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López Carratalá, Bastida, Izquierdo, Sawada,
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Soil organic carbon (SOC) is essential in semi-arid agricultural land for enhancing

soil health, particularly through the promotion of microbial activities. This study

assessed the impact of different agronomic practices on soil properties, microbial

communities, and SOC levels in semi-arid Moroccan wheat fields. Three

treatments were investigated: eucalyptus (Eucalyptus spp.) companion planting

(EU), and fallowing with harvest residue mulching (FA), with the latter involving

both short (3 months; FAS) and long (15 months; FAL) fallow periods. The study

revealed significant variation in soil characteristics and microbial communities

between these agronomic management regimes. Notably, soils managed with

FAL contained elevated SOC levels (1.2%) compared to other treatments (FAS and

EU) which show lower SOC range (0.62–0.86%). Both labile C (water-soluble

carbon) and recalcitrant C (humic substances) were increased by FAL.

Additionally, soil microbial biomass and dehydrogenase activity were observed

to be high in FAL-managed soils, along with increased levels of extracellular

enzymes related to nutrient cycling (b-glucosidase, alkaline phosphatase, and

urease). Phospholipid fatty acid (PLFA) analysis indicated positive correlation

between carbon content in soils and microbial populations. In contrast, soils

managed with EU had significantly lower SOC levels, possibly due to differences

in carbon fractionation. FAL increased soil enzymatic activities and enriched the

microbial community when compared to EU management. In conclusion, this

study indicated the importance of fallowing and fallowing period for

conservation of SOC, and potential to mitigate negative effects of biophysical

constraints on agricultural productivity in semi-arid soils of Northwest Africa.
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1 Introduction

Cereal species, especially durum wheat (Triticum durum Desf.),

are among the main crops of Morocco, and account for 62% of the

nation’s production acreage (1, 2). However, much of the country is

semi-arid with annual precipitation between 350 and 450 mm which

often limits durum wheat yield (3, 4). Additionally, intensive

cultivation has promoted soil erosion and degradation, evidenced by

loss of soil structure and organic carbon content (5). Increasingly

frequent extreme weather events exacerbated by climate change (e.g.

drought, heat waves) can further deteriorate soil structure, negatively

impacting cereal production in Morocco (6, 7). As a result, fields

affected by the above processes are often low in soil organic matter

(SOM). Such constraints are expected to become more common in

future decades and hinder production in small and mid-sized farms,

notably those in regions already struggling with a crop grain deficit (8).

SOM contributes to long-term agricultural sustainability by

enhancing crop productivity and soil fertility (9). Increasing soil

organic carbon (SOC, a major component of SOM) to optimal

levels can improve yields through i) increased available water

capacity, ii) increased plant-available nutrients, iii) improved soil

structure, and iv) reduced soil erosion (10 and 11). However, semi-

arid soils are often low in SOM. Additionally, inputs of SOM

through animal manure on wheat fields among smallholder

farmers in Morocco is uncommon – resources are often

prioritized for fruits and other high-value crops (12). Soil erosion

and salinization is also frequent, resulting in high salinity and

electro-conductivity (EC), and low carbon content.

Land management practices exist in Morocco to prevent soil

degradation, and aid in the restoration of soil fertility. For example,

establishing Eucalyptus (Eucalyptus camaldulensis and Eucalyptus

eomphocephala) trees as crop-companion plantations in semi-arid

Moroccan fields is a well-known strategy to preserve important soil

qualities (13), first promoted by the government in the 1950’s (14). In

contrast, fallowing followed by mulching has had longer use in

traditional, local farming systems. Fallowing and mulching can

increase water content in coarse-textured soils (15), and reduce

evapotranspiration, surface run-off, and weed proliferation (12, 16).

Both practices can contribute to increased soil water, carbon, and

nitrogen, which in turnmay increase soil fertility by enhancing biomass

production and SOM.However, different fallowing durations can result

in altered SOM content depending on local biophysical conditions such

as climate, soil type, and crop type (17, 18).

Carbon, and plant-available nitrogen released through

decomposition of organic sources can strongly influence the soil

microbiome, as microbial community structure is dependent on C:

N ratio (19). Water-soluble carbon (WSC) which is mainly

composed of labile and easily degradable compound may serve as

an index of organic C mineralization (mainly composed of labile

and easily-degradable compounds) (20, 21), while recalcitrant

carbon contains humic substances (an essential part of OM)

which contributes to soil fertility and health (22, 23).

Measurement of these different nutrient pools can reveal effects of

different land use management on the larger cropping system.
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Soil microbial biomass and enzymatic activities are often

correlated with nutrient availability (e.g. mineralization and

immobilization) - soil biochemical analysis may therefore be used

to examine effects of land use and management changes on soil and

ecosystem quality (24). For instance, soil microbial biomass (SMB)

and dehydrogenase can serve as evaluators for potential soil

microbial activity (25–27). Other enzymatic indicators include b-
glucosidase, involved in cellulose decomposition yielding glucose as

a reaction product, a potential energy resource for microorganisms

(28). Urease plays an essential role in the N-cycle through

hydrolysis of urea, yielding ammonia and CO2 (29). Phosphatase

converts unavailable organic P to mineral forms, which can then be

taken up by plant roots (30). Phospholipid fatty acid (PLFA)

analysis can also describe microbial community composition (27),

and has been used for over two decades to characterize the soil

microbiome in arid and semi-arid regions (31–34).

The aim of this study was to examine effects of two different

management practices (eucalyptus companion cropping, EU; and

fallowing with harvest residue mulching, FA) on soil chemical/

biochemical properties and microbial diversity, measured through

analysis of soil carbon fractionation, enzymatic activity, and

microbial diversity. It was hypothesized that i) Fallowing/

mulching and establishment of Eucalyptus plantations will have

different effects on soil carbon fractionation, soil enzymatic

activities, and microbial community; and ii) soil enzyme activities

and microbial populations will be elevated in soils enriched with

SOC by these different farm management practices.
2 Materials and methods

2.1 Study area

Seven soil samples were collected from different durum wheat

(Triticum turgidum var. L. durum) fields near Fez, Morocco

(Latitude (dd): 34.03715, Longitude (dd): 4.998). To obtain a

baseline of local soil degradation, a previously farmed area (now

abandoned and uncultivated due to erosion and land degradation)

in Blad Sadar was also sampled (DS, Table 1). Regional mean

annual temperature and potential evapotranspiration between 1970

and 2011 at the Fez-Sais station was 16.9°C and 863 mm per year,

respectively (35). Clay-loam is the dominant soil texture. Despite

relatively poor moisture retention, light reddish siliceous soil

(locally named “Hamri”) is typically used for wheat production in

the area (36). Wheat fields in the region often contain large amounts

of stones and gravel (37). Soil degradation is widespread due to dry

conditions and intensive land use, accompanied by frequent

ploughing and overgrazing. Average annual rain-fed wheat yield

in the Fez region between 1989–2014 was 1.27 t ha-1 (https://

www.yieldgap.org/accessed on 19 November 2022), with 180

growing days for wheat cultivation between December and

January (https://www.yieldgap.org/accessed on 19 November,

2022). The rainy season begins in October and lasts until April,

with most precipitation during December and February (38).
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TABLE 1 Properties of soil sampled from durum wheat fields under differing agricultural management near Fez, Morocco.

CaCO3 Total N Al Mg

ds-1m g kg-1 mg kg-1

an SD Mean SD Mean SD Mean SD Mean SD

c 0.00 68.2 a 1.7 1.3 ab 0.2 2.50 d 0.02 10.69 e 0.0

c 0.00 62.5 b 2.5 1.3 ab 0.1 2.46 d 0.14 14.61 e 0.0

b 0.02 19.2 f 0.6 1.0 bc 0.0 7.86 a 0.45 37.22
ab

0.0

c 0.00 25.5 e 1.4 0.7 cd 0.1 3.87 c 0.05 27.48 c 0.0

c 0.00 34.7 d 1.7 1.4 a 0.1 6.03 b 0.53 33.67 b 0.1

c 0.00 50.2 c 0.4 0.7 cd 0.1 5.51 b 0.41 23.38 d 0.0

c 0.00 25.4 e 3.4 1.1 ab 0.2 7.72 a 0.37 39.13 a 0.1

a 0.10 53.1 c 0.9 0.5 d 0.1 5.30 b 0.23 24.60
cd

0.0

c 0.00 68.2 a 1.7 1.3 ab 0.2 2.50 d 0.02 10.69 e 0.0

c 0.02 62.5 b 2.5 1.3 ab 0.1 2.46 d 0.14 14.61 e 0.0

b 0.02 19.2 f 0.6 1.0 bc 0.0 7.86 a 0.45 37.22
ab

0.0

c 0.00 25.5 e 1.4 0.7 cd 0.1 3.87 c 0.05 27.48 c 0.0

c 0.00 34.7 d 1.7 1.4 a 0.1 6.03 b 0.53 33.67 b 0.1

c 0.00 50.2 c 0.4 0.7 cd 0.1 5.51 b 0.41 23.38 d 0.0

c 0.00 25.4 e 3.4 1.1 ab 0.2 7.72 a 0.37 39.13 a 0.1

a 0.10 53.1 c 0.9 0.5 d 0.1 5.30 b 0.23 24.60cd 0.0

S, Fallowing management, short-term; EU, Eucalyptus as a companion crop; DS, Degraded soil was
test (P < 0.05).
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Site
Name

Sample
Name

SOC Ca K Na P pH EC

%

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Me

Ain Bouali
(ABA)

FAL-1 1.20 a 0.02 28.04 a 2.50 0.43 f 0.01 0.03 f 0.00 0.06 ab 0.00 8.66 e 0.01 0.0

Bab Igissa
(BI)

FAL-2 1.15 a 0.08 25.79a 0.92 0.35 f 0.02 0.03 f 0.00 0.03 e 0.00 8.76 d 0.01 0.0

Sidi Mbarak
(SM)

FAS-1 0.80bc 0.04 9.65 d 0.16 1.49b 0.03 0.12 d 0.00 0.05 cd 0.00 8.58 f 0.01 0.2

Route
Zalagh
(RZ)

FAS-2 0.72 cd 0.05 11.3 cd 0.61 0.54 e 0.01 0.03 f 0.00 0.02 f 0.00 8.83 bc 0.01 0.0

Ain
Barda
(ABD)

EU-1 0.86 b 0.06 12.8 c 0.51 1.33 c 0.08 0.15 c 0.00 0.06 bc 0.01 8.82 bc 0.01 0.0

Tghat
(TG)

EU-2 0.83 bc 0.01 19.2 b 0.42 1.07 d 0.08 e 0.00 0.04 de 0.00 8.84 b 0.01 0.0

Chlyah
(CH)

EU-3 0.62 d 0.05 9.86 d 0.31 1.71 a 0.18 b 0.1 0.07 a 0.00 8.88 a 0.01 0.0

Blad Sadar
(BS)

DS 0.32 e 0.06 20.7 b 0.02 1.56 b 0.27 0.35 a 0.00 0.05 cd 0.01 8.79 c 0.01 1.5

ABA FAL-1 1.20 a 0.02 28.04 a 2.50 0.43 f 0.01 0.03 f 0.00 0.06 ab 0.00 8.66 e 0.01 0.0

BI FAL-2 1.15 a 0.08 25.79a 0.92 0.35 f 0.02 0.03 f 0.00 0.03 e 0.00 8.76 d 0.01 0.0

SM
FAS-1 0.80bc 0.04 9.65 d 0.16 1.49b 0.03 0.12 d 0.00 0.05 cd 0.00 8.58 f 0.01 0.2

RZ FAS-2 0.72 cd 0.05 11.3cd 0.61 0.54 e 0.01 0.03 f 0.00 0.02 f 0.00 8.83 bc 0.01 0.0

ABD EU-1 0.86 b 0.06 12.8 c 0.51 1.33 c 0.08 0.15 c 0.00 0.06 bc 0.01 8.82 bc 0.01 0.0

TG EU-2 0.83 bc 0.01 19.2 b 0.42 1.07 d 0.03 0.08 e 0.00 0.04 de 0.00 8.84 b 0.01 0.0

CH EU-3 0.62 d 0.05 9.86 d 0.31 1.71 a 0.05 0.18 b 0.1 0.07 a 0.00 8.88 a 0.01 0.0

BS DS 0.32 e 0.06 20.7 b 0.02 1.56 b 0.27 0.35 a 0.00 0.05 cd 0.01 8.79 c 0.01 1.5

ABA, Ain Bouali; BI, Bab Igissa; ABD, Ain Barda; SM, Sidi Mbarak; RZ, Route Zalagh; CH, Chlyah; TG, Tghat; BS, Blad Sadar. FAL, Fallowing management, long-term; FA
also sampled as a baseline. Standard deviations in parentheses. Within each column, means followed by the same letters do not differ significantly according to the HS
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2.2 Soil sampling and sample preparation

Sampling was performed in July after durum wheat (Triticum

turgidum var. L. durum) harvest. Soils were sampled between 5–30

cm. Soil samples were collected from within 2.5 km of Fez, at

altitudes ranging from 60 to 300 m. Three different types of wheat

field were sampled: i) those planted with Eucalyptus trees as a

companion crop (EU); and those that were kept fallow after harvest

residue mulching for either ii) long-term (15 months, FAL); or iii)

short-term (3 months: FAS). The cropping system of all sampled

fields was a rotation of wheat and barley. Three different EU

locations were sampled, and two different FAL and FAS locations.

Sample locations and names are described in the map of Fez region

within the supplemental information. Six subsamples per sampling

site were randomly collected from different points of the field, and

then pooled. After removing plant and other debris, soil samples

were air-dried for two days, sieved with a 2 mm screen, and stored

at 4°C prior to laboratory analysis.
2.3 Chemical and physical analysis

Electrical conductivity and pH were measured in a 1:10 (w/v)

aqueous solution (39). Moisture content was obtained by weighing

before and after drying at 105°C for 12 h. Organic matter (OM)

concentration was determined by the loss on ignition method at 430°C

for 24 h (20). Total carbon, and N were determined by an automatic

C/N/S analyser (NA1500, Carlo Erba, Emmendingen, Germany).

Macro and micro-nutrients, and heavy metal content was determined

by inductively coupled plasma optical emission spectroscopy (ICP-

OES; Thermo Scientific iCAP 6500, Waltham, MA). Water-soluble

carbon (WSC) was determined in a 1:10 extract by a TOC analyser for

liquid samples (Shimazdu 5050A, Kyoto, Japan) after shaking for 2 h

and filtering through ashless filter paper (Albet 145 110). Water-soluble

carbohydrates were assayed with a colorimetric method (40) from the

same extract with 4 ml of 0.2% anthrone solution in concentrated

sulphuric acid. Absorbance was measured in a spectrophotometer

(Termo Electron Corporation Hexiosa). Soil humic fractions were

quantified by measurement of the 0.1M Na4P2O7-extractable organic

contents, via oxidation with K2Cr2O7 and spectrophotometric

determination of Cr+3 at 590 nm (20).
2.4 General microbial and
enzymatic analysis

Microbial biomass carbon was determined with the fumigation–

extraction method, with extraction of organic C by K2SO4 (41),

followed by measurement of extract C content with a TOC analyser

(Shimadzu TOC-5050A). b-glucosidase activity was determined by

colorimetric estimation of p-nitrophenol (PNP) formed by hydrolysis

of p-nitorophenyl-b-d-glucopyranoside (PNG), as described by

Eivazi and Tabatabai (42). The same method was used for the

determination of alkaline phosphatase activity, with the substitution

of PNG by p-nitrophenyl phosphatase as suggested by Tabatabai and
Frontiers in Soil Science 04
Bremner (43). Urease activity was determined by the method of

Kandeler and Gerber (44), estimated from ammonia release following

incubation with urea in an alkaline buffer.
2.5 Phospholipid fatty acids analysis

Phospholipids were extracted from 6 g of soil with a

chloroform-methanol solution based on Bligh and Dyer (45),

then fractionated and quantified using the procedure described by

Frostegard et al. (46) and Bardgett et al. (47). Phospholipids were

transformed into fatty acid methyl esters (FAMEs) by alkaline

methanolysis, then quantified by gas chromatography (Trace GC

Ultra, Thermo Scientific) through a 30 m capillary column (Thermo

TR-FAME 30 m x 0.25 mm ID x 0.25 µm film) with helium as the

carrier gas. Temperature was initially 150 °C for 0.5 min, then

increased by 2 °C min-1 to 180 °C, and then by 4 °C min-1 to 240 °C.

The fatty acids 10:0, 11:0, 12:0, 13:0, 14:0, i15:0, a15:0, 15:0, i16:0,

i17:0, C18:3n3, cy17:0, and cy19:0 were selected to represent

bacterial biomass (46–48), and 18:2w6 was measured to indicate

fungal biomass (49, 50). The ratio of bacterial to fungal PLFAs

represents the ratio between bacterial and fungal biomass (47). The

Gram+ specific fatty acids i15:0, a15:0, i16:0, i17:0, and C18:3n3, and

Gram- specific fatty acids 14:1, cy17:0 and cy19:0 were recorded as a

measure of the ratio between Gram+ and Gram- bacterial biomass.

The ratio of monounsaturated PLFAs to saturated PLFAs is

expressed as mono/sat. All results are given in nmol g-1.
2.6 Statistical analysis

All results of soil chemical properties, soil enzymatic activities,

and PLFAs were reported as means from one-way ANOVA,

followed by Tukey’s HSD test (HSD, honestly significant

difference at the 95% confidence interval). Error bars represent

standard deviation. Physico-chemical parameters, carbon fractions,

biomass indicators, enzymatic activities, and the relative

abundances of all identified FAMEs of sampled soils were

subjected to correlation analysis to assess if measured soil

properties differed between different management practices. All

statistical analyses were conducted in R (51). The authors have

defined the p level for each statistical test for scientific clarity.
3 Results

3.1 Physico-chemical soil characteristics

Soil characteristics are recorded in Table 1. All sampled soils

were basic in pH (8.5- 8.9) with elevated EC. Calcium was the

dominant cation element in all samples. Soils from fields under

long-duration fallowing management (FAL-1 and FAL-2)

contained significantly higher SOC than the other sampled soils

(Table 1). Lower total N was observed in soils under short-term

fallowing management (FAS-1 and FAS-2) than long-term

fallowing management (FAL-1 and FAL-s2) (Table 1). One of
frontiersin.org
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fields with Eucalyptus (EU-2) has the lowest total N (0.7 g kg-1)

together with FAS-2. Degraded soil (DS) from abandoned areas

were sampled as a baseline, and contained the lowest SOC and total

N, while EC and Na+ were the highest of all sampled soils (Table 1).
3.2 Carbon labile and recalcitrant fractions

Carbon fractions were significantly influenced by agricultural

management (Figure 1). Long-term fallow management (FAL-1 and

FAL-2) soils were high in labile carbon parameters (1750–2325 mg

kg-1 for water-soluble carbon and 110 mg kg-1 for carbohydrate).

On the contrary, soils from fields with Eucalyptus (EU-3) had the
Frontiers in Soil Science 05
lowest contents (748.8 mg kg-1 for water-soluble carbon and 27.9

mg kg-1 for carbohydrate). Both FAL-1 and FAL-2 contained higher

organic carbon content (1.15–1.2%) than the other sites (Table 1),

and high amounts of recalcitrant humic C (Figure 1). The FAL-1

soil had the highest humic C content (2.76 mg kg-1)(Figure 1), and

total organic carbon content of the different soil samples (Table 1).
3.3 Biochemical measurements

Concerning general microbial parameters (Figure 2), the

highest value of dehydrogenase (2.2 mg INTF g-1h-1) was recorded

in FAL-2, followed by EU-2 and FAL-1 (1.76 and 1.45 mg INTF
FIGURE 1

Water-soluble carbon, carbohydrate, and humic substance carbon in soils sampled from wheat fields treated with fallowing for a long-term (15
months; FAL), short-term (3 months; FAS), or companion- cropped with Eucalyptus (EU). A degraded, abandoned field was sampled as a baseline
control (DS). Different letters represent significant difference determined by Tukey's HSD test, at a 95% confidence interval. Bars represent
standard deviation.
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g-1h-1, respectively). Microbial biomass carbon was also greatest

(237.26 mg kg-1) in FAL-2, followed by FAL-1 and EU-1 (228.60

and 183.87 mg kg-1). Regarding extracellular enzymatic activities,

Soils of FAL-2 and EU-1 showed high b-glucosidase activity (0.874
and 0.818 mg PNP g-1h-1, respectively). The highest alkaline

phosphatase activity was recorded in EU-1 (2.53 mg PNP g-1h-1).

The greatest urease activity was observed in FAL-2 (3.52 mg NH+4-

N g-1h-1) in Figure 3. The lowest activities of b-glucosidase (0.02 mg
PNP g-1h-1) and alkaline phosphatase (0.987 mg PNP g-1h-1) are

seen in FAS-2, while the lowest urease activity (0.26 NH+4-N g-1h-1)

is observed in EU-3. And those two soils have relatively low carbon

content (Table 1). The shortage of OC in the degraded soil baseline

(DS) was congruent with lowest activities of all three specific

enzymes (b-glucosidase: 0.13 mg PNP g-1h-1, alkaline phosphatase:

0.10 mg PNP g-1h-1; urease: 0.02 NH4-N g-1h-1) as well as markers of

general microbial activities (SBC and dehydrogenase).
Frontiers in Soil Science 06
3.4 PLFA measurements

Different management resulted in significantly different microbial

biomass (Table 2). Generally, soils with higher carbon content (SOC

> 1 g 100 g-1) such as FAL-1 and FAL-2, maintained high abundance

of bacteria, fungi, and total microbes. These two soils also displayed

higher total nitrogen content (1.3 g kg-1). In contrast, soils with low

organic carbon (SOC < 0.75 g 100 g-1) such as FAS-1, FAS-2 and EU-

3 had lower microbial abundances (Bacteria: 15.3–19.6 nmol g soil-1,

Fungi: 0.5–0.8 nmol g soil-1). Bacteria weremore abundant than fungi

in all sampled soils. Lower populations of Gram- bacteria (1.1–1.2

nmol g soil-1) were observed in soils with low SOC (FAS-2, EU-1 and

EU-3). The highest ratio of monounsaturated to saturated fatty acids

(0.250) was observed in FAL-2.

The degraded baseline soil (DS) contained the lowest levels of

fatty acids (13.4 nmol g soil-1)), and the lowest abundance of all
FIGURE 2

Microbial biomass carbon and dehydrogenase activity in soils taken from wheat fields treated with fallowing for a long-term (15 months; FAL), short-
term (3 months; FAS), or companion-cropped with Eucalyptus (EU). A degraded, abandoned field was sampled as a baseline control (DS). A
degraded, abandoned field was sampled as a baseline control (DS). Different letters represent significant difference determined by Tukey's HSD test,
at a 95% confidence interval. Bars represent standard deviation.
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microbe classifications (Bacteria:13.0 nmol g soil-1, Fungi:0.4 nmol

g soil-1. Gram+: 1.2 nmol g soil-1, Gram-: 0.8 nmol g soil-1, Saturated:

7.3 nmol g soil-1; Monosaturated: 1.0 nmol g soil-1). Furthermore,

the lowest ratios of monounsaturated: saturated fatty acids (0.137),

and Gram+/Gram- ratio (1.5) were observed in the DS soil sample.
3.5 Correlation matrix

A correlation matrix allows summaries of relationships between

nutrient content and microbial communities across different land

uses. Within sampled soils, SOC was positively correlated (Pearson

correlation efficient (r.) =0.819) with total N (Figure 4). General

microbial markers (SMB and dehydrogenase activity) were

negatively correlated with EC [(r. =-0.483 and -0.492,

respectively) (Figure 4), indicating a stressful circumstance for

microbial growth. Negative correlation (p <0.05) was observed

between EC and different parameters of microbial communities
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(e.g. fungal biomass (r. =-0.574)), enzymatic activities (e.g. b-
glucosidase (r. = -0.646), alkaline phosphatase (r.=-0.727)) and

carbon fractions (e.g. humic substances (r.=-0.554). In contrast,

SOC was found to be positively correlated with all other variables,

except for the ratio of fungi and bacteria. Nitrogen content was also

positively correlated with high abundance of different microbial

communities and enzymatic activities.
4 Discussion

4.1 Land management practice effects soil
nutrient availability

Eighty percent of agricultural land in Morocco is rain-fed (52),

and sustainable yet productive cultivation practices are needed to

allow reliable food production for an increasing population (8).

Increased resiliency against drought, soil degradation (53), and
FIGURE 3

Urease activity, alkaline phosphatase activity, and B-glucosidase activity of soils sampled from wheat fields treated with fallowing for long-term (FAL),
short-term (FAS), and Eucalyptus plantation (EU). A degraded, abandoned field was sampled as a baseline control (DS). Different letters represent
significant difference determined by Tukey's HSD test, at a 95% confidence interval. Bars represent standard deviation.
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extreme weather events is also required. Previous work with crop

simulation modelling (54) has indicated that improved soil

moisture will be needed in Morocco to reduce the gap of 5.35 t/

ha between potential and realized yields. Different crop rotation

management and agricultural practices can be utilized to improve

soil fertility, water holding capacity, and crop yield (54). Several

studies report implementation of techniques within Morocco such

as reduced tillage, soil cover and crop rotation (12, 55), conducive

for conservation agriculture. According to El-Shater and Yigezu

(12), retention of harvest residue in the field could increase wheat

yields by as much as 30% through increased rain infiltration and

suppression of weeds.

This study reports how different land management practices in

wheat fields affect biologically-available soil nutrients (C and N),

microbial communities, and enzymatic activities. Higher SOC (SOC

> 1.1%) was observed in the long-term fallow management

treatment (FAL-1 and FAL-2), and these soils also conserved

abundance of different microbial communities despite semi-arid

conditions, due to the availability of different microbial substrates.

Total water-soluble carbon (WSC) is considered an index of organic

C mineralization and primarily composed of labile and easily

degradable compounds (20), while carbohydrates represent

energy readily available for microorganisms (56, 57). The labile

SOC, such as the WSC and carbohydrate fractions correlated with

increased active microbial populations as observed by

dehydrogenase activity (58). Carbon and nitrogen content can

greatly influence microbial dynamics in semi-arid and arid

regions, as the emergence of a new community structure is

dependent on soil C to N ratio (19, 59).
4.2 Microbial community alteration by land
management practice

Bacterial abundance was higher than that of fungi in all samples,

perhaps due to lower fungal tolerance against regional stress

including high temperatures and alkaline soils (60). Gram-

bacteria are less resistant against severe environmental conditions

(61 and 62) perhaps due to structural differences, including the

absence of a peptidoglycan layer. In this study, low abundances of

Gram– bacteria were detected in soils with low SOC (FAS-2 and

EU-3). The lowest Gram+/Gram- ratio in the DS field may be due to

low nutrient (C, N) availability (63). The low-SOC soils also

displayed low enzymatic activities and low soil microbial

abundance, similar to the high-salinity DS soil. The lowest Gram

+/Gram- ratio in DS (Table 2) is probably due to low nutrient

availability (63). The lowest monounsaturated to saturated fatty

acid ratio was observed in DS (Table 2), strongly corresponding to

limited nutrients and high salinization as a consequence of soil

degradation. This ratio may serve as a stress indicator (64, 65), and

lower ratios are often recorded in microbial communities inhabiting

environments where SOC and/or nutrients are limiting (66). Due to

previous field management practices, the DS soil may have become

degraded over time resulting in soils unsuitable for crop

production (67).
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4.3 Enzymatic activities

Land use and management can strongly affect soil microbial

biomass (9, 68 and 69) and enzymatic activities (27). Concerning

hydrolytic activities, b-glucosidase interacts with plant and microbial

cellulose decomposition processes. Glucose is a reaction product and

can serve as an energy source for microorganisms (28, 70). Urease plays

an essential role in the N-cycle, hydrolyzing urea to yield ammonia and

CO2 (29). Phosphatase is important for the mineralization of organic P

(30, 71). Phosphatase release (induction) by soil microbes and the

capacity to solubilize unavailable phosphate may be agriculturally

advantageous, as a global phosphate shortage is predicted within the

next 50–100 years (72). These extracellular enzyme activities can be

altered by several factors, including landmanagement practices and the

physico-chemical parameters of the soil-plant interface within the

microbial habitat (57).

In this study, soils managed with long-term fallowing (FAL-1

and FAL-2) were enriched with SOC and displayed high activities of

the three enzymes described above (Figure 3). In contrast, soils with

low carbon content (such as FAS-2) displayed low activities. As all

three activities are correlated positively with SOC and TN

(Figure 4), this result may be a response to high or low amounts

of substrate within the soil. In comparison, the critical shortage of

OC in the degraded soil (DS) resulted in lowest activities of all three

enzymes, as well as lowest general microbial activity (SBC and

dehydrogenase). There was also negative correlation between
Frontiers in Soil Science 09
markers of general microbial activities (SMB and dehydrogenase

activity) and EC (Figure 4). This may indicate a severely limited

environment for microbial growth, as high EC and low SOC can

trigger osmotic stress (70), and is typically problematic in semi-arid

and arid agricultural conditions.
4.4 Fallow length

Fallowing contributes not only to the accumulation of SOC,but

can also increase levels of other nutrients (73) and water

conservation by increasing soil aggregation, which in turn

enhances water-holding capacity and reduces water run-off (15,

18, 74). Fallowing of longer durations is preferable for the

improvement of soil fertility (18). However, long-term fallowing

is not always feasible under certain circumstances (e.g., increasing

human population pressure and land scarcity).

In Morocco, a harsh climate and population expansion require

crop yields which may exceed the potential of current systems, and

necessitate improvement of soil fertility (53). According to previous

work comparing different fallowing lengths (17, 75, 76), durations

of two years still can result in significant gains. However, optimizing

the fallow length for soil properties and crop production should be

considered based on various biophysical factors such as soil types,

crop types, and climate conditions (77–81) as well as farmer’s

livelihood (76).
FIGURE 4

Pearson correlation heat-map matrix of soil properties in sampled wheat fields. Blue and red circles represent significant positive and negative
correlation, respectively (p<0.05). Blank cells represent no significant correlation. Asterisks indicate the significance in the correlations (*, **,
***P<0.05, 0.01, 0.0001, respectively). Rectangles around the plot of correlation matrix are considered as clusters based on the results of
hierarchical clustering. Organic carbon (Organic_carbon); Total nitrogen (T_nitrogen); Water-soluble carbon (WSC); Total amount of Phospholipid-
derived fatty acids (Total PLFA); Ratio of fungi and bacteria (Fung_Bac); Ratio of monounsaturated fatty acids/saturated fatty acids (Mono_Saturated);
Ratio of Gram positive/Gram negative bacteria (GramP_GramN).
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In the case of the current study, soil treated by a year-long

fallowing period (FAL-2) had the highest humic C fraction (Figure 1),

in accordance with the highest organic carbon content of the different

soils sampled (Table 1, statistically equivalent to FAL-1). Fallow

vegetation and harvest residue require time to decompose,

simultaneously replenishing a portion of the nutrients removed by

the crop and protecting the soil against erosion.
4.4 Planting wheat with Eucalyptus as a
companion crop

Compared to soils managed with fallowing, soils taken from

wheat fields mixed with Eucalyptus trees generally contained lower

amounts of carbon, enzymatic activities, and microbial

communities. The Moroccan Forest Service began to encourage

the establishment of Eucalyptus plantations in 1949 - Eucalyptus

species now represent 40% of the nation’s total reforested area (14).

Mixing farming with trees and crops is common in Morocco (82).

Integrating a crop with Eucalyptus trees can modify the

microclimate (e.g. reduced air temperature and net radiation

distribution), resulting in conditions more favorable to wheat

growth by reducing stress during the post-anthesis period (83,

84). This practice can also contribute to soil multi-functionality

for primary production, water regulation, climate regulation, soil

biodiversity, and nutrient cycling (24). However, local

agroecological knowledge about tree-based diversification was

scarce among farmers in the study area (82). Furthermore,

farmers are mostly not interested in woody species locally

classified as “wild trees” including Eucalyptus, as production

requires costly permits from the forest authority (82). Additional

disadvantages of integrating crops and Eucalyptus include possible

reduction of soil moisture and nutrients due to competition (85).

The results of our study indicate that EU management was not

associated with elevated soil organic carbon and soil microbial

communities. Future studies should additionally assess other

metrics including crop yield, use efficiency of resources (e.g.

nutrient, light and water), and cost-benefit ratio for calculation of

return-on-investment.

5 Conclusion

Fields managed with long-term fallowing resulted in high SOC

with conserved abundance of microbial communities, due to

increased availability of nutritional substrates (C and N). In

contrast, lower SOC was found in soils managed with short-term

fallowing, which displayed low enzymatic activities and microbial

populations. Severe biophysical stresses such as low rainfall and

high salinization can reduce availability of soil microbial nutrients

and hence soil microbial populations. It is essential to identify

optimum farming practices for enhancing the productivity in semi-

arid soils, and for protection of these soils against degradation.

Besides long-term fallowing and Eucalyptus companion planting,

agronomic practices such as no-tillage, crop rotation, and compost

amendments should also be investigated, which may reinforce SOC,

and microbial populations.
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