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Introduction: To comprehend soil P transformation and crop P uptake, it is

necessary to understand how the long-term substitution of mineral fertilizers with

stover or biochar affects soil properties and P forms. However, the effects of large-

scale continuous stover or biochar application on soil P forms and fractions and

the response of P uptake by corn are largely unknown. The purpose of this study

was to investigate the role of stover and its biochar in the variation of P forms and

Hedley-P fractions.

Methods: A five-year field experiment in brown soil was carried out using the

following treatments: non-fertilizer (CK), chemical fertilizer (NPK), chemical

fertilizer + corn stover (SNPK), and chemical fertilizer + biochar (CNPK). Hedley

fractionation and 31P nuclear magnetic resonance spectroscopy were used to

determine P compounds.

Results and discussion: The greatest increases in P uptake occurred during the

CNPK treatment, specifically orthophosphate and Resin-P, and coincided with

increases in total inorganic P and Hedley-P fractions. On the other hand, total

organic P accumulationwas found to be highest in the SNPK treatment, as was total

inositol hexakisphosphate and orthophosphate diester accumulation. Treatments

with SNPK and CNPK significantly increased adenosine monophosphate and DNA.

However, no difference was found between NaHCO3-Pi and NaOH-Pi of the NPK,

SNPK, and CNPK treatments. Decreasing chemical fertilizer and partially replacing it

with biochar in brown soil may increase crop P uptake by degrading applied organic

P forms and multiplying inorganic P forms.
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1 Introduction

Phosphorus (P) is a major limiting factor in plant productivity and

is critical to the system’s ecological balance (1, 2). However, P is easily

fixed in soils, which is a significant problem with soil fertility (3).

It is well understood that in the soil, P is generally classified as

inorganic or organic (4). P uptake by microorganisms and crops is

influenced by different P forms (5). The technique of 31P-NMR

spectroscopy is commonly used to obtain detailed information

about soil P (6). It is a better method than traditional grading

methods for detecting the reflection of dynamic changes in soil P

(7). Obtaining data on P forms and P fractions can aid in better

illustrating the biological cycle of P, as well as changes in P forms

caused by the soil formation process (8).

Biochar is a solid product derived from biomass via

thermochemical conversion under anoxic conditions (9). Biochar has

a large surface area and unique chemical and physical properties (10,

11), and can boost soil enzyme activity, microbial biomass carbon (C),

nitrogen (N), and P contents, soil bacteria, and crop production and

quality (12, 13). Crop stover is an important source of nutrients in soils

(14). Crop stover or biochar incorporation into agricultural soils could

be a common and effective strategy for soil fertility and plant growth

(15). The majority of research on the effects of stover or biochar on C

sequestration, N sequestration, and emission reduction has been carried

out (11). On the other hand, the dynamics of soil P amended with

stover or biochar have not been thoroughly investigated.

Biochar reduces P fixation in a variety of soils and promotes soil

activation in soils that cannot accommodate P directly (16). Some authors

contend that the carbonization process of biochar can promote the release

of phosphate from the woody tissues of plant residues. Stower is the most

abundant organic resource when applied to the fields (17), improving soil

quality, microbial activity, and soil pH and activating fixed P (18). Several

studies have shown that using residual stover in the field can boost the

available P and total P content of the soil (19). However, the applied

stover has a lower P activation coefficient than biochar (20), which

increases the conversion of organic P to inorganic P in the soil (21). Many

studies have shown that fertilizer types and fertilization practices alter the

P forms in the soil (22). However, very few studies have been conducted

to investigate the effects of stover and its biochar on the P forms and P

fractions in the field. We conducted a five-year field experiment to

investigate the role of stover and biochar application in soil P dynamic

variation. We measured soil P fractions and forms using Hedley

fractionation and 31P-NMR spectroscopy. This study hypothesized that

applying a combination of biochar (corn stover) and chemical fertilizers

would have different effects on soil Hedley-P fractions and P forms than

mineral fertilizers. The objectives of this study are to 1) determine the

effect of combining corn stover (and its biochar) with chemical fertilizers

on P forms and Hedley-P fractions in arable soils, and 2) understand the

relationship between Hedley-P fractions, P forms, and P uptake by corn.
2 Materials and methods

2.1 Field site and design

This research was carried out in April 2013 at Shenyang Agricultural

University in Liaoning Province, China, as part of the Long-term
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stationary biochar experiment (40°48’N and 123°33’E). According to

the FAO classification, the soil in the region belongs to the Alfisols profile

(23). The site climate has been given in detail by Li et al. (24). Each

treatment was repeated three times, the plot area was 25.5 m2 (3.6 m×7.0

m), and all treatments were randomly arranged. The following were the

basic physical and chemical properties of the initial soil (CK0): 6.0 soil

pH, 9.9 g kg–1 organic C, 0.9 g kg–1 total nitrogen (N), 112.65 mg kg–1

alkali-hydrolyzable N, 16.30 mg kg–1 Olsen-P, 109.90 mg kg–1available

potassium (K), 1.25 g cm-3 There were four treatments: CK (no

fertilizers), NPK: urea (46% N) +superphosphate (5% P) +potassium

chloride (42% K) fertilizers; CNPK: biochar +NPK; and SNPK: corn

stover +NPK. As shown in all figures, CK was the control treatment

from 2018, and CK0 was the initial soil from 2013. At a surface density of

3000 kg ha–1 yr–1, biochar was applied. At a surface density of 9000 kg

ha–1 yr–1, corn stover was cut into 2–3 cm and applied, as well as corn

stover from the harvested crop. The annual surface densities of N, P, and

K fertilizers were 195 kg ha–1, 39 kg ha–1, and 62 kg ha–1, respectively.

Corn stover, biochar, and chemical fertilizer were applied annually (April

2013 to 2018) before sowing and spread on the soil surface before being

tilled into a 0–20 cm soil layer by a rotavator. Corn was planted in April–

May and harvested in September–October. The experimental field

cropping system included one annual spring crop of corn in

continuous cultivation using the cultivar mongolia6531, with a

planting density of 60000 plants hm–2. The biochar was produced

from corn stover and heated at 450–600°C with a pH of 10.4, 490. 0 g

kg–1 total C, 14.4 g kg–1 total N, 8.5 g kg–1 total P, 14.08 g kg–1 total K,

22.34 m2 g–1 specific surface area, 0.043 cm3 g–1 pore volume, 7.12 nm

pore size, and 33.5% ash content. The total N, P, K, and C contents of the

stover were 0.96%, 0.32%, 0.72%, and 42.08%, respectively.
2.2 Soil sample

For all treatments, soil samples were taken from 0–20 cm depth

after harvesting in October. Each plot had five randomly selected

points where the soil was mixed as a soil sample, air-dried naturally,

and sieved through 0.85 mm and 0.15 mm sieves.
2.3 Chemical analysis

The alkali diffusion method was used to determine the available N

in the soil using 1.0 mol L–1 of NaOH (25). Olsen-P was measured

using the molybdenum-antimony anti-colorimetric method in 0.5 mol

L–1 of NaHCO3 (26). The available K was determined with 1.0 mol L–1

of NH4OAc (Shanghai, China) using the flame photometric method

(27). The pH of the water:soil mixture was 2.5:1, according to a Lei

Magnetic PHS-3C type pH meter from China. The total P content was

determined using the sodium hydroxide melting-molybdenum-barium

colorimetric method (28). The C and N contents of the soil were

determined using an elemental analyzer (Elemental III, Germany).
2.4 Determination of phosphorus fractions

In the current study, the Hedley-P fractions were classified into

seven soil P fractions based on previous research (29). (1) In 50 mL
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screw-cap centrifuge tubes, soil samples weighing about 0.5 g (0.15

mm) were collected. These samples were shaken for 16 h with 30 mL

of deionized water and two saturated HCO−
3 anion resin membranes.

The resin membranes were removed and shaken in a 0.5 mol L–1 HCl

solution for 16 h. The inorganic phosphorus, labeled Resin-P, was

determined using the molybdenum blue method. (2) The soil residue

was centrifuged in a centrifuge tube at 0°C for 10 min at 25000 g

before being filtered and rinsed with 30 mL NaHCO3. After shaking

for 16 h, the solution was centrifuged for 10 min. The supernatant was

separated into two parts: one labeled as NaHCO3-Pi (NaHCO3

extracted inorganic P, primarily adsorbed on the soil’s surface, and

this part of the P was effective), and the other was frozen and

centrifuged for further analysis. Ammonium sulfate was added to

the other part and heated in an autoclave for 1 h to 121°C, yielding

NaHCO3-Po (NaHCO3 extracted organic P, which was easy to

mineralize and could be used by plants within a short period). (3)

The soil was washed with 30 mL NaOH on the filter membrane in a

centrifuge tube. After shaking for 16 h, the sample was centrifuged for

10 min and filtered. The supernatant was divided into two parts; to

the first, 0.9 mol L–1 of H2SO4 was added, which was then frozen and

centrifuged for analysis and labeled as NaOH-Pi (inorganic P

extracted with NaOH, chemically adsorbed to the soil Fe, Al

compounds, and on the surface of clay particles). Ammonium

sulfate was added to the other part, which was autoclaved for 1.5 h

at 121°C and labeled as NaOH-Pt (NaOH extracted total P); NaOH-

Po (organic P) = NaOH-Pt minus NaOH-Pi. (4) The soil was washed

through a filter membrane in a centrifuge tube with 30 mL of 1 mol L–

1 HCl. After shaking for 16 h, the sample was centrifuged for 10 min

and filtered. As HCl-Pi, the supernatant was labeled and analyzed. (5)

Approximately 10 mL of concentrated HCl was added to the soil

residual sample and heated in a water bath for 10 min at 80°C. After

treating the sample with 5 mL of concentrated HCl, it was centrifuged

for 10 min. The supernatant was tested and labeled with HCl-Pt (HCl

extracted total P). HCl-P = HCl-Pt -HCl-Pi (6) Of concentrated

H2SO4, 5 mL was added to the soil residue. The sample was treated

with H2O2 and digested several times at 360°C. The sample was

shaken, filtered, and set aside for a short period. The supernatant was

referred to as Residual-P. Table S1 shows the recovery rate of the

Hedley-P fraction.
2.5 31P nuclear magnetic
resonance measurements

The Swiss Bruker AVANCE III Bruker-500MHz nuclear

magnetic resonance instrument installed at Jilin University and

Shenyang Agriculture University was used to perform liquid-state
31P-NMR spectroscopy of soil samples (extracts) (30, 31). The soil

sample was pretreated by passing approximately 3.00 g through a 2

mm sieve into a 100 mL centrifuge tube and treating it with a 60 mL

mixture of 0.25 mol L–1 NaOH and 0.05 mol L–1 Na2EDTA extractant

at a water-soil ratio of 20:1. After mixing, the sample was shaken for

16 h at 20°C before being centrifuged (20°C, 10000 g, 20 min) and the

supernatant filtered through a 0.45-micron filter membrane. A small

amount of the extract, about 15 mL, was frozen. After dissolving the

lyophilized sample in 1 mL of 0.25 mol L–1 NaOH, it was centrifuged

for 5 min (4°C, 10000 g). The supernatant was removed. Before being
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transferred to a 5 mm NMR tube for analysis, 0.6 mL of supernatant

was treated with 0.05 mL of D2O. After digesting 5 mL of the filtered

extract with the H2SO4-HClO4 mixture, the total extracted P

concentration in the soils was determined using ICP-OES. The

standard was orthophosphoric acid (85%) with a chemical shift of 6

ppm (32), and the other peaks were assigned to P forms based on the

spiked experiment results and references (30, 33, 34). Although the

spin-lattice relaxation times for these samples were not measured

using 31P-NMR, the delay time was estimated using the P/(Fe + Mn)

ratio for these extracts (6). Using the MestReC software, the nuclear

magnetic resonance spectra were plotted, and the integrals and peak

areas were calculated. Through integration, we also used MestReNova

software (Mestrelab Research, S.L., Spain) to determine the relative

proportion of each compound in the spectrum. We calculated the

concentration of all compounds in each group from the total

extracted P concentration and obtained relative proportion.
2.6 Statistical analysis

SPSS 21.0 (IBM Corp., Armonk, NY, USA) was used for the

statistical analyses. The data are presented as arithmetic means with

standard deviations. Before analysis, data were checked for variance

homogeneity (Levene’s test) and residual normality (Shapiro-Wilk

test) and transformed to log or square root if necessary. A one-way

analysis of variance procedure was used to test the effect of different

fertilization treatments on soil properties and NaOH-EDTA P

extraction. To determine whether the differences in P forms

between treatments were significant, the least significant difference

(LSD) test was used (P <0.05). The correlations between the P

fractions and P forms were investigated using Pearson’s

correlation coefficients.
3 Results and discussion

3.1 Changes in soil properties,
P uptake, and yield

Several studies have found that some biochar contains a high

concentration of base cations, which can cause a significant increase

in soil pH (35, 36). In our soils, chemical fertilizers significantly

decreased soil pH. The combination of corn stover (and its biochar)

and chemical fertilizers application did not increase soil pH compared

to the initial soil pH (Figure 1). This meant that the soil pH remained

unchanged, and the combination of corn stover (and its biochar) and

chemical fertilizer application reduced the impact of chemical

fertilizer to some extent. Soil total C increased significantly with the

combination of biochar and chemical fertilizers application, followed

by the combination of corn stover and chemical fertilizers application

when compared to the control treatment (Figure 1). Indeed, biochar

was found to be more beneficial to soil C accumulation than corn

stover application (37). The aging process influences biochar

decomposition and mineralization, increasing soil organic C. (38).

The study found that total N was lowest in control soils. Highest in

soils treated with NPK (Figure 1). The alkali-hydrolyzable N was

reduced compared to the initial soil, whether fertilized or not. The
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minimum value was obtained in the control soils (Figure 1). In

comparison to the control soils, the combination of biochar and

chemical fertilizers application slightly increased alkali-hydrolyzable

N, indicating that N availability increases when biochar and chemical

fertilizers are combined. These findings were consistent with those of

Fiorentino et al. (39), who discovered that biochar could reduce

inorganic N immobilization in natural soil and fertilizers by

increasing microbial activity. Our research found that the highest

C/N ratio was 11.5 in biochar application, ranging from 9.8 to 11.5 in

all treatments. Other studies suggested that higher C/N ratios

occurred in applied amounts of biochar as more stable C input to

soils (40).

Higher total P levels were found after the soil was treated with a

combination of biochar and chemical fertilizers, which coincided with

high organic matter additions (Figure 2), indicating that adding the

combination of biochar and chemical fertilizers increased total P.

Both biochar (41, 42) and corn stover (43, 44) are likely to be good

sources of P. The plots with the highest increase in Olsen-P had a
Frontiers in Soil Science 04
combination of corn stover, and chemical fertilizers applied. The

second-largest had a combination of biochar and chemical fertilizers

applied (Figure 2). The Olsen-P level in the chemical fertilizer-added

soils then increased to the level in the initial soils when compared to

the control soil. These findings indicated that adding P to mineral and

organic sources positively affected Olsen-P, which could be attributed

to Olsen-P being directly transformed by labile organic P produced by

additional mineral fertilizer or stover application (45, 46).

Furthermore, biochar’s surface is rich in oxygen-containing

functional groups. Its negative charge and complex pore structure

endow it with a high cation exchange capacity and adsorption

capacity (47). When biochar combined with chemical fertilizer,

biochar could be used as a slow-release fertilizer carrier to delay the

release of fertilizer nutrients. 5 years of Olsen-P changes that could be

attributed to P were added at high rates (39 kg ha–1 yr–1).

Corn’s increased P uptake after the addition of corn stover (and

its biochar) and chemical fertilizers was most likely due to an increase

in soil organic matter and pH value (Figures 1, 2). In contrast to
FIGURE 1

Effects of the different treatments on soil pH, alkali-hydrolyzable N, total N, total C, and C/N ratio. Error bars represent standard deviation, n = 3.
Different letters in a column indicate significant differences at the 0.05 level. CK0: initial soil; CK: non-fertilizer; NPK: NPK fertilizer; CNPK: biochar + NPK
fertilizer; SNPK: corn stover + NPK fertilizer.
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Barrow et al. (48), a pH of 5 may have promoted plant P uptake. This

deviation from our results could be attributed to differences in soil

parent material, soil P content, and crop variety. The highest yield was

obtained in the combination of biochar and chemical fertilizers, and

there was no significant difference between chemical fertilizers and

the combination of corn stover and chemical fertilizers. Therefore, we

propose that adding the combination of biochar and chemical

fertilizers may be a more effective strategy for increasing soil total

P, P uptake by corn, and yield; however, the effects of biochar on P

uptake from soil P and plants remain unknown.
3.2 Changes in Hedley-P fractions

The combination of biochar and chemical fertilizers resulted in a

significant increase in total Hedley-P fraction concentrations

(Figure 3). Resin-P increased more when biochar and chemical

fertilizers were used together than when corn stover and chemical

fertilizers were used together. It increased slightly in chemical

fertilizer soils, as it did in corn stover and chemical fertilizer soils.

This could be attributed to changes in soil properties and higher

availability of P in soils. The current study found no significant

differences between initial soil and control soils at NaHCO3-Pi,

indicating that five years of planting had no effect on NaHCO3-Pi,

and there were no significant differences between fertilized treatments

at NaHCO3-Pi (Figure 3). NaOH-Pi followed a similar pattern to

NaHCO3-Pi, with the lowest levels found in control soils. Our

findings revealed that the combination of corn stover (and its

biochar) and chemical fertilizer application increased the content of

inorganic P fractions. The organic P fractions (NaHCO3-Po and

NaOH-Po) of biochar with chemical fertilizers were significantly

higher than that of the combination of corn stover and chemical

fertilizers. This could be due to the distinct physical properties of

biochar, which is also a rich source of organic P fractions than corn

stover. On the other hand, it could be due to the interaction of

chemical fertilizers and biochar/corn stover. NaOH-Po is commonly

referred to as sorbed P, and biochar with a larger surface area has a

greater adsorption capacity for sorbed P. Furthermore, biochar

influences soil P adsorption capacity by influencing various factors,

including soil pH, P content, cation content, and microbial activity. In

all treatments, Resin-P followed the same pattern as NaHCO3-Po. In

this study, we found no significant effects of chemical fertilizers or the
Frontiers in Soil Science 05
combination of corn stover and chemical fertilizers soils on Residual-

P, but the opposite was true for HCl-P, which was lowest in the

combination of biochar and chemical fertilizers soils and highest in

chemical fertilizers soils (Figure 3). In comparison to chemical

fertilizers, the application of corn stover (biochar) and chemical

fertilizers can increase soil available P content by changing soil pH.

The findings of our study were also consistent with previous research

(49, 50).
3.3 Changes in P forms

The solution 31P-NMR of NaOH-EDTA soil extracts collected

from all treatments is depicted in Figure 4. Adenosine

monophosphate (AMP) and inositol hexakisphosphate were

identified as the orthophosphate monoester peaks (IHP; Figure 5).

Neo-IHP and D-chiro-IHP were found in the initial soil; additionally,

neo-IHP was found in the combination of corn stover and chemical

fertilizers soils, and D-chiro-IHP was found in the combination of

biochar and chemical fertilizers soils. This could be related to their

origins, as D-chiro-IHP can be derived from plants and microbes,

whereas neo-IHP can be derived from microbes (24, 51).

Based on 31P-NMR, the combination of biochar and chemical

fertilizer application significantly increased the contents of total

inorganic P and orthophosphate compared to the other treatments

(Figure 6). This could be related to soil pH, organic matter, and total

P. Furthermore, when compared to control soils, the use of chemical

fertilizers significantly increased orthophosphate content. Our data

showed that orthophosphate had a different trend than Olsen-P,

which could be attributed to differences in soil properties. On the

other hand, pyrophosphate exhibited the opposite trend as

orthophosphate, with pyrophosphate in biochar soils being the

lowest of all treatments. Pyrophosphate is produced by microbial

activity in soils (52).

Total organic P based on 31P-NMR was higher in the SNPK and

CNPK treatments than in the CK treatment (Figure 6), indicating that

the use of a combination of corn stover (and its biochar) and chemical

fertilizers improved soil P retention when compared to the CK and

NPK treatments. This increase in orthophosphate diester and total

IHP corresponds to an increase in the Po/Pi ratio in the combination

of corn stover and chemical fertilizer soils (Figures 6, 7). Organic P

levels were highest in soils containing a combination of corn stover
FIGURE 2

Effects of the different treatments on soil total P, Olsen-P, and P uptake by corn. Error bars represent standard deviation, n = 3. Different letters in a
column indicate significant differences at the 0.05 level. CK0: initial soil; CK: non-fertilizer; NPK: NPK fertilizer; CNPK: biochar + NPK fertilizer; SNPK:
corn stover + NPK fertilizer.
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and chemical fertilizers; this component of IHP may be derived from

plants (53). This indicated that organic P in soils containing corn

stover and chemical fertilizers was mostly composed of

orthophosphate diester and IHP. The majority of organic P was

orthophosphate monoester (after diester degradation correction, the

monoesters and diesters were corrected by using -glycerophosphate
Frontiers in Soil Science 06
and -glycerophosphate as the diesters, as shown below; Figure 7).

Furthermore, orthophosphate monoester and total IHP followed a

similar pattern, with orthophosphate monoester being highest in soils

containing corn stover (and biochar) and chemical fertilizers and

lowest in control soils. Organic P increases due to the application of

chemical fertilizers, and corn stover (and its biochar) are primarily
FIGURE 3

Effects of the different treatments on soil P fractions in the Hedley improvement method (1993). Error bars represent standard deviation, n = 3. Different
letters in a column indicate significant differences at the 0.05 level. Resin-P: resin exchanged P; NaHCO3-Pi and NaHCO3-Po: NaHCO3 extracted state
inorganic P and organic P; NaOH-Pi and NaOH-Po: NaOH extracted state inorganic P and organic P; HCl-P: 1 mol L dilute hydrochloric acid to extract
P; and Residual-P: residual P. CK0: initial soil; CK: non-fertilizer; NPK: NPK fertilizer; CNPK: biochar + NPK fertilizer; SNPK: corn stover + NPK fertilizer.
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composed of P microbial products such as the easily mineralizable

orthophosphate monoester form AMP, stable total IHP (24) and

orthophosphate diester (34, 54). The combination of corn stover (and

its biochar) and chemical fertilizers, as well as the porous structure of
Frontiers in Soil Science 07
the combination of corn stover (and its biochar), provided a habitable

environment for soil microorganisms, particularly biochar. After

applying the combination of corn stover (and its biochar) and

chemical fertilizers, the initial soil had the highest value of
FIGURE 4

Examples of solution 31P nuclear magnetic resonance spectra for all treatments.
FIGURE 5

The solution 31-phosphorus nuclear magnetic resonance spectra of the biochar-treated sample and the orthophosphate and monoester under different
treatments in detail (5.4 to 3.0 ppm). a: adenosine monophosphate; b: myo-Inositol hexakisphosphate; c: scyllo-Inositol hexakisphosphate; d: neo-
Inositol hexakisphosphate; and e: D-chiro-Inositol hexakisphosphate. CK0: initial soil; CK: non-fertilizer; NPK: NPK fertilizer; CNPK: biochar + NPK
fertilizer; SNPK: corn stover + NPK fertilizer.
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orthophosphate diester (after diester degradation correction),

followed by the combination of corn stover (and its biochar) and

chemical fertilizers. Similarly, the highest level of DNA was found in

the initial soil, followed by the combination of corn stover (and its

biochar) and chemical fertilizers soils, but not in the control soil. This

is because high orthophosphate diester or DNA levels indicate high

microbial biomass, whereas control soils had the lowest soil organic C

levels (Figure 1).
3.4 Relationships among Hedley-P
and P forms

Orthophosphate was the inorganic P fraction most positively

correlated with Resin-P and P uptake by corn (P <0.05, Table 1). This

could be due to the fact that orthophosphate and Resin-P were
Frontiers in Soil Science 08
available P that plants could absorb in the soil (55, 56). The

majority of the Hedley-P fractions (Resin-P, NaHCO3-Pi, NaHCO3-

Po, NaOH-Po, and Residual-P) and corn P uptake were inversely

related to pyrophosphate. Only AMP showed significantly positive

correlations with NaHCO3-Pi, NaOH-Pi, and P uptake by corn in all

organic P forms (P <0.01). Resin-P, NaHCO3-Pi, and NaOH-Pi were

positively related to orthophosphate and AMP. In this study, P uptake

by corn was found to be strongly related to AMP, NaHCO3-Pi, and

NaOH-Pi. This result suggested that AMP, NaHCO3-Pi, and NaOH-

Pi could be long-term P sources.
4 Conclusions

The application of corn stover (and its biochar) in combination

with chemical fertilizers significantly increased soil pH, Olsen-P,
FIGURE 6

Effects of different treatments on total inorganic P, total organic P, orthophosphate, pyrophosphate, and organic P/inorganic P ratio by solution 31-
phosphorus nuclear magnetic resonance spectra. Error bars represent standard deviation, n = 3. Different letters in a column indicate significant
differences at the 0.05 level. CK0: initial soil; CK: non-fertilizer; NPK: NPK fertilizer; CNPK: biochar + NPK fertilizer; SNPK: corn stover + NPK fertilizer.
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FIGURE 7

Effects of different treatments on c monoester, c diester, total inositol hexakisphosphate, adenosine monophosphate (AMP), and deoxyribonucleic acid
(DNA) by solution 31-phosphorus nuclear magnetic resonance spectra. Error bars represent standard deviation, n = 3. Different letters in a column
indicate significant differences at the 0.05 level. c: denotes the correction for degradation products. CK0: initial soil; CK: non-fertilizer; NPK: NPK
fertilizer; CNPK: biochar + NPK fertilizer; SNPK: corn stover + NPK fertilizer.
TABLE 1 Correlation coefficients among P forms, Hedley-P fractions, and P uptake by corn.

P fraction Orthophosphate Pyrophosphate c Monoester Total IHP AMP c Diester DNA P uptake by corn

Resin-P 0.899* -0.575 -0.044 0.229 0.439 0.415 0.556 0.855*

NaHCO3-Pi 0.480 -0.088 0.557 0.481 0.989** 0.693 0.566 0.990**

NaHCO3-Po 0.498 -0.561 0.017 0.281 0.729 0.449 0.574 0.733

NaOH-Pi 0.291 0.037 0.418 0.372 0.952** 0.621 0.607 0.928**

NaOH-Po 0.540 -0.503 -0.031 0.247 0.533 0.447 0.577 0.587

HCl-P –0.145 0.055 0.231 0.085 0.449 -0.094 -0.242 0.287

Residual-P 0.463 -0.455 -0.365 -0.433 0.085 -0.266 0.190 0.023

P uptake by corn 0.863* -0.027 0.411 0.752 0.962** 0.580 0.549
F
rontiers in Soil Scien
ce
 09
c, denotes the correction for degradation products. Indicating significance (Person coefficient are as follows: *P < 0.05; **P < 0.01).
(n = 15).
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alkaline hydrolysis N, organic C, P uptake, and yield. The application of

corn stover in combination with chemical fertilizers increased the levels

of total organic P-NMR, organic P/inorganic P ratio, pyrophosphate,

orthophosphate monoester, IHP, orthophosphate diester, and DNA.

Biochar application increased Hedley-P fractions, total inorganic P-

NMR, orthophosphate, and DNA in the soil. Fertilization can increase

AMP regardless of the fertilizer source (chemical fertilizer, corn stover,

or biochar). The combination of corn stover (and its biochar) and

chemical fertilizer application in soils resulted in increased AMP and

IHP, as well as inorganic P, particularly in biochar. Orthophosphate

was found to have a strong positive relationship with NaHCO3-Pi and

NaOH-Pi, both of which showed significant positive correlations with P

uptake by corn. In the long run, AMP, NaHCO3-Pi, and NaOH-Pi,

which were potential P sources in soils, may be available to plants.

Using biochar in combination with chemical fertilizers appears to be

the most effective strategy for increasing P forms content, corn yield

and P uptake.
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