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Introduction: The rhizosphere community composition has been shown to

provide benefits in nutrient acquisition and plant health. Rhizosphere

communities can be heavily influenced by cultural practices in citrus

production systems, providing benefits in soil and root health, and plant

physiology. Florida growers are implementing new and more sustainable soil

management practices, such as using fabric mulch ground covers to improve

weed and pest control, while retaining soil moisture. Little is known regarding the

influence of these ground covers on the rhizosphere microbial communities of

lemon trees, especially under endemic Huanglongbing pressure. Understanding

how lemon roots and the rhizosphere microbiome are influenced by fabric

mulch ground covers can potentially lead to improved management practices.

The aim of this research was to evaluate the effects of fabric mulch ground

covers on lemon tree rhizosphere health.

Methods: The experiment was conducted in a commercial citrus grove located in

Fort Pierce, FL, US. Plant material consisted of four-year old lemon trees cv. ‘Meyer’

(Citrus limon) grafted on ‘sour orange’ (Citrus × aurantium) rootstocks. The experiment

consisted of two treatments, which included trees grown with fabric mulch ground

covers and trees grown without fabric mulch ground covers. Rhizosphere DNA was

extracted, sequenced, and analyzed to assess differences in diversity and composition

(alpha and beta diversity) of rhizosphere bacteria among treatments.

Results and Discussion: Obtained results showed that lemon trees treated with

fabric mulch ground covers had significantly greater rhizosphere bacterial

diversity when compared to the uncovered trees. The presence of fabric

mulch ground covers resulted in significantly greater soil Zn, soil Mn, soil

temperatures and pH, potentially contributing towards the significant more

diverse rhizosphere bacterial community composition compared than those

grown without fabric mulch ground covers.
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Introduction

Huanglongbing is a disease that impacts citrus on a global scale

and has reduced citrus production in Florida by more than 67%

over the course of 15 years. The bacterium Candidatus Liberibacter

asiaticus (CLas) has been associated with HLB (1, 2). CLas is

transmitted through the Asian citrus psyllid (ACP; Diaphorina

citri; (3, 4) Currently, there is no known cure for HLB, and

although some citrus germplasm can show a degree of tolerance,

there are no HLB-resistant cultivars or rootstocks (5, 6).

Use of cultural practices in citrus production systems can

provide benefits in soil health, plant physiology, distribution of

roots, and plant health (7, 8). It has been shown that cultural

practices could improve the functional and structural status of a

root system (9). Soil conditions such as temperature, structure, and

aeration increases root function (8). Cultural practices, such as

fabric mulch ground covers, have been shown to reduce the

pressure of pests and weeds on crops (8). By covering the soil

surface, ground covers protect the topsoil by reducing mechanical

damage and soil erosion that would be caused by rainfall (10).

Furthermore, ground covers better assist in the maintenance of soil

moisture for production systems, by reducing the rate of

evaporation from the soil surface (11). However, much of the

fabric mulch ground cover research has been applied to annual

row crops, and recently grapefruit (Citrus × paradisi) (8).

Use of fabric mulch ground covers in Florida sandy soils can

also benefit soil health by reducing rates of nutrient leaching, via

decreased lateral movement of water. Reduced leaching rates allow

for nutrients to persist within the root zone, increasing the

availability of plant essential minerals that are critical towards

plant health. Phosphorus (P), for instance, is an essential nutrient

because it plays a key role in cell division and growth of

meristematic tissues (12). Sufficient soil P is also crucial for root

growth, notably for lateral and fibrous root development (12).

Additionally, Potassium (K) is critical for physiological functions,

some of which include the metabolism of sugar and starch, and cell

division (13). In terms of citrus, K has vital interaction with the

supply of carbon dioxide (CO2) by controlling the opening and

closing of stomata (13). Furthermore, zinc (Zn) is integral to

enzyme systems, as it facilitates metabolic processes in plants,

which include RNA polymerases, superoxide dismutase, and

protein synthesis (14). Zinc is also utilized by plants to assists in

the production of auxins that promote growth, chlorophyll, and

carbon metabolism (14).

Changes to the soil characteristics provided by ground covers

may have subsequent effects on microbial communities residing

within the bulk soil and rhizosphere. Many of these microorganisms

are sensitive to changes in soil moisture and temperature, and pH,

which are soil characteristics affected by ground cover use (11, 15).

These live close to, on, and inside the root tissues, and include

bacteria, archaea, and fungi. Collectively these microorganisms

form communities associated with different rhizosphere zones,

which include the rhizoplane, ecto-rhizosphere (zone of this

study’s interest), and endo-rhizosphere (16). Microorganisms

within the rhizosphere can affect plant health by providing a

supply of essential nutrients (e.g., nitrogen fixation or phosphate
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solubilization), promoting plant growth via phytohormone

production, and maintaining plant health through release of

antibiotics that reduce growth and establishment of pathogenic

organisms (17, 18).

During periods of stress (e.g., lack of water or nutrient

availability), plants often respond by releasing root exudates that

recruit beneficial microbes, also known as plant growth promoting

rhizobacteria (PGPR), from the bulk soil to the rhizosphere. Plant

growth promoting rhizobacteria (PGPR) are bacteria that reside

within the rhizosphere and have the capability to promote plant

development (19). Some beneficial functions provided by PGPR

include the ability to break down immobile nutrients into soluble

forms that can readily be up taken by roots of plants, including the

ability to assist in plant host defenses through the production of

antibiotics (e.g. lipopeptides, polyketides and antifungal

metabolites) that suppress pathogens and natural outcompete

pathogenic organisms that can negatively impact plant health (20,

21). Furthermore, some of these root-associated microbes are

beneficial to citrus. For example, Pseudomonas, Agrobacterium,

Bradyrhizobium, Rhizobium, and Burkholder have all been found

to inhibit plant disease, specifically under Huanglongbing (HLB)

(22–25). Further analysis of the effects shared between fabric mulch

ground covers and citrus is needed to determine possible

implications on citrus root and rhizosphere health, which is

especially important under endemic HLB conditions (26, 27).

The objective of this study was to examine the effect of fabric

mulch ground covers on citrus rhizosphere community

composition, and subsequent effects on citrus root and soil

health. It is predicted that the increased soil moisture, soil

temperatures and pH from ground covers will result in a more

diverse citrus rhizosphere composition. Additionally, since the

fabric mulch ground covers are expected to retain more water

and nutrients in the root zone, it is hypothesized that lemon trees

treated with fabric mulch ground cover will result in a lower HLB

bacterial titer count when compared to uncovered trees.
Materials and methods

Site description and experimental design

The experiment took place on an 81 Ha commercial citrus

grove, located in Fort Pierce, FL (Latitude 27.462778; Longitude

-80.540833) (Figure 1A). From the 81 Ha, 1.6 Ha were utilized for

this study. Four-year old lemon trees cv. ‘Meyer’ (Citrus limon)

grafted on ‘sour orange’ (Citrus × aurantium) rootstocks were

planted on raised beds in 2019 and immediately covered with a

fabric mulch system as a ground cover. The fabric mulch ground

cover utilized in this study was manufactured by Lumite, Inc (http://

www.lumiteinc.com/products/groundcover) and is comprised of a

blend of woven fabrics and UV polypropylene that allows passage of

water and nutrients at a rate of 720 L min/m2. Additionally, marker

yarns were knitted with a 30 cm spacing. The soil that the trees were

grown is classified by the United States Department of Agriculture

(USDA) as an ‘Alfisol’mainly comprised of ‘Riviera’ fine sand soils,

characterized by both sandy and loamy sediments (USDA, Accessed
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on 9/2022). The grove was managed with an automated irrigation

controller that uses soil moisture data for irrigation scheduling.

Irrigation was provided through a micro-sprinkler irrigation system

with one micro-sprinkler per tree providing 29.15 Lph at a pressure

of 1.38 bar. Two Acclima Time Domain Transmissometer (TDT)

SD-12 soil moisture sensors per treatment were installed vertically

at 7.62 cm below ground level with a rod that measures the average

moisture between 7-20 cm depth. The sensors collected soil

moisture data every 30 minutes for the time of this study and a

traceable thermometer (Fisher Scientific, Waltham, MA, USA) was

used to retrieve soil temperature data. Rhizosphere sampling took

place in June 2021. Additionally, root health was assessed using

both root nutrients contents and root scans in June 2021.

The experiment consisted of a completely randomized block

design with two treatments, which included trees grown with fabric

mulch ground covers and trees grown without fabric mulch ground

covers (Figure 1B). There was a total of 25 trees within each

treatment, including five replication per treatment. A total of 5

trees from each treatment were randomly selected for rhizosphere

sampling, thus providing 5 replicates per treatment.
Soil and leaf nutrient analysis

A soil auger (One-Piece Auger model #400.48, AMS, Inc.,

American Falls, ID, USA) 7 cm in diameter and 10 cm in depth

was used to collect soil samples, which were later analyzed for

nutrition. A single core was taken within the irrigated zone (80 cm
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from the stem of the tree) from 5 trees in the covered and 5 trees in

the uncovered treatments across 10 different experimental blocks.

Soil samples were analyzed for pH, cation exchange capacity (CEC)

and nitrogen, phosphorous, potassium, magnesium, calcium, sulfur,

boron, zinc, manganese, iron, and copper.

Soil samples were dried overnight and soil nutrients concentration

was determined using Mehlich III extraction (28). Briefly, 2.5 g of soil

were sieved through a 0.5 mm screen (10 mesh) into an extraction

tube (125 mL). A 20 mL of Mehlich III extractant solution (0.2 M

CH3COOH + 0.015 M NH4F + 0.013 M HNO3 + 0.001 M EDTA +

0.25 M H4NO3) was pipetted into the extraction tube containing the

dry soil samples. The extraction tubes were placed on a mechanical

shaker for 5 minutes. The soil suspension was filtered and placed into

inductively coupled plasma (ICP) racks. Soil nutrients concentration

was determined using ICP optical emission spectroscopy (ICP-OES,

Spectro Ciros CCD, Fitzburg, MA, USA) (29). The ICP machine was

calibrated following manufacturer instruction. The calibration was

verified using verification standards and quality controls were ran

every 40 samples. Concentrations values from ICP read directly in lbs/

A and were later converted in kg/ha.

Leaf samples were rinsed with deionized water to remove excess

nutrients from the sample surface. Samples were then dried at 80 °C

overnight. After drying, samples were ground using a Thomas

Wiley mill (Thomas Scientific, Swedesboro, NJ, USA) to pass

through a 1.0 mm (20 mesh) screen. Ground samples were

collected in a 20 mL vial and kept at room temperature. Five mL

of concentrated HNO3 was added to each sample. Samples were

than covered with a watch glass and then the tubes were placed on a
B

A

FIGURE 1

Lemon tree grove (A) and experimental design (B) of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and grown with or
without fabric mulch ground covers.
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digestor (DigiBlock 3000, SPC Science, USA) at 95 °C for 90

minutes. Tubes were placed out of the digestor and four mL of

30% H2O2 were added to each tube and the tubes were placed back

to the digestor for 20 minutes. Tubes were thane cooled for 2

minutes and distilled water (DI) H2O was added to each tube to

reach the 50 mL volume mark. Samples were then examined using

an ICP-MS spectrophotometer (Spectro Ciros CCD, Fitzburg, MA,

USA) (30). Calibrations were obtained using DI H2O as a blank

couple with a set of standards. A quality check was run every 48

samples. The nutrient concentrations obtained from the ICP-MS

were expressed by percentage of tissue dry mass.
Root parameter analysis

Root length was measured using the CID Bio-Science CI-602

Minirhizotron system (CID Bioscience, Inc. Camas, WA, USA).

Each of the tubes consisted of 3 different scannable windows at

different depths. All 3 windows in every tube were scanned during

each sampling point. After the images were acquired, root length

and density were calculated using RootSnap™ software (Software

Version 1.3.2.25).
Huanglongbing (HLB) bacteria titer

Plant material utilized for CLas DNA concentration analysis

consisted of HLB-symptomatic, mature, and fully expanded leaves.

Among the trees that were selected for sampling, 4 leaves were

sampled from the 4 cardinal sections. Leaf sampling took place in

June 2021. Once collected, midribs were excised and chopped

together (100 mg total). Samples were cooled with liquid nitrogen

immediately prior to bead beating. The DNA was then extracted

from freshly ground midrib using the DNeasy Plant Mini kit®

(Qiagen, Hilden, Germany) following the kit protocol, except

eluting with 2 rounds of 0.05 cm3 of extraction buffer instead of 2

rounds of 0.10 cm3. Quantification of CLas DNA was done with

Applied Biosystems 7500 Fast Real-Time PCR System (Thermo

Fisher Scientific, Waltham, MS, USA) using the CQULA primers/

probe set (31) with a standard curve of 101 to 106 copies of pLBA2

plasmid (32). The PCR reaction was performed in a 25 µL reaction

mixture containing 1 × PCR buffer (Bio-Rad Master Mix), 0.8 µm of

each primer, 0.2 µm TaqMan probe and the appropriate amount of

DNA template. The iCycler IQ Multiplex Real Time PCR DNA

System (Bio-Rad) was used with the following program for DNA

amplification: 95°C for 1 min, 45 cycles each of 95°C for 15 s, 59°C

for 15 s and 72°C for 45 s. During the extension step (72°C for 45 s)

of each cycle the fluorescent signal was generated from the excited

reporter dye-labelling probe. Any samples that consisted of a cycle

threshold (Ct) below 38 were deemed CLas-positive (33).
Rhizosphere DNA isolation

Rhizosphere samples were taken shortly after bulk soil sampling,

from the same 5 trees in the covered and 5 trees in the uncovered
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treatments across the 10 different experimental blocks. The samples

consisted of rhizosphere soil (located around the roots) being lightly

shaken from the roots and placed in 50 ml sterile tubes.

Approximately 50 g of rhizosphere soil was collected from each

plant. Samples were stored at -20°C prior to DNA extraction.

Approximately 15 mL of sterile Phosphate Buffered Saline (800 ml

distilled water, 8 g NaCl, 0.2 g KCl, 1.44 g Na2PO4, 0.24 g KH2PO4)

was added to the sample, and shaken by hand for 15 seconds. Roots

were removed with forceps and discarded, the remaining soil was

centrifuged at 3000 G for 15 minutes, and the supernatant was later

discarded. Soil DNA was extracted from 0.25 g of the soil pellet using

the DNeasy PowerSoil Kit (Qiagen Inc., Germantown, MD, USA)

according to the manufacturer’s instructions.
DNA quantification

A Qubit fluorometer (Thermofisher Scientific, Waltham, MA,

USA) was used to quantify extracted DNA and determine if DNA is

concentrated enough for sequencing (> 1 ng ml-1). Rhizosphere
DNA was amplified and sequenced at the Genomics and

Microbiome Core Facility at Rush University (Chicago, IL, USA).

Rhizosphere DNA was PCR amplified with primers CS1_515F

and CS2_926R targeting the V4-V5 variable regions of microbial

small subunit ribosomal RNA genes. Amplicons were generated

using a two-stage PCR amplification protocol as described

previously. The primers contained 5’ common sequence tags

(known as common sequence 1 and 2, CS1 and CS2). First stage

PCR amplifications were performed in 10 µL reactions in 96-well

plates, using repliQa HiFi ToughMix (Quantabio). PCR conditions

were 98°C for 2 min, followed by 28 cycles of 98°C for 10 s, 50°C for

1 s and 68°C for 1 s.

Subsequently, a second PCR amplification was performed in 10

µL reactions in 96-well plates using repliQa HiFi ToughMix. Each

well received a separate primer pair with a unique 10-base barcode,

obtained from the Access Array Barcode Library for Illumina

(Fluidigm, San Francisco, CA, USA). One microliter of PCR

product from the first stage amplification was used as template

for the 2nd stage, without cleanup. Cycling conditions were 98°C for

2 minutes, followed by 8 cycles of 98°C for 10 s, 60°C for 1 s and 68°

C for 1 s. Libraries were then pooled and sequenced with a 15%

phiX spike-in on an Illumina MiSeq sequencer employing V3

chemistry (2 × 300 base paired-end reads). Library preparation

and sequencing were performed at the Genomics and Microbiome

Core Facility (GMCF) at Rush University (Chicago, IL, USA).
Rhizosphere analysis

After sequencing, bioinformatic data was processed using

DADA2 (34) within the Qiime 2 (35) package. Raw sequences

were demultiplexed. DADA2 was used to filter chimeras, primers,

and adapters, as well as assemble pair-ended sequences. Taxonomy

was assigned to amplicon sequence variants (ASVs) with the

reference datasets SILVA 128 database for 16S rRNA using naïve

Bayes classifier in Qiime2 (36).
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Plant and soil data statistical analysis

A Student’s t-test was performed with R software 3.6.0

(RStudio, Boston, MA, USA). Main effect means were separated

using Tukey’s honestly significant difference post-hoc test.

Differences were considered significant when p values were less

than or equal to 0.05.
Rhizosphere composition statistical
analysis

Alpha and beta diversity analyses of the bacterial community

were performed on log-normalized data to avoid an increase in

error rates due to rarefaction (37) with the R package “Phyloseq”

v1.24.0 (38). Alpha diversity analyses included the number of

observed ASVs (Shannon index), whereas beta diversity analyses

included principal coordinate analysis (PCoA) on weighted

UniFrac distances. A two-way analysis of similarities

(ANOSIM) test was performed to determine significant

differences in beta diversity between treatments. Canonical

correspondence analysis (CCA) was performed to visualize the

interactions between the rhizosphere bacterial communities

among fabric mulch ground cover treatments, soil and root

parameters, and soil nutrient concentrations. An analysis of

similarity (ANOSIM) based on 999 permutations was then used

to make multivariate comparisons of groups obtained with CCA

to better determine the significance of the soil and root

parameters and soil nutrient concentrations on rhizosphere

bacterial community composition.
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Results

Impact of fabric mulch ground covers on
leaf mineral contents

Lemon trees planted without fabric mulch ground covers had a

greater leaf macronutrient concentration of N, P, Mg, Ca, and S

compared to trees treated with fabric mulch ground covers

(Figure 2A). Conversely, lemon trees treated with fabric mulch

ground covers had a greater leaf macronutrient concentration of K

compared to those planted without fabric mulch ground covers

(Figure 2A). Lemon treated with fabric mulch ground covers had a

greater leaf micronutrient concentration of Zn, Mn, and Cu

compared to trees planted without fabric mulch ground covers

(Figure 2B). Alternatively, Lemon planted without fabric mulch

ground covers had a greater leaf micronutrient concentration of B

and Fe than those treated with fabric mulch ground covers

(Figure 2B). However, no significant differences were detected in

both leaf macro- and micronutrient contents.
Impact of fabric mulch ground covers on
soil mineral concentrations

Lemon trees treated with fabric mulch ground covers had

greater soil macronutrient concentrations of K, P and Ca

compared to those planted without fabric mulch ground covers

(Figure 2C). Lemon trees planted without ground covers had

greater soil macronutrient concentrations of Mg, and S than those

treated with fabric mulch ground covers (Figure 2C). Lemon treated
B

C

D

A

FIGURE 2

Macronutrients (A, C) and Micronutrients (B, D) in leaves and soil of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and
grown with or without fabric mulch ground covers. Bars are ± standard deviation of the mean. Treatments with * were considered significantly
different (p<0.05).
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with fabric mulch ground covers had a statistically significantly

greater soil micronutrient concentration of Mn (180% higher) and

Zn (100% higher) than those planted without fabric mulch ground

covers (Figure 2D). Greater soil micronutrient concentrations of Fe

and Cu were also found in lemon trees treated with fabric mulch

ground covers when compared to those planted without fabric

mulch ground covers, but these differences were not significant

(Figure 2D). Lemon planted without fabric mulch ground covers

had a greater soil micronutrient concentration of B compared to

those treated with fabric mulch ground covers (Figure 2D).
Impact of fabric mulch ground covers on
root growth

Total root length and average root diameter did not vary across

treatments. Lemon trees planted without fabric mulch ground

covers did not have a greater total root length or average root

diameter when compared to trees treated with fabric mulch ground

covers (Figures 3A, B).
Impact of fabric mulch ground covers on
HLB bacteria titer

Lemon trees treated with fabric mulch ground covers had a

greater titer count (31.78) than those planted without ground covers

(27.96). However, the difference was not statistically significant. The

Ct values of trees from both treatments indicate that the trees were

HLB positive (Figure 4).
Impact of fabric mulch ground covers on
soil parameters

Differences in parameters, such as pH, CEC, moisture, and

temperature, were found in soils of lemon trees across treatments.

The pH of soils treated with fabric mulch ground covers was

significantly greater (23% higher) compared to those without

fabric mulch ground covers (Figure 5A). The CEC of soils
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without fabric mulch ground covers (7.2 meq/100 g) was not

significantly different from the one with ground covers

(Figure 5B). Soils of lemon trees treated with fabric mulch ground

covers had greater moisture at 12:00 PM and 5:00 PM compared to

those grown without fabric mulch ground covers (Figure 6A). Soils

of lemon trees grown with fabric mulch ground covers exhibited

greater temperatures at all 3 measured timepoints of the day (8:00

AM, 12:00 PM, and 5:00 PM) compared to soils in uncovered trees.

However, these differences were only significant between treatments

at 5:00 PM (Figure 6B).
Impact of fabric mulch ground covers on
rhizosphere bacterial communities

Data was log-transformed to reduce error rates caused by

rarefaction, and later utilized for alpha and beta diversity analyses

of the rhizosphere bacterial community through use of the R

package “Phyloseq” v1.24.0 (38). Rhizosphere bacterial alpha

diversity did vary according to treatments according to the

Shannon index (Figure 7A). Lemon trees treated with fabric

mulch ground covers had a lower bacterial alpha diversity

compared to trees grown without fabric mulch ground covers

(Figure 7A). However, there were no statistically significant results.

Beta diversity analyses included principal coordinate analysis

(PCoA) on Bray–Curtis distances (Figure 7B). A PERMANOVA

test was performed to determine significant differences in beta

diversity between treatments (39). Rhizosphere bacterial beta

diversity was significantly impacted by treatment (Figure 7B).

Rhizosphere bacterial beta diversity of lemon trees treated with

fabric mulch ground covers was significantly greater (p value < 0.05)

compared to those grown without fabric mulch ground covers

(Figure 7B). Furthermore, Bray-Curtis distances had a total

explained variance of 49.86% when estimating beta diversity

between treatments (Figure 7B).

Among the orders of bacteria in the lemon rhizosphere, those

treated with fabric mulch ground covers consisted of a greater

relative frequency of Burkolderiales, Solirubrobacterales,

Gemmatimonadales, Chitinophalages, and Bacillales compared to

those treated without fabric mulch ground covers. Conversely,
BA

FIGURE 3

Total root length (A) and average root diameter (B) of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and grown with or
without fabric mulch ground covers. Bars are ± standard deviation of the mean.
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lemon trees treated without fabric mulch ground covers had a

greater relative frequency of Rhizobiales, Vicinamibacterales,

Gaiellales, Gemmatales, and Pirelluales. Burkolderiales was the

most frequent order of bacteria found in the rhizosphere of

lemon trees treated with fabric mulch ground covers, whereas

Rhizobiales was found to be most frequent in the lemon trees

grown without fabric mulch ground covers (Table 1). There were no

significant differences in the relative frequency of bacterial orders in

response to fabric mulch ground cover use.

There was variation in the relative abundance of bacterial

taxonomic orders among treatments. Lemon trees from the fabric

mulch ground cover treatment had a rhizosphere bacterial

community with a significantly greater abundance of

Saccharimonadales (p < 0.01), Fimbriimonadales (p < 0.05), and

Blastocatellales (p < 0.05). Conversely, a significantly greater

relative abundance of Streptosporangiales was found in the

rhizosphere of lemon grown without fabric mulch ground covers

(p < 0.05) (Table 1).
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The CCA was utilized to examine the impact of soil and root

parameters and soil nutrient concentrations on rhizosphere

bacterial communities (Figure 8). The length of each arrow

corresponds to the relative importance of each environmental

parameter in explaining the variation in rhizosphere bacterial

profiles. An analysis of similarity (ANOSIM) determined that Ct

value, and soil pH and phosphorus were significantly correlated

(p < 0.05) with the lemon rhizosphere bacterial communities

between treatments (Figure 8).
Discussion

Reduced lateral movement of water through the soil profile

during periods of rainfall and irrigation from fabric mulch ground

cover use may have contributed towards significantly greater Mn

and Zn concentrations in soils of lemon trees (Figure 2D). Similar to

the results of this study, even if conducted on a different soil type,
FIGURE 4

Ct value of Candidatus Liberibacter asiaticus (CLas) DNA of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and grown
with or without fabric mulch ground covers. Values below the red-dotted line (38.0) are considered infected by CLas (33). Bars are ± standard
deviation of the mean.
BA

FIGURE 5

pH (A) and cation exchange capacity (B) in soils of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and grown with or
without fabric mulch ground covers. Data were collected in June 2021. Bars are ± standard deviation of the mean. Treatments with * were
considered significantly different (p<0.05).
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Simpson et al. (8) found that soils treated with fabric mulch ground

covers had reduced rates of leaching and increased water

availability, facilitating the availability of nutrients in the root

zone. The greater Zn concentrations found in soils with fabric

mulch ground cover use may have also contributed to the

significantly greater lemon rhizosphere bacterial beta diversity of

trees (Figure 7B). For instance, Zn has been shown to exhibit host–

pathogen interactions, as increased concentrations have been

shown to suppress the growth of potential phytopathogens, thus

promoting soil and plant health (i.e., more diverse rhizosphere

community composition) (40).

When examining the microorganisms that reside in the

rhizosphere, both composition and diversity function as

indicators of plant health, including nutrient acquisition and

cycling (41). Additionally, rhizosphere microbial communities are

sensitive to changes in the plant host and soil environment (42). In

the case of this study, variability in the soil parameters, such as pH

(Figure 5A), moisture (Figure 6A), and temperature (Figure 6B)

across treatments may have influenced lemon tree rhizosphere

community composition (Figure 7B). Increased water availability

provided by fabric mulch ground covers can be linked with the
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significantly greater rhizosphere bacterial beta diversity in lemon

trees. Previous research applied towards the impacts of water

availability on soil microorganisms have brought further

emphasis on the sensitivity of these communities. One study

conducted by Xu et al. (43) found that lack of soil moisture

during periods of drought stress had a negative correlation with

the diversity of sorghum rhizosphere bacterial communities.

Furthermore, both Naylor et al. (44) and Santos-Medellıń et al.

(45) found that lack of soil moisture altered the rhizosphere

bacterial community composition in both other crop species.

Additionally, soil moisture has also been shown to have

subsequent effects on carbon input and rates of decomposition

related to organic matter, thus potentially affecting plant

growth (46).

Increases in nightly soil temperatures (5:00 PM) from fabric

mulch ground cover use may have contributed towards significantly

greater rhizosphere bacterial beta diversity found in lemon trees

(Figure 6B). Similar to our results, Lin et al. (47) found that bamboo

rhizosphere communities that were subject to greater temperatures

resulted in significantly more diverse bacterial communities.

Temperature is commonly a limiting factor associated with soil
BA

FIGURE 6

Moisture (A) and temperature (B) in soils of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and grown with or without
fabric mulch ground covers. Measurements were taken three times (8:00 AM, 12:00 PM and 5:00 PM). No significant differences were reported for
soil moisture. Significant differences were found in soil temperatures between covered and uncovered treatments at 5:00 PM (p=0.049; F = 6.939).
Bars are ± standard deviation of the mean. Treatments with * were considered significantly different (p<0.05).
BA

FIGURE 7

Alpha (A) and Beta Diversity (B) of rhizosphere bacteria of 4-year-old lemon trees planted in flatwood soils located in the Florida, USA and grown
with or without fabric mulch ground covers. Alpha-diversity was measured by Shannon index of rhizosphere bacteria among treatments. Plotted in
figure A are boxes, (interquartile), median (line within each box), and whiskers (lowest and greatest values). A principal coordinates analysis (PCOA)
based on Bray-Curtis dissimilarity matrix of rhizosphere bacterial samples can be found in figure B, where colors indicate treatment and include
covered (blue) and uncovered (orange). Symbol “x” represents the mean of the values.
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microorganism processes, such as respiration and enzyme activity,

affecting overall community composition (48). Additionally,

variation in temperatures can have implications on soil carbon

and nitrogen cycles, potentially affecting overall crop health and

yield (49).

The significant more diverse rhizosphere bacterial

community composition found in lemon trees treated with

fabric mulch ground covers can also be attributed to

significant differences in pH found among treatments

(Figure 5A). Similar to the results of our study, Wan et al. (50)

found that citrus rhizosphere community composition was

predominately influenced by shifts in soil pH. Soil pH serves
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as a notable indicator of rhizosphere characteristics, such as

abundance and diversity (51) and explains more than 69% of the

variation associated with species diversity (52).

The CCA suggests that a strong relationship was shared among

several environmental parameters and rhizosphere bacterial

communities among treatments (Figure 8). Notably, soil pH

significantly correlated with lemon rhizosphere bacterial

communities, which further emphasizes the impact soil pH may

have had on community structure and composition (Figure 8).

Lopes et al. (15) reported on the effects of soil pH on rhizosphere

and root endosphere microbiomes of plants growing in a Sandhills

ecosystem. In addition, a study conducted by Mandakovic et al. (53)
TABLE 1 Relative frequency of bacterial orders in the rhizosphere of 4-year-old lemon trees grown in Florida, USA and treated with fabric mulch
ground covers and without fabric mulch ground covers.

Bacteria Covered Uncovered

Bacillales 3.30% 3.04% ns

Burkholderiales 8.02% 5.34% ns

Blastocatellales 0.7% 0.1% *

Chitinophalages 4.73% 3.82% ns

Fimbriimonadales 0.09% 0.04% *

Gaiellales 2.78% 3.42% ns

Gemmatales 1.96% 2.50% ns

Gemmatimonadales 2.42% 2.14% ns

Pirelluales 1.32% 2.06% ns

Rhizobiales 5.31% 7.22% ns

Saccharimonadales 0.2% 0.1% **

Solirubrobacterales 4.38% 3.62% ns

Streptosporangiales 0.05% 0.1% *

Vicinamibacterales 3.10% 5.34% ns
frontiersin
A Kruskal-Wallis test was used to determine significant differences in the abundance of rhizosphere bacteria among covered and uncovered soils. p-values: * < 0.05, ** < 0.01.
ns, non significant.
FIGURE 8

Canonical correspondence analysis (CCA) of rhizosphere bacterial communities of 4-year-old lemon trees planted in flatwood soils located in the
Florida, USA and grown with or without fabric mulch ground covers. Each dot represents the rhizosphere bacterial community within a sample,
while the colors indicate treatment (trees grown with fabric mulch ground covers in blue and trees grown without fabric mulch ground covers in
orange). Measured parameters include phosphorus (P), potassium (K), cation exchange capacity (CEC), HLB bacterial titer (Ct), soil temperature, soil
moisture, soil pH, total root length, and average root diameter. The * symbol indicates parameters considered significantly different (p<0.05).
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found that soil bacterial diversity was correlated to pH, plateauing at

near-neutral conditions, and declining as pH shifted towards more

acidic and alkaline conditions. Similarly, in our study, the

rhizosphere bacterial communities residing in soils with a near-

neutral pH (7.5) in the fabric mulch ground cover treatment

resulted in a significantly more diverse community composition

compared to those in slightly acidic soils (pH 6.1) of uncovered

lemon trees (Figure 5A). The differences in soil pH between the two

treatments can be attributed to the ground water supply that was

used for irrigation. The water was tested and found to have an

alkaline pH (8.25). The alkaline irrigation water, in addition to the

reduced vertical flow of water due to the fabric mulch ground cover,

and the increased retention of nutrients, lead to an increase of the

soil pH, which translated in an increased diversity of the microbial

communities. Additionally, the CCA infers that rhizosphere

bacterial communities were also significantly correlated with Ct

value (Figure 8). An earlier study conducted by Padhi et al. (54)

utilized a correlation analysis and revealed several significant

correlations between HLB bacterial titers (Ct value) in leaf tissue

and lemon rhizosphere microbial communities, specifically with

bacteria on different taxonomic levels, which included

Betaproteobacteria and Solibacteres, Methylocystaceae, and

Burkholderia. Interestingly, although there were no significant

differences in soil P concentrations between treatments, there was

a significant correlation present between the lemon rhizosphere

bacterial communities across treatments and soil phosphorus

(Figure 8). Other studies have shown that P availability does

exhibit a strong relationship with rhizosphere community

composition (55). For instance, increases in soil P resulted in

greater fibrous root biomass, subsequently improving C

availability to soil microbes, soil microbial biomass, and

rhizosphere community composition (56). Further analysis into

the interaction shared between the soil conditions of fabric mulch

ground covers, nutrient availability, and rhizosphere community

composition may have proven useful in optimizing management

strategies for lemon production.
Conclusion

In this study we examined the impact of fabric mulch ground

covers on both soil and plant parameters, including rhizosphere

community composition. Presence of fabric mulch ground covers

resulted in significantly greater soil Zn, soil Mn, soil temperatures

(specifically evening temperatures) and pH, potentially contributing

towards the significant more diverse rhizosphere bacterial

community composition compared than those grown without

fabric mulch ground covers. Correlations between nutrient

concentrations, soil parameters (temperature and pH), bacterial

community composition, and plant growth parameters suggest the

possibility for future opportunities regarding the manipulation of

bacteria within rhizosphere to assist plant-microbe nutritional

status and interactions. Future experimentation and samplings are

required to provide further insight on the interactions shared
Frontiers in Soil Science 10
among the lemon tree rhizosphere bacterial community

composition, seasonality, environmental parameters, and fabric

mulch ground cover use.
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