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Editorial on the Research Topic

Digital soil mapping using electromagnetic sensors
Recent technological advances have led to the development of new instruments that

measure different parts of the electromagnetic spectrum. In addition, significant cost

reduction, and increased robustness are seen for the existing ones making them more

affordable and easier to use (1, 2). Proximal soil sensors are increasingly being adopted to

augment labor- and cost-intensive field and laboratory procedures by allowing rapid

estimation and high-resolution mapping of soil properties via proxy measurements.

Information collected with these soil sensors supports soil resource management, which

is crucial to meet the growing population demand sustainably. In short, proximal soil

sensing offers the potential for non-invasive soil exploration, whereby near-continuous

spatiotemporal information can be collected. Particularly in line with global efforts to

preserve and optimize soil health, the relevance of this approach will only increase

with time.

As electromagnetic soil sensing is often fragmented across various scientific disciplines

and applications this Research Topic aims to bring together cutting-edge and breakthrough

research and identify key perspectives in the field. Four papers are combined that topically

revolve around:
1. advances in hardware development for ground-based and airborne

electromagnetic soil sensing;

2. modelling procedures aimed at resolving the distribution and variation of soil

properties in the shallow subsurface;

3. advancing interpretative frameworks for relating electromagnetic properties to

natural and anthropogenic subsurface targets;

4. multi-scale and multi-sensor data analysis;

5. quantitative integration of invasive and non-invasive soil information.
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While all contributions under this Research Topic employed

electr ical conductivi ty (EC) measurements by ei ther

electromagnetic induction (EMI) or galvanic techniques in field-

based studies, they address a wide variety of objectives. These are

listed in chronological order depending on the publication date. We

refer to the apparent electrical conductivity data, which is outputted

by these instruments as ECa, and depth-specific electrical

conductivity estimates after an inversion routine as ECt.

In the first article, Deragon et al. improved the regional peat

thickness map at the field scale in a digital soil mapping approach

by using the ECa data collected by a galvanic sensor, digital

elevation model and the regional map itself as covariates. They

tested ordinary kriging, multiple linear regression, regression

kriging and machine learning models (Cubist, Random forests

and Support vector machines). The best predictions of peat

thickness were observed by ordinary kriging of the sampled data,

followed by multiple linear regression kriging and support vector

regression, both using the regional map as an additional covariate.

The prediction error (RMSE) of the best models at the field scale is

twice as low compared to the regional map. This demonstrates the

significant value added by proximal soil sensing and how the

existing coarse-resolution maps can be leveraged to generate fine-

resolution maps at the field scale. This article relates to topical

points 2, 3 and 4.

In the second article, De Carlo et al. showed an efficient way to

combine the accuracy of the point-scale soil moisture

measurements done by invasive sampling and the spatial coverage

of EMI-based EC data to create soil moisture maps in a vineyard.

Sampling locations were selected based on EC zoning. A freeware

code licensed from USGS, MoisturEC (3) was used to integrate the

data, which allowed more accurate estimation of the moisture

distribution along with the error quantification compared to

moisture predictions by using ECa or ECt. This article mainly

relates to topical points 4 and 5.

In the third article, O’Leary et al. used a neural network based

clustering approach (self-organizing maps) to optimize the choice

of initial model for inverting ECa data from an EMI sensor.

Moreover, they presented an objective methodology called multi-

cluster average standard deviation (MCASD) to select the

appropriate number of clusters. The ECt data modelled based on

this approach correlated well with the soil properties compared to

inverted ECt from a uniform initial model. They also emphasized

how the clustering approach can aid sensor-guided soil sampling,

highlighting the benefits of performing sensor surveys first to

inform and optimize the sampling strategy. The article mainly

relates to topical points 2 and 3.

In the fourth article, Blanchy et al. compared and contrasted the

efficacies between two different types of EMI instruments, one

working on multi-frequency and the other on single frequency
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but with multiple receiver coils at different distances from the

transmitter coil. The authors presented both synthetic modelling

and a field-based study, demonstrating that both instrument types

resolve the conductivity structure equally well and exhibit similar

noise levels. Hence, the multi-frequency instrument can be better

suited for difficult-to-measure terrains from a practical standpoint.

However, they have a few important limitations that need to be

acknowledged: i) shallower sensitivity patterns in highly conductive

grounds (i.e., 150 mS/m) thereby limiting the depth of exploration

and ii) substantial overlap in sensitivities in low conductive

environments, making it challenging to resolve the vertical EC

variability (i.e., ECt). The article relates to topical points 1 and 2.

We anticipate the following exciting avenues for soil sensing,

with a focus on soil health measurement and monitoring, in the

near future: i) the adoption of novel on-the-go sensing technologies,

such as gamma-ray spectroscopy, ii) adapting traditional lab-based

infrared spectroscopy more suitable for in-field use, iii) further

development of real-time data processing algorithms and AI

techniques to enhance predictive capabilities and data

interpretation of sensors, iv) the integration of different sensors

into a multi-sensor platform, along with improved mobility on

unmanned aerial vehicles, and v) further efforts to bridge the gap

between proximal and remote sensing of soils.
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