aimed to (1) determine and calculate the residual P
sorption capacity (PSC) of long-term managed surface (0-
20 cm) and subsurface (20-40 cm) podzolic soils using point
adsorption technique, i.e., 150 and 500 mg P L-1, and (2) assess
the relationships between point P sorption capacities and soil
properties and P indices. This information is critical for the
development of sustainable P management plans and a data-
informed decision support system for the planned agricultural
expansion in eastern Canada and elsewhere in the boreal regions
with similar soil types and management.
MATERIALS AND METHODS

Site Description
Soils were sampled at the St. John’s Research and Development
Centre, Agriculture and Agri-Food Canada, (47.56° N, 52.71°
W). The site has an elevation ~114 m above sea level with an
annual mean rainfall of 1534 mm and temperature of 5° C (34).
The sampled fields have been farmed for ~150 to 160 years,
mainly for perennial forage production followed, in the last 50 to
80 years, by field crop experiments (35–38). The site covers an
area of ~28 hectares divided into 23 unequally partitioned fields,
which had been under deep plough farming, mainly for perennial
forage production for dairy farms in the Avalon Peninsula (35),
since the 1860s. These fields received 227 kg ha-1 of 6-12-12
fertilizer and an unknown amount of manure, as often as 2 to 3
times per year, for the first 30 years. During the same period, the
fields received three applications of limestone at the rate of 4 Mg
ha-1 (39, 40). Since 1949, the fields have been used for field trials
for forage, annual crops, and vegetables. Most fields were
managed under timothy (Phleum pratense), red clover
(Trifolium pratense) and alsike clover (Trifolium hybridum)
September 2022 | Volume 2 | Article 931266
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mixtures in rotation with research crops and have received
various rates of manure, amended with mineral fertilizer, and
with intermittent lime applications. The forage fields yielded 1 to
2 cuts annually; silage production and earlier harvesting has
allowed for 2 to 3 cuts per year in recent years. Another field,
rocky and with poor drainage due to shallow hardpans, was
allowed to naturally revert to forest in the 1970s to early 1980s
and today is covered by black spruce (Picea mariana), mountain
ash (Sorbus americana), and serviceberry (Amelanchier
bartramiana) (David McKenzie, Personal Communication,
2018). The at the site is an Humo-Ferric Podzol developed on
a glacial till materials (41).

Soil Sampling
Soil samples were collected from 23 managed fields in November
2017, with a stainless-steel sand auger. Proportional to the field
size, 3 to 5 sampling locations per field were randomly selected.
From each sampling location, triplicated cores were collected at
1-metre intervals from 0-20 cm (surface) and 20-40 cm
(subsurface) depths. Thus, for each field a variable number of
9 to 15 same-size samples of about 300 g each were collected in
clean bucket for each depth and composited to produce one
sample per depth for each field (46 samples). Eventually an
aliquot of about 1 L of fresh soil was transferred into 1.5 L
polyethylene Ziploc bags and transported to the laboratory.

Sample Handling, Processing,
and Analysis
The soils were air-dried for 3 to 5 d in a temperature-controlled
room (~35°C with air movement) and then passed through a
2 mm sieve. Samples were analyzed for: soil organic matter
(SOM) based on the loss-on-ignition method at 430°C heated for
6 h (42, 43); moisture content (MC) determined by drying field-
fresh sample in the forced-air oven at 105°C for 24 hr (43); pH
and electrical conductivity (EC) measured in 1:2 soil to water
ratio (44); particle size distribution was determined using
hydrometer method (45); selected samples were used for
mineralogical analysis using a Rigaku Ultima-IV Powder X-
Ray Diffractometer (XRD) (Rigaku Corporation, Tokyo, Japan)
at 2Theta theta-1, 40kV and 44mA. The mineralogical analysis
was conducted for selected samples to identify the dominant
mineral phases in long term managed podzolic soils. The
extractable (potentially available) P was determined in
Mehlich-3 (46) 1% citric acid (CA) (47), and deionized water
(48, 49) extracts (1:10 soil to solution ratio) using the ascorbic
acid method as described by Murphy and Riley (50) and
modified by Watanabe and Olsen (51). Mehlich-3 extractable
total P and micro- and macro-nutrients were determined using a
Prodigy High Dispersion ICP-OES (Teledyne Leeman Labs,
Manson, USA).

Point Sorption Test
For all 46 samples, representing surface and subsurface soils,
two-point P sorption capacity tests were performed in triplicate
(52) using initial concentrations of 150 and 500 mg P L-1. These
initial P concentrations were identified from the calibrated
sorption isotherm experiment employed in our previous work
Frontiers in Soil Science | www.frontiersin.org 3
(21). Briefly, a 2 ± 0.01 g sample of air-dried soil was added to a
125 mL Erlenmeyer flask and saturated with 20 mL of 0.01M KCl
solution containing either 150 or 500 mg P L-1. The soil-solution
mixture was agitated for 1 h on an end-to-end shaker followed by
equilibration at room temperature (~20°C) for 22 h and
eventually re-agitated for another 1 h (53). The soil-solution
was filtered through 0.45 μm filter paper to collect the filtrate (30,
54–56). The equilibrium P in the filtrate was determined using
the ascorbic acid method as described by Murphy and Riley
(1962) (50) and modified by Watanabe and Olsen (51).

The point P sorption protocol used in this study is similar to
that employed in other studies (30, 54–57) except that microbial
inhibitors like toluene or chloroform were not used as they might
increase dissolved P in solution through lysis of microbial cells
(58). The amount of phosphate sorbed at equilibrium (qe) was
calculated using Equation (1):

qe =
Ci − (Ce − Coð Þ ∗V

m
:::     :::     :::       ::: Eq: 1

where: qe (mg g-1 of soil) is the amount of P adsorbed at
equilibrium; Ci, Ce, and Co are the initial, equilibrium, and
labile P concentrations (mg L-1), respectively; V is the volume
of the solution in L and m is the oven-dry soil mass (g) (59).

Estimation of Soil P Sorption Capacity
From Mehlich-3 Test
Additionally, we calculated PSI and SPSC indices (9, 26, 60–62)
from Equation (2) and (3).

PSI =
M3−P
31 mmol kg−1

� �
(M3−Al

27 + M3−Fe
56 mmol kg−1ð Þ :::     :::     ::: Eq:2

SPSC (mg kg−1)

= critical PSI − soil PSIð Þ

� M3 − Al
27

+
M3 − Fe

56

� �
  mmol kg−1
� �

� 31  mg mmol−1 :::     :::     :::       ::: Eq:3

Critical PSI’s of 0.10 for agronomic (SPSC-1) and 0.14 for
environmental (SPSC-2) purposes were adopted from the
Canadian Maritime provinces (26, 60) and a NL soil fertility
survey that was based on standard farmers’ soil tests (63). An
SPSC value less than zero indicates that the soil serves as a source
of P for the plant or environmental contamination (64). Both PSI
and SPSC can inform the soil P status related to management
history and properties of the specific soil types.
Statistical Analysis
Descriptive and explanatory statistics were carried out using
PAST3 (65) and Origin (Pro) version 2019 (OriginLab
Corporation, Northampton, MA, USA., 2019). The data
distribution was tested using Shapiro-Wilk test before
September 2022 | Volume 2 | Article 931266
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inferential analysis. The P sorption capacity and soil properties,
for the surface and subsurface soils, were compared using the
Kruskal Wallis test. Pearson correlation (r) was performed to
identify the relationship between point P and calculated sorption
capacities and soil properties. Additionally, stepwise multiple
linear regressions were employed to assess the statistical
relationship between point P sorption capacity and selected
soil properties. The established relationship can be used to
estimate the P sorption capacities of managed podzolic soils
from routine soil tests. Tests are considered statistically
significant at PH0 < 0.05.
RESULTS AND DISCUSSION

Soil Characteristics
The surface soils had either silty loam or loamy texture, whereas
the subsurface soils had mainly loamy texture. The median
contents of clay, silt, and SOM in surface soils were
significantly greater than for subsurface soils (p <0.001) while
the reverse was observed for Al and sand content (Table 1).
Surface soils had a median pH of 6.3, EC of 239 μS cm-1, and
SOM of 12% (Table S1). Subsurface soils have a median pH of
6.3, EC of 148 μS cm-1, and SOM of 9% (Table S2). The soil
texture and SOM of surface soils are comparable with reference
samples collected from the B horizon of adjacent land covered
with natural vegetation while the subsurface soils have higher
clay and SOM, and lower sand content compared to non-
managed BC horizon (21)Click or tap here to enter text.
Frontiers in Soil Science | www.frontiersin.org 4
Nevertheless, the XRD mineralogical analysis showed similar
mineral phases in both surface and subsurface soils except for
Berlinite (AlPO4), which was only detected in the surface soils
(Table S3). Differences in soil characteristics between the surface
and subsurface could be attributed to the management history as
most of the soil-plant interactions and tillage and manure input
happened in the top 15-20 cm of the soil. Additionally, the
surface soils may have an accelerated biomass turnover resulting
in higher SOM in addition to long-term manure application
which also increases moisture retention and EC. The surface
soils, with higher SOM, had significantly higher EC than
subsurface soils (Table 1). The SOM is the source of carboxyl
and phenolic acids, the largest contributors to cations exchange
capacity in the soil (66, 67). Remarkably, the median pH of the
surface and subsurface soils was not significantly different. The
minor pH increases in the subsurface could be due to cumulative
calcium leaching from surface into the subsurface over several
years (68) and lower SOM in the subsurface compared to surface
soils (Table 1). Both surface and subsurface soils have relatively
higher SOM compared to other podzolic soils sampled in the
western NL, managed for about 60 years (21), or the nearby
Canadian Maritime provinces (60). This could be attributed to
higher organic carbon input in the Hummo-Ferric podzol
through repeated application of manure.

Median molybdate reactive P concentrations in the Mehlich-
3, citric acid, and water extract were 36.5, 131.2, and 0.9 mg P
kg-1 in surface soils and 12.8, 90.1, and 0.7 mg P kg-1 in
subsurface soils, respectively (Table S1). The soluble reactive P
measured in water, citric acid, and Mehlich-3 solutions were
TABLE 1 | Comparison of median values of soil’s P sorption capacities and soil characteristics between surface (0-20 cm, n = 23) and subsurface (20-40 cm, n = 23)
of long term managed podzolic soils.

Soil Variables Unit Median Value Kruskal-Wallis test

0-20 cm 20-40 cm P-value

Clay % 17.96 15.68 <0.001
Silt % 50.44 41.72 <0.001
Sand % 31.60 42.88 <0.001
MC % 44.94 35.61 <0.001
SOM % 12.24 9.05 <0.001
pH – 6.29 6.33 0.660
EC mScm-1 238.58 147.78 <0.001
H2O-P mgkg-1 0.85 0.70 <0.001
CA-SrP mgkg-1 131.24 90.10 <0.001
M3-SrP mgkg-1 36.49 12.81 <0.001
M3-Ca mgkg-1 2584.22 1584.17 <0.001
M3-K mgkg-1 176.89 65.99 <0.001
M3-P mgkg-1 40.59 15.65 <0.001
M3-Fe mgkg-1 196.71 150.70 <0.001
M3-Al mgkg-1 1395.79 1612.77 <0.001
Al : Fe mmol ratio 14.75 21.28 <0.001
PSI % 2.85 1.29 <0.001
SPSC-1 mg kg-1 129.93 175.51 <0.001
SPSC-2 mg kg-1 197.06 252.22 <0.001
PAC-150 mgg-1 1.34 1.32 0.162
PAC-500 mgg-1 2.27 2.74 0.020
September 2022 | Volum
Moisture content (MC), soil organic matters (SOM), electrical conductivity (EC); H2O-SrP, CA-SrP, and M3-SrP represent soluble reactive P determined in deionized water, 1% citric acid,
and Mehlich-3 extract using ascorbic acid colorimetry analysis; M3-Ca, M3-K, M3-P, M3-Fe, and M3-Al are calcium (Ca), potassium (K), phosphorus (P), iron (Fe), and aluminum (Al)
analysed by ICP-OES in Mehlich-3 (M3) extract, P saturation index (PSI), soil P sorption capacity (SPSC1 and SPSC2) at 0.10 and 0.14 critical PSI, below the detection limit (BDL) of 0.01
mg P kg-1 which varies for the different tests. PAC-150 and PAC-500 represented a P sorption capacity of soils treated with 150 mg P L-1 and 500 mg P L-1, respectively.
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significantly higher in surface than subsurface soils (Table 1).
The higher P extractability in citric acid solution for both surface
and subsurface soils compared to water and Mehlich-3 solution
might be due to the ability of the 1% citric acid solution to extract
more organic and inorganic P (69). The significant amount of P
extracted by the citric acid from subsurface soils might suggest
the vertical mobility of P due to long-term fertilizer input (20, 70,
71), combined with the natural podzolization mechanisms under
the boreal climate (72).

The median of total P, potassium (K), calcium (Ca), and iron
(Fe) extracted by Mehlich-3 from surface soils were significantly
greater than for subsurface soils while for aluminum (Al) the
trend was reversed (Table 1). The differences between surface
and subsurface soils properties can be also attributed to the long-
term recurring application of manure or mineral fertilizers,
liming, and cropping (68, 73, 74). Previous studies (75–78)
reported increased available or total P in surface soils of long-
term managed fields. Different P-tests can be useful to assess the
effect of long-term management on P pools (75). Furthermore,
long term manure application leads to P build-up in surface (0-
15 cm) soils but also to vertical mobility of available and total P
(e.g., Whalen & Chang, 2001; 16 years of manure application).

The P build-up in the soil could occur due to various factors,
including (i) nutrient-unbalanced over application of fertilizer,
(ii) excessive application of manure targeting only the N
requirements (13), and (iii) nature of the soil properties such
as high Al and Fe content or low fertilizer responses (high P
fixation) (21, 79). However, there is limited knowledge on the P
sorption or storage capacity of the long-term managed podzolic
soils. Thus, a single point P sorption test, the calculated P indexes
based on Mehlich-3 test, and the measured soil properties were
used to describe the P sorption capacity of the long-term
managed podzolic soils.

Phosphorus Sorption Capacities
Determined From a Point Sorption Test
The point P sorption capacity of 23 surface and 23 subsurface
soils were significantly increased with increasing the initial P
concentration from 150 to 500 mg P L-1 (Tables 1 and S4). When
the soils were treated with an initial concentration of 150 mg
P L-1, the median P sorption capacities of surface and subsurface
were 1.34 and 1.32 mg P g-1, respectively, and not significantly
different (Table 1). Nevertheless, when treated with 500 mg
P L-1, the sorption capacity of subsurface soils (median: 2.74 mg
P g-1) was significantly greater than for surface soils (median:
2.27 mg P g-1; Tables 1 and S4).

Surface and subsurface soils retained 89% and 88% of P
applied at dose of 1.50 g P kg-1 dry soil or 150 mg P L-1, and
45% and 55% of P applied at dose of 5.00 g P kg-1 dry soil or 500
mg P L-1, respectively, after 24 hrs of contact time at ~20°C. The
P retention characteristics can be explained by higher SOM, Ca,
and Fe in surface soils and by the higher Al in the subsurface
soils, as observed in this study and in our previous work (21).
The higher P retention at lower P treatment shows that most P
supplied was retained by the soils in forms likely not available for
plant uptake. The higher fixation property of the studied soil at
Frontiers in Soil Science | www.frontiersin.org 5
lower P concentration suggests adjusting the P recommendation
based on soil’s sorption capacity in addition to standard P test.
For the tested managed podzolic soils, and soils elsewhere with
similar characteristics, rapid point P sorption test may be carried
out with solution concentrations between 150 and 500 mg P L-1.
The decline in proportional P retention capacity observed
when the solution with the higher P concentration was used
indicates the soils could be saturated in the future, and thus
increases the risk of P losses. Börling et al. (2001) (52) also
recommended that point P sorption testing should be carried out
with a solution of 600 mg P kg-1.

A higher P sorption in the subsurface soils may be
environmentally advantageous for reducing the leaching of P
from the surface soil towards groundwater. The risk of
particulate P losses cannot be ruled out. The P absorbed by the
surface soils can be a source of labile P to replenish depleted P in
the soil-solution. The long-term managed podzolic surface soils
might thus serve as both source and sink while the subsurface
soils mainly serve more as a sink for P. In the long-term, some
deep-rooted crops might be able to access P accumulated in the
subsurface soils depending on the chemical strength of fixed P
species and soil management (80).

Previous reports for non-calcareous soils (grassland soils in
Ireland) have also suggested Al as the dominant P fixing agent
and have reported maximum P sorption capacities of 0.63 mg P
g-1 (33). Values ranging from 0.19 to 0.38 mg P g-1 were reported
for long-term managed (35-40 years) topsoil in central and
southern Sweden (52). A maximum P sorption capacity of 8.23
and 3.12 mg P g-1 for a plough layer (Ap) and B horizon of
managed field, and 5.08 and 5.35 mg P g-1 for unmanaged B and
BC horizon were reported for the same study sites, respectively
(21). The tested podzolic soils had several folds higher P sorption
capacities than these other soils.

The mechanism of P sorption in the soil is linked to SOM,
and mineral content (mainly Al), and possibly organometallic
complexes (53, 57, 81). High level of calcium as result of long-
term limestone application was also measured in surface soils
(Table S1); Ca might precipitate P and contribute to the higher P
sorption observed in our study (82), in addition to Al and Fe
oxides (83–85). Nevertheless, the evidence for whether the SOM
has negative or positive effect on P sorption in the soil is
inconsistent (86). The SOM is a source of carboxyl anions
(ROO−) that attract P-retaining cations in addition to Al and
Fe oxyhydroxides (87). In our study, the SOM had a good
Pearson correlation (r = 0.49 to 0.71, p <0.05) and linear
relationships (r2 = 0.22 to 0.50, p <0.05) with the P sorption
capacity for surface and subsurface soils (Figure 1). In the
absence of detailed carbon chemical speciation, we cannot
speculate on the mechanisms relating SOM to P sorption
capacities. Phosphorus adsorbed on SOM and metal-organic
surfaces may easily be mineralized to available P forms
depending on the soil pH and microbial activities (82).

Despite the studied soils had long-term (>100 years)
management history, the tested soils had lower labile P
(colorimetric Mehlich-3-P), a function of a higher P sorption
capacity (Tables 1 and S4), compared to some long-term
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managed podzolic soils in western Nfld, tropical sulfic soils in
Brazil, or even alkaline soils in Manitoba and Ontario soils (6, 56,
63, 88). On the other hand, tropical acidic clay soils that received
P fertilizers for three decades (6) had similar P retention trends
regardless of the status of residual P. As often described, the Al
and Fe levels in clay and Podzols are responsible for soil’s P
sorption capacity (6, 33, 88, 89).

Citric acid-P and water-extracted P were also negatively
correlated with P sorption capacity which confirmed the
surface and subsurface soils to have a higher P retention
capacity than reported elsewhere, with reactive Al oxides the
most obvious driver (6, 78, 89).

Phosphorus Sorption Indices Calculated
From Mehlich-3 Test
Surface soils had a significantly higher median PSI (2.85 ± 1.73%)
than subsurface soils (1.29 ± 1.15%) (Tables 1, S1 and S2). The
difference could be assigned by significantly lower aluminum to
iron ratio and higher extractable P in surface than subsurface soils.
The calculated P indices in this study are three to eight-fold lower
than agronomically recommended PSI (10%) in the Canadian
Maritime provinces (26, 60) or PSI values reported for farms in
Nfld (63). The subsurface soils had a significant higher agronomic
and environmental SPSC than surface soils due to higherMehlich-
3-Al and -Fe content (Table 1). The positive SPSCs indicates the
studied soils can serve as P sink and this lower the risk of P loss.
The estimated soil’s P sorption capacity is >20-folds lower
compared to point P sorption in this study or maximum P
sorption capacity measured in Nfld podzolic soils (21). The
smaller SPSC might be attributed to the soil management
conditions such as P sources, intensity, and history of fertiliser
application, cropping systems, and crop types, and extractability of
the Al and Fe in Mehlich-3 solution. Despite the huge difference
observed, the P indices calculated from Mehlich-3 extractable P,
Al, and Fe support the results obtained from the point P sorption
capacity assessment. This implies that P sorption status of
managed podzolic soils can be easily estimated either from
standard soil test or point P sorption test.

Correlation of Point Phosphorus Sorption
Capacity With Soil Properties
The point P sorption capacity assessed in this study had a
significant positive correlation with Mehlich-3-Al, and SOM
irrespective of the initial P concentrations (Figure 1).
Aluminum and SOM were previously reported to be the main
contributing factors for higher soil’s P sorption capacity (33, 90,
91). The dominant role of Al in controlling P sorption in podzolic
soil was supported by the positive relationships between the point
P sorption test with the Mehlich-3-Al to -Fe ratio and calculated
SPSC (Figure 1). Furthermore, the point P sorption capacities of
the tested soils had a significant positive linear correlation with the
soil moisture content, which might reflect the significant
correlation of moisture content with SOM (r = 0.51 and 0.77 for
surface and subsurface, respectively, p <0.05; data not shown).

On the other hand,Mehlich-3-Fe and P extracted by Mehlich-3,
1% citric acid, and water, and calculated PSI were negatively
Frontiers in Soil Science | www.frontiersin.org 6
correlated with P sorption capacities, confirming that soils with
higher extractable P had lower P retention capacity and vice versa.
Remarkably, the proportion of the silt fraction had a significant
negative linear correlation with P sorption capacity of subsurface
soil (Figure 1B). In agreement with Villapando and Graetz (2001)
(91), there was a significant negative correlation between P sorption
and Mehlich-3-Fe (Figure 1), which strengthens the argument that
the Al oxides and possibly organic-Al chelates are the major players
in P sorption, above iron, in podzolic soils.

The point P sorption capacities were not significantly correlated
with clay content or pH (Figure 1). Previous studies reported both
lower P mobility in soils with high clay (92), no impact of clays (52)
or positive correlation of P sorption parameters with clay content
(90). This suggests that the soil’s mineral composition have a role
beyond the simple textural classification. Furthermore, long-term
liming may mask the relation between P sorption capacity with clay
and pH by modifying the clay surface charges. The pH range (6.3 ±
0.4) was near the ideal range for P availability and was likely not
wide enough to allow for sufficient impact on the analysis. The
significant linear correlations of P sorption with the extractable
Mehlich-3-P, -Al, and -Fe, and SOM, obtained from standard
farmers’ soil tests, widely employed in North America, suggest
that these parameters can be used as input variables in
pedotransfer functions for rapid estimation of the tested podzolic
soils’ P sorption capacity. This could support the P fertilizer
recommendation process.

Multiple Regression Analyses to Assess
Relationships Between Phosphorus Sorption
Capacity and Selected Soil Properties
Soil variables identified to have a significant correlation with the point
P sorption capacity, based on simple linear correlations were used as
independent variables for predictive multiple linear regressions.
Collinear independent variables that were weakly correlated with
dependent variables were excluded from the pedotransfer function.

The SOM alone explained about 20-50% of the variability of
the P sorption capacity in both surface and subsurface soils
(Table 2). The negative correlation between SOM and Fe (r =
0.48 and 0.59, p <0.05, data not shown), and Al and Fe (r = 0.31
and 0.63, p <0.05, data not shown) for surface and subsurface soils,
respectively, demonstrated the dominant role of SOM and Al in P
sorption capacity, an observation supported by other studies (78,
87). The SOM of surface and subsurface soils was greater than for
soils in the nearby Canadian Maritime provinces (26, 60), likely
due to long-term management or organic matter supplied from
long-term manure application (93), and differences in cropping
systems. For example, forage fields experience no or minimal soil
disturbance or ploughing, while the potato fields common in
Maritime provinces that require extensive soil preparation which
might affect the SOM content (94, 95).

Another important predictor of the soil’s P sorption capacity
was the Al content of the soil, which explained up to 37% of the
soil’s P sorption variability. Furthermore, Al was a better
predictor in surface soils (Table 2). Villapando and Graetz
(2001) concluded that copper chloride-extracted Al (organic
matter-bound Al) was the major single factor controlling over
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60% of the variability in the sorption of P in the Bh horizon of
podzolic soils (91). The Mehlich-3-Al in this study might not
fully account for the organic bound Al portion, similar to lower
extractability of organic P (96).

R is the coefficient of determination or proportion of variance explained by the model.
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The total P extracted by Mehlich-3 explained ~26% of the
variability in the P sorption capacity when the soils are treated
with lower initial P concentration (Table 2). The long-term
fertilized soils expected to decrease the soil’s P sorption capacity
A B

FIGURE 1 | Pearson correlation between soil’s P sorption capacity and soil properties for managed SJRDC soils collected from (A) 0-20 cm (n = 23) and (B) 20-
40 cm (n = 23). M3-Ca, M3-K, M3-P, M3-Fe, and M3-Al represent calcium (Ca), potassium (K), phosphorus (P), iron (Fe), and aluminum (Al)measured by ICP-OES in
Mehlich-3 (M3) extract, respectively. Water-P-Col, CA-PCol, and M3-PCol represent soluble reactive P determined in deionized water, 1% citric acid, and Mehlich-3
extract using ascorbic acid colorimetry analysis, respectively; P saturation index (PSI), soil P sorption capacity (SPSC-1 and SPSC-2) at 0.10 and 0.14 critical PSI;
PAC-150 and PAC-500 represented a P sorption capacity of soils treated with 150 mg P L-1 and 500 mg P L-1, respectively.
TABLE 2 | Stepwise multivariate regression results for the relationships between P sorption parameters and selected soil variables.

Dependent Variable£ Independent Variable Coefficient Standard Error p-value Partial R2

q1 Constant 1.16 0.039 <0.001 –

M3-P -2.00 x 10-3 0.27 x 10-3 0.267 0.26
M3-Fe -0.89 x 10-4 0.79 x 10-4 <0.001 0.28
M3-Al 1.13 x 10-4 1.94 x 10-5 <0.001 0.37
CA-P 4.16 x 10-4 7.78 x 10-5 <0.001 0.08
SOM 5.72 x 10-3 1.25 x 10-3 0.110 0.22

q2 Constant 4.63 x 10-1 1.24 x 10-1 <0.001 –

M3-Fe 6.13 x 10-4 1.59 x 10-4 <0.001 0.25
M3-Al 2.20 x 10-4 2.88 x 10-5 <0.001 0.35
CA-P -2.89 x 10-4 4.96 x 10-5 <0.001 0.08
Silt -2.74 x 10-3 9.75 x 10-4 0.007 0.11
SOM 2.05 x 10-2 2.79 x 10-3 <0.001 0.32
pH 5.82 x 10-2 1.22 x 10-2 <0.001 0.03

q3 Constant -3.68 1.63 0.027 –

M3-P 3.02 x 10-2 1.76 x 10-2 <0.001 0.26
M3-Fe 2.42 x 10-3 1.15 x 10-3 0.039 0.08
M3-Al 1.29 x 10-3 4.08 x 10-4 0.002 0.10
H2O-P 2.96 x 10-1 2.60 x 10-1 0.260 0.07
CA-P 4.98 x 10-3 2.31 x 10-3 0.035 0.17
M3-srP -5.25 x 10-2 2.41 x 10-2 0.033 0.28
SOM 6.08 x 10-2 2.55 x 10-2 0.020 0.32

q4 Constant -5.54 9.54 x 10-1 <0.001 –

M3-P -6.73 x 10-2 2.76 x 10-2 0.018 0.10
M3-Al 1.82 x 10-3 2.27 x 10-4 <0.001 0.26
CA-P -3.05 x 10-3 1.08 x 10-3 0.006 0.03
M3-srP 7.05 x 10-2 2.82 x 10-2 0.015 0.09
SOM 1.51 x 10-1 1.67E-02 <0.001 0.47
pH 6.62 x 10-1 1.13 x 10-1 <0.001 0.06
September 2
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(88) but the tested soils had not reached their maximum P
sorption capacity (21). The models presented here could be used
to predict the P sorption index of the long-term managed fields
in similar settings, by using data available from routine farmer’s
soil tests. However, the use of the P sorption capacity or soil test
P for environmental risk assessments must be verified under field
conditions (97, 98).
CONCLUSIONS

The long-term managed surface layer of podzolic soils had
higher extractable Mehlich-3-P, -K, and -Fe, SOM, and EC,
than the subsurface soils. The reverse was true for Al. The
effect of long-term liming was reflected in the increased pH of
both soil layers. The P accumulation in the surface soil and
potential vertical P mobility to the subsurface soil layers signals
the need for proper management of P in such soils. Thus, the
tested surface soil likely acts as both source and sink for P while
the subsurface soil might mainly serve as a P sink.

The measured P sorption capacities were comparable for both
soil layers at the low P concentration(150 mg P L-1); however, a
significantly higher P sorption capacity was observed in the
subsurface than surface soils at the higher P concentration (500
mg P L-1), a phenomenon attributable to higher Al content.
Therefore, a higher initial P concentration of 500 mg P L-1 is
recommended for assessing the point P sorption capacity of similar
podzolic soils. Alternatively, the P sorption capacity could be
estimated from SOM, Mehlich-3-P, and -Al; related pedotransfer
functions may be employed to develop testable hypotheses for the
development of environmentally and economically viable P
management strategies for acidic soils in boreal regions.
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