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Introduction

During the 21st century, global mean temperature is expected to rise by 1.5°C to 5.7°C (1).

Climate change has already resulted in an overall decrease in the number of cold days and

nights, and an increase in the number of warm days and hot nights, across most land areas

globally (2). Our changing climate will influence soil ecosystems because soils have a complex

interaction with the atmosphere through carbon, nitrogen, and hydrological cycles (3). Soil is

the largest terrestrial carbon pool (4–6), but it also provides a habitat for diverse and complex

communities of organisms (7). Soil represents a huge potential source of volatile carbon and a

potential sink for additional carbon. Soil can therefore buffer CO2 losses into the atmosphere,

depending on the balance between photosynthesis, autotrophic respiration, and heterotrophic

respiration (2, 8). This balance exerts major controls on the biogeochemical interactions

between land and atmosphere leading to the exchange of greenhouse gases like CO2, CH4 and

N2O (2), the emissions of which could cause positive feedbacks that warm our climate system

(9, 10). While the response of autotrophic respiration to changing climates is relatively well

understood, predicting changes to the soil carbon sink due to climate change has been amajor

source of uncertainty in projections. Although it is known that increasing temperature can

stimulate microbial degradation of soil organic carbon and increase the atmospheric

concentration of CO2 (10–12), the magnitude of this positive feedback is unclear.
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Changes to the Diurnal Temperature
Range (DTR)

Much research on the way that ecosystems respond to

changing climate is based on the assumption that the future

global warming will arise from symmetrical increases in daily

maximum (daytime) and daily minimum (night-time)

temperature, reflecting a commensurate increase in daily mean

temperature. However, evidence from recent studies shows that

daily mean temperature increases arise disproportionately due to

increases daily minimum (night-time) temperatures (13). Over

the last 50 years, negative trends in the Diurnal Temperature

Range (DTR) have been observed due to an approximately 0.9°C

increase in daily minimum and only 0.6°C increase daily

maximum temperature (14). Therefore, while the climate

warms, we have a reduction (i.e., narrowing or dampening) of

the DTR. The decreasing DTR is attributed to decreases in

sunshine duration and increases in the amount of cloud (due to

the effects of aerosols), precipitation, and water vapour.

However, local deviations from this global trend are expected

as different regions will experience different changes in cloud

cover, precipitation, and water vapour (15–18). Climate models

have predicted that this trend may continue throughout the 21st

century (13, 19).

The understanding that increased global annual mean

temperature will increase global soil respiration rates is well

documented in the literature (20). However, the impact of

narrowing or decreasing the DTR on soil microbial

community structure and physiological functions (such as

respiration) remains largely unknown. Laboratory studies that

examine how community level interactions will be influenced by

climate change usually incubate mesocosms continuously at

constant temperatures that mimic a possible future average

temperature at the study location (13, 21). Most of these

studies do not account for the influence of diurnal

temperature oscillations on the temperature sensitivity of soil

respiration, especially in the upper few centimetres of soils (e.g.

22). It is important to consider such temperature oscillations

because short term temperature fluctuations can have important

influences on processes that are driven by microorganisms like

bacteria and fungi (23).
Soil respiration under oscillating
temperatures and asymmetric
warming

Studies examining the effects of diurnal temperature oscillations

on soil respiration are rare. Zhu and Cheng (24) assessed the

temperature sensitivity of soil organic carbon decomposition under

a constant temperature regime and a diurnally oscillating
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temperature regime. Their results showed that temperature

sensitivity under constant temperatures were consistently higher

than those under diurnally oscillating temperatures. A possible

mechanistic explanation for this observation is that microorganisms

incubated under constant temperatures adapt to optimise

metabolism at a particular temperature and this is exponentially

faster at higher temperatures, whereas microorganisms incubated at

oscillating temperatures are unable to optimise metabolism at the

daily maximum temperature and thus exhibit lower temperature

sensitivity. Conversely, Uvarov et al. (25) observed similar

cumulative respiration between constant and oscillating

temperatures in both the field and laboratory. In this case, the

mechanistic explanation for this result is that the bioavailability of

substrates to microorganisms (which was similar between the

constant and oscillating treatments) may have mediated the

respiration rate rather than the temperature regime.

In a field experiment, Xia et al. (26) reported that the effect of

diurnal warming on soil respiration was not equal to the summed

effects of day and night warming, even though night warming showed

greater warming-induced respiration than day warming. They also

demonstrated that day and night warming, using infrared radiators,

influenced the daily mean soil temperature differently; the daily mean

soil temperature increased more under night warming than day

warming treatments. Adekanmbi et al. (27) undertook a laboratrory

incubation experiment and found that the legacy effect of a pre-

incubation oscillating between 5°C and 15°C was a significnatly

greater respiration rate than soil pre-incubated constantly at 5°C or

10°C and was similar to soil pre-incubated constantly at 15°C, even

when respiration was measured at the same temperature in all

treatments. A possible mechanistic explanation for this fiding is

that, assuming that extracellular depolymerisation is typically the

rate limiting step in soil organic matter decomposition (28), the time

spent at 15°C in the fluctuating treatment was sufficient to supply

sufficient substrate for intracellular decomposition (Figure 1).
Impact of land use change on soil
Diurnal Temperature Range (DTR)
and respiration

Although a reduction in DTR has been forecasted, due to

climate change, soil temperature oscillations can also be

influenced by land use and altered by land use change. Wei et

al. (29) observed an overall decline in DTR between 2003 and

2013 in the agricultural pastoral ecotone of Northern China

across croplands, forests, and land that changed between

croplands and grasslands. However, they observed an increase

in DTR when land use changed from grassland to forest. The

lower DTR under grassland was as a result of both decreasing

maximum (daytime) temperature and increasing minimum

(night-time) temperatures (29). It has been demonstrated that
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soil microbes adapt to the temperature of their original site, thus

expressing a legacy effect (30). Therefore, while land use change

may have (well understood) direct impacts on soil respiration, it

also has a poorly understood indirect impact on the temperature

sensitivity of respiration due to a change in the temperature

regime that soil microorganisms are exposed to. Thus,

understanding the impact of diurnal temperature oscillations

on the temperature sensitivity of respiration is a pre-requisite for

fully understanding the influence of land use change on the soil

carbon cycle.
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Soil depth as an analogy for
soils with different diurnal
temperature ranges

The dampening of the DTR with soil depth represents an

interesting analogue for the expected pattern in air or surface

temperatures forecasted in future climate scenarios. For instance,

de Farias et al. (31) assessed hourly, daily and monthly soil

temperature from 5, 10, and 20 cm depths and found that,
FIGURE 1

Possible mechanism whereby pre-incubating soils at diurnally oscillating temperatures results in similar respiration rates to pre-incubating constantly at
the maximum daily temperature when respiration is measured at a given temperature. When soil is pre-incubated constantly at low temperature
(Scenario A) extracellular depolymerisation is the rate limiting step for respiration at a given temperature. When soil is pre-incubated at high temperature
(Scenario B) extracellular enzyme activity is sufficient to prevent extracellular depolymerisation being the rate limiting step for respiration at the given
temperature. When soil is oscillated between high and low temperature (Scenario C) the time spent at high temperature may be sufficient to prevent
extracellular depolymerisation being the rate limiting step for respiration at the given temperature.
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while soil temperatures oscillate diurnally down the profile, a

decreasing amplitude in DTR was observed with depth (from 5cm

to 20cm) due to higher diurnal temperature fluctuations at the

surface, compared to lower layers. Whereas soil respiration is

usually measured in the laboratory from samples of soil collected

at a defined soil depth range, or in the field as the integrated net

flux from the entire soil profile (32), there could be a variation in

the temperature sensitivity of soil CO2 flux as a result of thermal

diffusivity down the soil profile (33) which is not accounted for in

our current understanding. However, the reasons for differential

temperature sensitivity with depth also include confounding

changes in biotic and abiotic conditions with soil depth. For

example, the amplitude of DTR (31), texture, organic carbon (34),

abundance and distribution of heterotrophic soil microbial groups

(35), and enzyme activities (36) all vary with soil depth. Hicks

Pries et al. (22) measured the carbon flux through the whole soil

profile in response to 4°C warming and observed similar

temperature sensitivity down the profile. Topsoil is where most

of the organic carbon and soil microorganisms are concentrated

and where the variations in DTR have the greatest impact (37).

Nevertheless, soil depth may be a useful analogy for studying the

influence of DTR on the temperature sensitivity of soil respiration.
Discussion

It is clear that a lack of experimental observations severely

limits our ability to reach a consensus regarding the influence

that diurnal oscillations have on the temperature sensitivity of

soil respiration. These limitations to our current understanding

mean that we are not yet in a position to predict with certainty

the influence that a narrowing of the DTR will have on soil

respiration. Nevertheless, predictions of the response of soil

carbon fluxes to temperature change clearly do need to

account for daily temperature oscillations and future changes

to the DTR so that they can accurately predict the impact of

climate change on positive soil carbon feedbacks to

the atmosphere.

Current projections that use only the size of the soil carbon

stock and mean daily temperature to predict the response of

carbon loss from soil due to warming may not accurately

represent the actual mechanisms and may overestimate total

carbon losses [e.g. (38)]. This overestimation is because soil

organic matter decomposition, carbon stocks, and persistence,

are the products of processes that occur locally and there is need

for more robust soil biogeochemical models that better represent

how historic temperature condition and short term temperature

oscillations shape the response of microbial communities and

soil organic matter to warming (39). It is imperative to ensure

that the next generation of land-surface models adequately

simulate the impact of asymmetric warming, including daily
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temperature extremes, on soil microbial activity and soil

heterotrophic respiration. We recommend that future

projections and soil biogeochemical model parameterisation

should only adopt laboratory data to estimate temperature

sensitivity when the laboratory data is collected at

temperatures within the typical diurnal range (or predicted

diurnal range) in the region where predictions are being made.

DTR could be used as an input parameter, alongside daily mean

temperature, for parameterising soil carbon models.

To satisfy the next generation of soil carbon models, and

their requirement to incorporate the influence of a changing

DTR, there is an urgent need for laboratory data on the

temperature sensitivity of soil respiration that is collected

under realistic environmental conditions, including diurnal

oscillations. It is understandable why laboratory incubations

are currently undertaken at constant temperatures. Laboratory

equipment that allows easy establishment of consistent and

controllable oscillation of temperatures in the laboratory is not

widely available. There will typically be a lag between a change in

the temperature in an incubation chamber and the temperature

in the soil incubated in a mesocosm inside the chamber, which

means that measurements cannot be directly attributed to the

temperature in the mesocosm at the time of the measurement.

However, for laboratory experiments to represent useful

analogies of phenomena that occur under field conditions,

efforts need to be made to bridge the gap between uniform

laboratory incubations and the stochasticity of the real-

world environment.
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