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Response of CO2, N2O, and CH4

fluxes to contour tillage, diversion
terrace, grassed waterway, and
tile drainage implementation
Bryan A. Driscoll 1, Maja Krzic1,2, Louis-Pierre Comeau3*,
Bianca N. I. Eskelson2 and Sheng Li3

1Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, 2Faculty
of Forestry, University of British Columbia, Vancouver, BC, Canada, 3Fredericton Research and
Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
In this study we evaluated CO2, N2O, and CH4 fluxes in two integrated best

management practices (BMPIs) comprised of the following individual practices:

diversion terraces (DT), grassed waterways (GW), and contour tillage (CT) [i.e.,

DTGW]; and DT, GW, CT, and tile drainage (TD) [i.e., DTGW+TD], relative to CT

that served as a control. It was anticipated that due to its effects on soil water

redistribution and soil temperature, diversion terraces and grassed waterways

would influence the pattern of greenhouse gas (GHG) emission. This is the first

study in the world linking such erosion control structures with subsurface

drainage. Cumulative CO2 emissions were greatest in DTGW in both 2020 and

2021. In 2019, DTGW+TD N2O emissions were significantly lower than CT and

DTGW. N2O emissions were highest in DTGW in 2020 and 2021, though not

statistically significant. There were no significant differences in CH4 in any year.

Soil in all BMPIs acted as a weak CH4 sink during the study period. This study

demonstrated that the addition of TD to DT and GW significantly reduced the loss

of stored carbon (as CO2) relative to undrained DT and GW, while also not

emitting significantly more carbon than CT, in the initial years after

implementation. Results were similar with respect to the loss of nitrogen, as

N2O, where undrained DT and GW generally emitted more N2O in the first years

after implementation.
KEYWORDS

potato production, beneficial management practices, greenhouse gas, Atlantic Canada,
soil carbon, soil health
Introduction

New Brunswick farmers are producing 40% of Canada’s potatoes (1), but intensive

potato cultivation practices have led to substantial soil degradation, necessitating

improvements in management practices (2). Land scarcity has led to the regular practice

of potato-grain and potato-potato-grain rotations in northwest New Brunswick (3). In the
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1980sWang et al. (4) reported an average of 17 g soil organic carbon

(SOC) kg-1 in loam-textured plow layers of intensively cropped

New Brunswick potato fields – down more than 50% from 1960s

levels before potato production had intensified (5). Optimal SOC

levels for potato production in the region are reported to be between

20.0 and 29.0 g kg-1 (6). While the combination of contour tillage

with variable grade diversions and grassed waterways (a common

local combination of best management practices) was shown to

conserve soil and water in a long-term study of 23 benchmark sites

in northwest New Brunswick from 1990 to 2000, the potato-potato-

grain rotations did not maintain SOC levels (7). The cultural

practices used in potato production caused soil displacement,

encouraging the oxidation of SOC. Soil heterotrophic respiration

(CO2 efflux from soil, excluding root respiration) releases

significant amounts of CO2 into the atmosphere (8). Thus, any

practices which increase heterotrophic respiration can incur

significant impact on the climate (9).

The Landscape Integrated Soil and Water Conservation

(LISWC) system is an innovative system that integrates multiple

best management practices (BMPs) for potato production on sloped

landscapes of New Brunswick (10, 11). The LISWC system

combines diversion terraces, grassed waterways, tile drainage,

water retention structures, supplemental irrigation, conservation

tillage practices, and soil-landscape restoration. There are concerns,

however, that in wet years the diversion terraces can lead to fields

being too wet (2) since diversion terraces slow down surface runoff

and direct more water into the soil profile. Soil water and

temperature are the two most influential parameters for

greenhouse gas (GHG) fluxes from soils (12). Soil water controls

microbial activity and related microbial processes by solubilizing

substrate compounds and, through diffusion, increases substrate

availability to active microbial sites (13). Heightened microbial

activity will then lead to higher decomposition of organic matter

and higher microbial respiration rates that produce GHGs in soils.

Rising soil temperature also increases microbial metabolic rates,

further enhancing respiration (14). In saturated soils, anaerobic

conditions foster the production of methane (CH4) and nitrous

oxide (N2O) from methanogenesis and nitrification/denitrification,

respectively. In regions with a humid climate (e.g., New Brunswick),

denitrification is the dominant process producing GHG

emissions (15).

Crop management practices can either increase or decrease

GHG fluxes. For example, frequent tillage operations commonly

used in potato production can break down aggregates and expose

organic matter to oxidation or decomposition processes. In general,

carbon (C) sequestration will be more successful in land

management systems that minimize erosion and soil disturbances,

maximize return of crop residues, or maximize the efficiency of crop

water and nutrient use (16, 17). Because of the intensive nature of

most cropping systems, it is possible to mitigate GHG production

and reduce C and nitrogen (N) losses in the soil by modifying soil

management practices (18). For example, because nitrate (NO3
-)

ions are prone to leaching, the water redistribution from diversion

terraces, grassed waterways, and tile drainage may affect the NO3
-

concentrations within the soil. Fluxes of N2O are often a direct
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function of N application rate (19–21), and the NO3
- supply rate

within the soil to plants, after fertilization, may be affected by the

different management practices, such as contour tillage, diversion

terraces, grassed waterways, and tile drainage. Because of the large

N fertilizer inputs required in attaining the demanded potato tuber

yield and size distribution, concerns arise over increased N2O

emissions (22). Nitrous oxide is responsible for stratospheric

ozone depletion (23), and Canadian agriculture is now

responsible for 75% of national N2O emissions (24).

The objective of our study was to evaluate the effects of two

systems of BMP integration (i.e., BMPI), each comprised of several

individual BMPs, on heterotrophic GHG fluxes and nitrate supply

rates during the initial three years of management implementation,

relative to contour tillage (CT), across three slope positions. The

implications of these BMP integrations on GHG fluxes are

unknown. The two BMPIs included the following combinations

of individual practices: (i) DT, GW, and CT [labeled DTGW

hereafter] and (ii) DT, GW, CT, and TD [labeled DTGW+TD

hereafter], while CT served as a control.
Materials and methods

Site description

This landscape observational study was conducted between

August 2019 and October 2021 on a field experimental site

maintained by the Fredericton Research and Development Centre

(FRDC) of Agriculture and Agri-Food Canada in Fredericton, New

Brunswick, Canada. The study site was located on a northeast-facing

slope facing the Saint John River (45°55’33.5”N 66°36’55.5”W). The

whole Fredericton area, including the study site location, has been

subject to glaciation, andmost upland soils have been developed from

weathered glacial till parent materials (25). The study site is located

on soil that was part of the Research Station Association and classified

as a Rustic Podzol (26, 27). This soil developed in areas with loose

ablation till over compact lodgment till (28). The soil is moderately

permeable sandy loam with 10 to 25% angular cobbles and gravels,

averaging 55% sand, 34% silt, and 10% clay, with a pH of 5-6. The

Fredericton area receives a mean annual rainfall of 886 mm and a

mean annual snowfall of 215 cm (29).

Construction of the LISWC system on the study site was done

in 2018. Prior to construction, the site was under grass for two

seasons. In the initial season of 2019, the study site was seeded with

oat (Avena sativa L.). Oats are a typical crop used in New Brunswick

crop rotations. In 2020, the site was again seeded with oat, while in

2021, a potato (Solanum tuberosum L.) crop was planted.

The study consisted of three BMPIs, separated by 5 m of grass,

constructed on a slope with a gradient of 10% (Supplementary

Figure S1). Each BMPI represented a different combination of

individual BMPs (11). The 1st BMPI consisted of a 70-m long

field on the slope and a water retention pond at the base of the slope.

It acted as a control and had only one BMP - contour tillage (CT).

For the 2nd BMPI, a 75-m long field was subdivided into three

segments. Each of the three segments consisted of a 20 m block of
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arable field with a 5 m DT and GW constructed below the field

block. This BMPI is referred to as DTGW. The 3rd BMPI, DTGW

+TD, was a repeat of DTGW but with tile drainage installed –

representative of the full BMPI system. Two polyvinyl chloride

(PVC) tile drains (10 cm in diameter) were installed per block, 10 m

apart. Edges of the BMPIs were lined with an impermeable plastic

barrier extending to a depth of 1 m, to isolate each BMPI from

potential inflows and outflows of shallow subsurface flow. Contour

tillage was also implemented in both DTGW and DTGW+TD. In

each BMPI, six plots were established at 5 m, 15 m, 30 m, 40 m, 55

m, and 65 m measured from the top of the field. For each plot, there

were three subplots for sample and data collection − the middle

subplot was installed with a soil moisture and temperature

monitoring station, whereas the two subplots on the sides were

for GHG chamber installation.
Field managements

2020 field season
The soil of the experiment site was disked on June 5th, followed by

additional disking and harrowing on June 15th, before oats were

planted on the same day. On the same day as planting, a 17-17-17

urea-based fertilizer was applied at a rate of 337 kg ha-1 (57 kg N ha-1).

An herbicide (MCPA 600 + Refine SG + Activate Plus; 1 L/Ha + 30 g/

Ha + 2 L/1000L) was sprayed on July 6th. Oats were harvested on

September 22nd to prevent them from seeding in subsequent field

seasons. The straw was mowed and left on the ground. A final

plowing with a moldboard plow took place on October 1st.

2021 field season
The fields were planted with potato in the 2021 growing season.

The CT management practice consisted of 68 total potato rows. In

both DTGW and DTGW+TD, each block had a total of 16 rows, for

a total of 48 rows per BMPI. Oats were grown at the base and top of

CT, as well as at the bottom and top of each of the 3 blocks in both

DTGW and DTGW+TD to prevent soil from washing out at the

flumes into the water retention pond.

On June 7th, Russet Burbank potatoes were planted with rows

spaced at 0.91 m and plants spaced at 0.38 m within rows. A 17-17-17

urea-based fertilizer was applied during planting at a rate of 1120 kg

ha-1 (190.5 kg N ha-1). This was slightly lower than the 208 kg N ha-1

fertilizer rate that is the typical maximum fertilization rate for Russet B.

in New Brunswick (30, 31). The fertilization rate used was the

recommended rate for Russet B. potatoes in the soil at the FRDC

(32). Potato rows were hilled on July 20th. An insecticide (Matador; 125

ml/ha) was sprayed on both July 23rd and August 11th to suppress

Colorado potato beetle (Leptinotarsa decemlineata) activity. Fungicide

(Revus; 600 ml/ha) spraying was scheduled every Friday (weather

permitting) but sometimes took place a day earlier or later depending

on rain events. Potato harvest took place on October 6th, 2021.

The 2021 field season was considerably wetter than 2020 and

without as many peak temperatures in the mid-30°C (Figure 1). In
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June, July, and August of 2020, a total of 168 mm of precipitation

fell, whereas 258 mm fell in the same three months of 2021 (33).

The weather station on the study site recorded 51.2 mm of rain on

July 9th during the remnants of Hurricane Elsa (Figure 1). Minor rill

erosion was observed in all three land management practices the

following day, causing exposed potato plant roots and small

channels oriented along the slope.
Sampling and analysis

CO2 readings
To sample heterotrophic CO2 fluxes, an EGM-5 Portable CO2

Gas Analyzer (PP Systems, Amesbury, MA, USA) with an SRC-2

Soil Respiration Chamber was used throughout the growing seasons

of 2020 and 2021. A HydraProbe sensor (Stevens Water Monitoring

Systems, Portland, OR, USA) was used with the EGM gas analyzer

to gather surface soil moisture and temperature data with each

flux measurement.

Fluxmeasurements were taken twice a week and began at 10:00 am

to coincide with daily mean soil temperatures. Fluxes were measured

for 60 seconds (34). Measurements in 2020 occurred betweenMay 28th

and September 22nd. Measurements in 2021 occurred between April

29th and September 28th. Measurements in both years occurred

approximately twice a week, weather permitting. Once collars for

N2O and CH4 were installed in the field, measurements were taken

inside the collars, which stayed free of oat or potato roots.

The linear respiration rate was calculated by the EGM with the

following formula:

R =  
(Cn − C0)

Tn *  
V
A

where R is the respiration/assimilation rate (CO2 flux, or moles of

CO2 unit area
-1 unit time-1), C0 is the CO2 concentration at T=0,

and Cn is the concentration at finishing time Tn. The area of soil

exposed is represented by A, and V is the total system volume (35).

N2O and CH4 readings
Closed static dark chambers were used to make measurements

of N2O and CH4 in the growing seasons of 2019, 2020, and 2021. A

total of 36 cylindrical collars, measuring 38-cm tall and 30-cm in

diameter were installed in the field at each subplot, at least 72 hours

before the first measurement of the season (34). In 2019 and 2020,

the site was seeded with oat, and any visible plant matter inside the

collar was removed immediately after installation. In 2021, the

collars were installed directly into potato rows on July 21st and 22nd.

Any potato plants were pulled where each collar was to be installed,

to ensure no seed potato or potato plant was inside the collar. This

prevented fluxes associated with plant root respiration. In 2019,

measurements were taken on August 28th and September 10th and

26th. In 2020, measurements were taken on July 29th, August 12th

and 26th, and September 4th. In 2021, measurements were taken on

July 28th, August 10th and 25th, and September 8th and 21st.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1453324
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Driscoll et al. 10.3389/fsoil.2025.1453324
On each day of measurement, plastic lids were secured to the

top of the collar to ensure an air-tight, closed system. Lids from

plastic, 5-gallon buckets were custom fit with 2 one-touch fittings

(SMC Corporation, Tokyo, Japan). Each fitting had placed inside of

it a 10-inch length of 6-mm tubing with a one-way stopcock (Cole-

Parmer, Montréal, Canada) at the halfway point. Stopcocks were

used to ensure venting, so that buildup of any gas was prevented

before the time 0 measurement. Lids also had a rubber septum in

the middle where the syringe would draw a 20-mL gas sample into a

pre-evacuated 12-mL exetainer.

Once all collars were secured with lids, measuring could begin.

Four measurements were made for each collar at time 0, 30, 60, and

90 minutes. Measurements were staggered by 60 seconds so that

there was time to draw a syringe sample and move to the next

sampling location. Two people each took 18 samples at each of the 4

time intervals, leaving 12 minutes between the end of one interval

and the beginning of the next.

All gas samples from exetainers were analyzed using a 7890A

gas chromatograph (Agilent Technologies Inc., CA, USA) equipped

with a flame ionization detector and electron capture detector. It

was also equipped with a PAL auto-sampler (Agilent Technologies

Inc., CA, USA). Fluxes were calculated with R, version 4.0.3 (36), in

R Studio using the gasfluxes package (37). The lin.fit method from

the package was used to fit a linear model via R’s lm function, using

concentration and time data.

Continuous soil water and temperature data was taken from the

5TE sensors (METER Group). Data was taken from the 11:00 am

reading – halfway between start and end of gas sampling – and from

the 15-cm depth reading. During this study, measurements were only

taken on fixed, plant-free locations – intentionally excluding plant

root respiration and focusing solely on heterotrophic respiration (38).
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Nitrate supply rates

The availability of NO3
- was determined using Plant Root

Simulator (PRS™-Probes) technology from Western Ag

Innovations Inc., Saskatoon, Canada. The probes are ion

exchange membranes (adsorbing surface area of 17.5 cm2/probe)

encapsulated in a thin plastic probe. They were inserted into the 0–

10 cm layer of the mineral soil where they adsorbed nutrients in

their available forms. The probes also adsorbed ammonium ions,

but a majority of the results were below method detection limits and

were therefore not included. Probes were placed adjacent to the

greenhouse gas sampling chambers in each of 2020 and 2021.

Probes were sent back to Western Ag for analysis after the

removal of each round of probes.

The four sampling periods in 2020 were: (1) June 17 – July 12;

(2) July 2 – July 28; (3) July 28 – August 18; and (4) August 19 –

September 8. The three sampling periods in 2021 were: (1) July 26 –

August 16; (2) August 16 – September 7; and (3) September 7 –

September 22.
Statistical analysis

The differences in GHG fluxes were analyzed using ANOVA

and Tukey post-hoc tests. A linear mixed effects model was used

with BMPI (CT, DTGW, DTGW+TD) and slope position (upper,

middle, lower) as fixed effects, subplot as a random effect to account

for repeated measurements, and soil water content and temperature

as continuous explanatory variables (39). A model was fit for each

gas separately. Soil temperature was not included in the N2Omodel,

as it was not significant in the model. A linear mixed effects model
FIGURE 1

Top) CO2 fluxes from May 28th to September 22nd, 2020, and April 29th to September 28th, 2021in the three best management practice integration
(BMPI) systems: CT (contour tillage), DTGW (diversion terraces and grassed waterways), and DTGW+TD (diversion terraces, grassed waterways, and
tile drainage). Bottom) Corresponding mean daily temperature and precipitation levels.
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was also used to assess volumetric water content (VWC); only

BMPI, slope position, and their interaction were included in the

model as fixed effects. For CO2, soil moisture and temperature

values from the HydraProbe sensor were included as continuous

explanatory variables. A linear mixed effects model was fitted with

BMPI to assess total GHG emitted as CO2 equivalents, with 298 and

25 used as the conversion factors for global warming potentials

(GWP) of N2O and CH4, respectively (40). Finally, for NO3
- supply

rate, a linear mixed effects model was fit with BMPI and slope

position as fixed effects and subplot as a random effect.

Type III ANOVA was used to evaluate significance of

interaction terms in the models. A Tukey post-hoc HSD test was

performed using the emmeans function (41) if the main effects

BMPI or slope position were significant without a significant

interaction between the two. The ANOVA assumptions of

normality and homogeneity of variance were assessed using

Shapiro-Wilks test and Bartlett’s test, respectively, in addition to

diagnostic plots. Data transformations were made when necessary

to ensure conditions of ANOVA were met. A statistical significance

threshold of a = 0.05 was used for hypothesis testing. Statistical

analyses were conducted using R software, version 4.0.3 (36).

Results

Carbon dioxide

Mean daily fluxes (kg CO2-C ha-1) in 2020 were 56.6 ± 3.6, 68.8

± 4.8, and 56.7 ± 3.7 in CT, DTGW, and DTGW+TD, respectively

(Figure 2). In 2021, mean daily fluxes averaged 28.7 ± 1.4, 33.3 ± 1.5,

and 28.6 ± 1.2 kg CO2-C ha-1 for the same treatments, respectively.

Daily fluxes measured across the entire study length averaged 43.1 ±
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2.0, 55.3 ± 3.3, and 42.5 ± 2.0 kg CO2-C ha-1, for the same

treatments, respectively.

In either of the two years of this study, slope position did not

have a significant effect on CO2 fluxes; similarly, the interaction

between BMPI and slope position also did not have a significant

effect on CO2 fluxes.

There were significant differences in total CO2 emissions among

BMPI treatments in both 2020 (p = 0.018) and 2021 (p < 0.001)

(Figure 3). In 2020, total C emitted from CO2 was 1640 ± 82.5, 1996

± 112, and 1644 ± 74.7 kg C ha-1, while in 2021 total C emitted was

833 ± 27.0, 966 ± 33.8, and 830 ± 26.1 kg C ha-1 in CT, DTGW, and

DTGW+TD, respectively.

Fluxes of CO2 were only weakly correlated to soil temperature.

Fluxes were positively correlated to soil temperature in 2020 (r =

0.27, p < 0.001, n = 803) and 2021 (r = 0.31, p < 0.001, n = 432). In

2020 and 2021 there was no correlation between CO2 fluxes

and VWC.

In 2020, VWC averaged 0.158 ± 0.003, 0.169 ± 0.003, and 0.200

± 0.005 m3 m-3, while in 2021, VWC averaged 0.278 ± 0.005, 0.311

± 0.005, and 0.276 ± 0.001 m3 m-3 in CT, DTGW, and DTGW+TD,

respectively. In 2020, soil temperature averaged 22.9 ± 0.3, 23.2 ±

0.3, and 24.1 ± 0.3°C, while in 2021, temperature averaged 21.5 ±

0.3, 21.2 ± 0.2, and 21.8 ± 0.3°C in CT, DTGW, and DTGW+TD,

respectively. Soil temperature and VWC can be seen in Figures 4

and 5, respectively.
Nitrous oxide

Nitrous oxide was significantly affected by BMPIs (p < 0.01),

slope position (p < 0.05), and soil water content (p < 0.001). There
FIGURE 2

Mean daily fluxes (kg CO2-C ha-1) for three best management practice integration (BMPIs) systems – CT (contour tillage), DTGW (diversion terraces and
grassed waterways), and DTGW+TD (diversion terraces, grassed waterways, and tile drainage) – in the 2020 and 2021 seasons. Error bars represent the
standard error of the mean (n = 348). Different letters indicate a statistically significant difference between BMPIs using Tukey’s HSD (a = 0.05).
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was also a significant effect of the interaction between BMPI and

slope position (p <0.01) on N2O.

The N2O fluxes in DTGW were higher than in CT or DTGW

+TD (Figure 6). The mean daily efflux (kg N2O-N ha-1) for CT,

DTGW, and DTGW+TD across all 3 years was 0.0124 ± 0.002,

0.015 ± 0.0019, and 0.011 ± 0.0016, respectively. Mean VWC

measurements (m3 m-3) in CT, DTGW, and DTGW+TD were

0.23 ± 0.01, 0.25 ± 0.01, and 0.24 ± 0.01, respectively.

Mean daily effluxes from upper to lower slope positions were

0.0151 ± 0.002, 0.0130 ± 0.002, and 0.0106 ± 0.001 kg N2O-N ha-1

day-1, respectively. The upper slopes were the wettest and the lower

slopes the driest. Soil VWC averaged 0.26 ± 0.01, 0.25 ± 0.01, and

0.22 ± 0.01 m3 m-3 top to bottom. The CO2 fluxes increased from

top to bottom in the CT treatment. Conversely, CO2 fluxes

increased from bottom to top in terraced BMPIs.

The only significant difference between BMPIs in total CO2e

emission of N2O was observed in 2019 (p < 0.001) (Figure 7).

The VWC was not significantly affected by BMPI (p = 0.71) but

was significantly affected by slope position (p < 0.01), where VWC

at the lower slope position was significantly different from the mid

(p < 0.01) and upper (p < 0.001) positions. N2O was positively

correlated with VWC (r = 0.23, p < 0.001) across all three seasons

but was not, however, significantly correlated with soil temperature

(r = -0.01, p = 0.74).
Methane

Mean CH4-C fluxes across all years for CT, DTGW, and DTGW

+TD were, respectively, -1.17 ± 0.2, -0.42 ± 0.5, and -1.56 ± 0.2 g ha-1

day-1. Methane fluxes were positively correlated with soil water

content (r = 0.26, p < 0.001, n = 425) and negatively correlated

with soil temperature (r = -0.24, p < 0.001, n = 425). There was a

significant effect of BMPI and slope position on methane oxidation

(p = 0.048). There were no significant differences in methane fluxes
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between BMPIs in 2019 (p = 0.08), 2020 (p = 0.86) or 2021 (p =

0.17) (Figure 8).

The highest CH4 uptake by slope position (-1.6 ± 0.2 g ha-1 day-1)

occurred in the lower slopes, which were ~16% drier than the upper

slopes. This is in line with expectations for the driest soils. Upper and

middle slope fluxes were -0.9 ± 0.2 and -0.7 ± 0.5 g ha-1 day-1.
Nitrate supply rate

In 2020, there was a statistically significant interaction between

BMPI and slope position (p = 0.017). In 2021, not one of BMPI

(0.65), slope position (0.33), or their interaction (0.41) was significant.

In 2020, the highest nitrate supply rates were observed in

DTGW between July 2nd and July 28th at 404 ± 50.5 μg cm-2

(Figure 9). Nitrate supply rates in 2020 were highest in DTGW in

each of the four measurement periods. In 2021, there was no clear

pattern of one BMPI being consistently higher or lower than others.

Rates in the July 26th to August 16th period of 2021 were 198%

higher than between the similar period of July 28th and August 18th

of 2020. Rates in the August 16th to September 7th period of 2021

were 128% higher than between the similar period of August 19th to

September 8th, 2020.

The only significant correlation in 2020 between nitrate supply

rate and N2O fluxes occurred between the burial period of August

19th to September 8th and the N2O fluxes from September 4th. No

nitrate supply rates significantly correlated to N2O fluxes in 2021.
Discussion

Carbon dioxide

The general CO2 flux trend between years was different than

that of N2O. While N2O fluxes were minimal in 2020 and higher in
FIGURE 3

Total CO2 emissions (kg C ha-1) in 2020 and 2021 in three best management practice integration (BMPIs) systems – CT (contour tillage), DTGW
(diversion terraces and grassed waterways), and DTGW+TD (diversion terraces, grassed waterways, and tile drainage). Error bars represent the
standard error of the mean (n = 12). Different letters indicate a statistically significant difference between BMPIs (a = 0.05).
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2019 and 2021, CO2 fluxes were, on average, higher in the hotter

and drier 2020 than in 2021. As suggested by Larcher (42), rising

temperatures most likely increased metabolic rates, leading to

increased microbial respiration in 2020. Temperature rises can

increase CO2 fluxes exponentially up to a certain point (43, 44).

Potatoes are also associated with lower CO2 fluxes relative to other

major crops (45–47) and could also help explain the lowered 2021

fluxes. For example, CO2 emissions have been demonstrated to be

lower for potatoes than sweet corn (46). However, CO2 fluxes from

that study represented microbial and plant root respiration, whereas

in our study plant root respiration was excluded.

In each year, DTGW total emissions were significantly higher

than in CT or DTGW+TD (Figure 3). The frequent soil

disturbances caused by tillage in potato production often break

down soil aggregates and enhance organic matter decomposition

(48). At this study site, there were no significant differences in

aggregate stability change among the three BMPIs between July of

2020 and October of 2021 (10). Nor were there any significant
Frontiers in Soil Science 07
changes in total SOC. Hence, significantly higher CO2 fluxes in

DTGW, relative to CT and DTGW+TD, cannot be attributed to

higher organic matter decomposition rates from destruction of soil

aggregates or changes in total SOC.

However, there were changes in other carbon fractions that

occurred over the duration of this study (10). These fractions

included permanganate-oxidizable carbon (POXC), free light

particulate organic matter (fPOM), and occluded POM (oPOM).

These C fractions have been shown to play an integral governing

role in the emission of CO2 from soil to the atmosphere. For

instance, Hassan et al. (49) showed in an incubation experiment

that POXC, fPOM, and oPOM, among other labile fractions, had

highly significant positive correlations with CO2 emissions. Other

studies have demonstrated that fPOM and CO2 emissions are in

high qualitative agreement with each other and are highly

correlated (50–52). However, what was seen in the changes in

labile C fractions at this study site does not reflect the CO2 fluxes

observed. Driscoll et al. (10) observed a 19.8% and 50.6% increase in
FIGURE 4

Soil temperatures in 2020 and 2021 for three best management practice integration (BMPIs) systems – CT (contour tillage), DTGW (diversion
terraces and grassed waterways), and DTGW+TD (diversion terraces, grassed waterways, and tile drainage).
FIGURE 5

Soil volumetric water content in 2020 and 2021 for three best management practice integration (BMPIs) systems – CT (contour tillage), DTGW
(diversion terraces and grassed waterways), and DTGW+TD (diversion terraces, grassed waterways, and tile drainage).
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POXC in DTGW and DTGW+TD, respectively, between July of

2020 and October of 2021, while CT lost 11.2%. Yet the pattern of

total CO2 emission in 2021 remained identical to 2020.

Furthermore, CT lost the most fPOM and oPOM over the same

duration, while DTGW+TD lost the least. Yet in both years CT and

DTGW+TD did not emit significantly different amounts of CO2.
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Soil moisture and temperature are the most important

environmental controls influencing the decomposition of organic

matter in soils, which leads to the release of CO2 to the atmosphere

(53). While higher soil temperatures in 2020 than in 2021 may help

partially explain higher 2020 total CO2 emissions, soil temperatures

between BMPI in either year did not vary much (Figure 4). Soil
FIGURE 6

Mean daily fluxes of N2O (A) and CH4 (B) in 2019, 2020, and 2021, with soil temperature (C) and soil water content (D), and colored by the three
best management practice integration (BMPIs) systems – CT (contour tillage), DTGW (diversion terraces and grassed waterways), and DTGW+TD
(diversion terraces, grassed waterways, and tile drainage).
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temperatures in CT were lower than in DTGW or DTGW+TD in

2020, but the differences were only marginal. However, given the

exponential relationship between soil temperature increase and

CO2 fluxes, this could help explain the difference in total

emissions between CT and DTGW in the first season. There were

little soil temperature differences in the two terraced BMPIs in

either year, suggesting that perhaps soil moisture dynamics played a

larger role in the significantly larger total emission of CO2 in

DTGW each year. One of the most common benefits of
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subsurface drainage is faster warming of soil – particularly in the

spring – and increased soil temperatures (54, 55). One Minnesota

study on a coarse-textured loam and a finer-textured clay loam soil

found that subsurface drainage increased soil temperatures in each

case by up to 4°C, primarily between May and July (56). However,

we did not record such differences.

The effect of tile drainage on VWC was clear in the wetter 2021,

where VWC stayed mostly flat in DTGW+TD from late July

through late September (Figures 5, 6). Whereas in CT and
FIGURE 7

Total N2O emission for the 2019, 2020, and 2021 growing seasons expressed in CO2 equivalents (CO2e) (kg C ha-1) for three best management
practice integration (BMPIs) systems – CT (contour tillage), DTGW (diversion terraces and grassed waterways), and DTGW+TD (diversion terraces,
grassed waterways, and tile drainage). Error bars represent the standard error of the mean (n = 12). Different letters indicate a statistically significant
difference between BMPIs (a = 0.05), but comparisons can only be made within year.
FIGURE 8

Total CH4 emission for the 2019, 2020, and 2021 growing seasons expressed in CO2 equivalents (CO2e) (kg C ha-1) for three best management
practice integration (BMPIs) systems – CT (contour tillage), DTGW (diversion terraces and grassed waterways), and DTGW+TD (diversion terraces,
grassed waterways, and tile drainage). Error bars represent the standard error of the mean (n = 12). Different letters indicate a statistically significant
difference between BMPIs (a = 0.05), but comparisons can only be made within year.
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DTGW, VWC levels rose more dramatically in the same time

frame. Surprisingly, this did not seem to translate into

temperature differences between BMPIs. However, corresponding

temperature increases to subsurface drainage have been found to be

highest at 30-60 cm depth (56) and may help explain the lack of

differentiation at 15 cm depth in our study. As expected, VWC

levels in DTGW were the highest in 2021 and are the most likely

contributor to the higher CO2 fluxes. The VWC levels in 2019

closely resemble those of 2021.
Nitrous oxide

The N2O fluxes in 2020 were much lower than in 2019 or 2021

(Figure 7). This can be explained by two factors. First, the summer

of 2020 was abnormally hot and dry, thus keeping soil moisture low

and inhibiting denitrification processes that occur in saturated and

anaerobic soil conditions. Furthermore, the N fertilization rate in

2020 on the oat crop was low – about 30% as much as was applied in

2021 on the potato crop. This resulted in very low 2020 N2O fluxes.

Conversely, in the 2019 and 2021 growing seasons, where VWC was

higher than in 2020, N2O fluxes were higher. As could be expected,
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fluxes were highest in 2021, when N fertilization rates were highest

and soil temperature and water content were in normal ranges.

The N2O fluxes in this study are in line with fluxes from

conventional New Brunswick potato farming experiments that

took place at the same research station and ranged between 0 and

0.04 kg N2O-N ha-1 day-1 (57).

Fluxes of N2O by BMPI did not follow the soil water trend.

While DTGW had both the highest N2O fluxes and VWC, CT had

the lowest soil water content, and DTGW+TD had the lowest

average N2O efflux – slightly below the conventional contour

tillage and ~26% below DTGW.

The tile drainage appeared to help regulate soil water relative to

its terraced counterpart (Figures 5, 6). In both 2019 and 2021, soil

water in DTGW+TD trended below the other BMPIs. In 2021, there

were no changes in VWC for nearly two months in DTGW+TD,

while VWC consistently increased in the other BMPIs. This water

regulation from tile drainage likely aided in lowering N2O fluxes.

Denitrification is the dominant source of N2O in humid climates

such as Atlantic Canada (15). When soil VWC approaches

saturation, denitrification processes start to release more N2O to

the atmosphere under anaerobic conditions (58, 59). This

commonly takes place at a water-filled pore space (WFPS) of 0.7
FIGURE 9

Effect of three best management practice integration (BMPIs) systems – CT (contour tillage), DTGW (diversion terraces and grassed waterways), and
DTGW+TD (diversion terraces, grassed waterways, and tile drainage) on nitrate supply rates measured in (top) 2020 and (bottom) 2021. The four
sampling periods in 2020 were: (1) June 17 – July 12; (2) July 2 – July 28; (3) July 28 – August 18; and (4) August 19 – September 8. The three
sampling periods in 2021 were: (1) July 26 – August 16; (2) August 16 – September 7; and (3) September 7 – September 22. Error bars represent the
standard error of the mean (n = 12).
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m3m-3 (60) – or roughly a VWC of 0.36 m3 m-3. In our study, VWC

in DTGW+TD never reached this value, while on four occasions

VWC in DTGW reached or exceeded 0.4 m3 m-3. We expected to

observe greater VWC in both terraced BMPIs, leading to higher

N2O fluxes. But while both BMPIs had higher average VWC than

CT, DTGW+TD emitted the least amount of N2O.

Burton et al. (61) stated that lower landscape positions have

greater water contents for greater periods of time, leading to

potentially greater denitrification and N2O fluxes. This was in

contrast with results from this study – overall fluxes were the

highest in upper slopes and the lowest in lower slopes.
Nitrate supply rate

Research has shown that nitrate (NO3
-) supply rates measured

with PRS-probes often decline with declining soil water content

(62). This at first seems to align with the higher supply rates seen in

the wetter 2021, where VWC was much higher in all BMPIs,

between comparable 3-week periods in 2020 (i.e.: JL28-AU18,

2020 to JL26-AU16, 2021). However, higher N fertilization rates

may have been contributing to the higher NO3
- supply rates. The N

fertilization rate in 2021 after potato planting was 233% higher than

after 2020 oat planting. Nitrate supply rates were initially high in

2020 and continued for six weeks, likely due to the fertilizing that

took place two days prior to the first installation of probes. The hot

and dry summer was likely the source of the large drop in supply

rate after July 28th, 2020, when rains in August dropped

substantially. Nitrate supply rates from the first burial period in

2021 were nearly as high as from the first measurement period of

2020, despite beginning 49 days after potato planting and beginning

39 days later relative to the first burial period in 2020. Potato

farming in Atlantic Canada uses high N fertilization rates, and the

190.5 kg N ha-1 used on June 7th likely contributed to sustained

NO3
- supply through June and July of 2021.

Best management practice integration systems and slope

position only had an effect on NO3
- supply rates in the 2020

growing season. Relative to CT and DTGW+TD, DTGW had the

highest rates in all four periods of 2020. One possible explanation

for the lack of effect of BMPIs on NO3
- supply rates in 2021 might

be related to the position of the PRS probes, which were placed in

potato ridges in 2021. The potato ridges might be more

homogenous across BMPIs since they are raised above the

furrow. Furthermore, the differences in soil water between BMPIs

may not be as pronounced in the ridges as they are 15 cm

belowground where VWC was measured. In a fertilizer study in

potatoes at the Fredericton Research and Development Centre

between 2008 and 2010, NO3
- supply rates were typically much

higher across all treatments in the ridge than in the furrow (63). Soil

water content in 2021 was clearly more regulated in DTGW+TD.

Yet, aside from a spike in CT in the final burial period, NO3
- supply

rates were nearly identical across BMPI in each burial period. This is

surprising, since Qian & Schoenau (64) found no threshold of soil

moisture above or below which the NO3
- supply rates would stop

increasing or decreasing. It is surprising that the supply rates would
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only be significantly affected by BMPI in the abnormally hot and

dry year.

Only once in 2020 were NO3
- supply rates correlated to

corresponding periods of N2O fluxes. Supply rates and N2O fluxes

in 2021 did not correlate at any point. Despite BMPI having an effect

on NO3
- supply rates in 2020, there was no significant difference in

total N2O emitted in 2020 between BMPIs. Nor was there a significant

difference in total N2O emitted between BMPIs in 2021. However,

total emissions of N2O in DTGW tended to be higher each year.

Emissions of N2O and NO3
- supply rates have previously been linked.

Hangs and Schoenau (65) found that a reduction in N2O emissions

was principally influenced by a decrease in nitrate supply, due to the

addition of biochar amendments on two different Saskatchewan soils.

On similar soils at the FRDC, Zebarth et al. (63) found that there was a

strong positive relationship between N2O emissions and nitrate

exposure in three seasons studying controlled release fertilizer effects

in potato production. Other previous studies have also reported that

cumulative growing season N2O emissions increased linearly with

increasing nitrate exposure in a given year in Eastern Canadian barley

and potato crops (57, 66). In Zebarth et al. (63), the magnitude of

emissions for a given NO3
- supply rate varied among years, indicating

the potential role of other factors that might influence N2O emissions

(e.g., lower rainfall in a given year or larger proportion of emissions

early in a growing season before soil nitrate concentrations had not yet

been depleted from plant uptake). Similarly, Zebarth et al. (66) also

found relationships between N2O emissions and nitrate exposure to

vary among 3 years of barley production. While the N2O emissions

trends in 2020 and 2021 were similar (i.e., higher in DTGW but not

significantly different), the NO3
- supply rates and the effects of BMPI

on supply rates varied between years.
Methane

While there was slightly higher variability in 2019, CH4 fluxes

remained mostly negative through all three study seasons, regardless

of soil water content, resulting in all BMPIs acting as minor C sinks

during the growing period. Methanotrophic organisms use CH4 as a

source of energy and C in well-aerated, arable land (67). As such,

Eastern Canadian soils are typically weak CH4 sinks (68).

While the mean VWC values in DTGW and DTGW+TD only

differed by ~3%, mean CH4-C oxidation in DTGW+TD was about

triple that of DTGW. This was, much like with N2O, perhaps due to

the variation seen in the VWC values in the wetter 2019 and 2021;

DTGW+TD values were less variable than in DTGW and also had

lower maximum values (Figure 6). Since CH4-C uptake and soil

water content were positively correlated, it could be that the tile

drainage – keeping the VWC more constant – was aiding in

increasing the CH4-C oxidation rates.

Methane oxidation rates in the drier 2020 were almost identical

in each BMPI. Oxidation rates were on the same order of magnitude

as results from a fertilizer input study on irrigated cropland in

Southern Alberta (69). Similarly, their results also showed little

variability in methane uptake between season or management

treatment. A tillage study from Northeastern Colorado also found
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similar oxidation rates and a lack of influence from tillage or

fertilization rate treatments (70). It is possible that the length of

time these BMPIs have been established influences the activity

of microbial populations responsible for CH4 uptake. Construction

of the BMPIs began in 2018 and the first measurements were

collected the following year. Methane oxidation rates are a useful

indicator of land use and tillage change (71). Microbial populations

may not have changed between 2018 and 2021, especially since the

more disruptive, tillage-intensive potato crop was only seeded in

2021 for the first time. The oat crops that were seeded in 2019 and

2020 required far fewer tillage events than potatoes. However, it is

most likely that CH4 oxidation on these moderately-permeable

sandy loams remain aligned with the broader tendency of Eastern

Canadian soils to be weak CH4 sinks.
Conclusions

The findings from this study show that in both years in which CO2

was measured, cumulative emissions between CT and DTGW+TD

did not differ significantly. Cumulative CO2 emissions in DTGWwere

significantly higher in both years, despite different soil temperature

and water regimes each year. In the first year (2019) in which N2O

measurements were made, DTGW+TD emitted significantly less

cumulative emissions than the other two BMPIs. In the subsequent

two years there was no significant difference between the three BMPIs.

In none of the three years was a significant difference found between

CH4 oxidation rates in the three BMPIs.

Soil water content in DTGW+TD was more regulated than in

CT or DTGW. In 2020, when the summer was abnormally hot and

dry, tile drained plots (DTGW+TD) surprisingly had some of the

highest VWC values. In 2019 and 2021, when the fields received

more regular rainfall, DTGW+TD had the least amount of

variability, and VWC did not trend upwards through the summer

as much as in the other two BMPIs. In 2019, 2020, and 2021, VWC

in DTGW+TD was capped at about 0.3 m3 m-3, while the other two

BMPIs had values approaching 0.45 m3 m-3.

We expected that in the terraced BMPIs, wetter soil conditions

would be created due to greater water infiltration of rainfall water,

in turn leading to higher potential GHG fluxes. This appeared to be

the case in DTGW. The addition of tile drainage in DTGW+TD

regulated the soil water content, thereby keeping CO2 and N2O

emissions either on par or below those of the control.

There is evidence here that demonstrates the addition of tile

drainage to diversion terraces and grassed waterways reduces the

emissions of CO2 and N2O, relative to non-tile drained terraces, by

regulating soil water. The reduction in CO2 emissions in DTGW+TD

comes despite vastly greater increases in labile C in this BMPI. There

is also evidence that tile-drained terraces do not emit more CO2 or

N2O than contour-tilled control fields. This has implications for both

climate change and nutrient management when considering

implementing the LISWC system. Many farmers currently use

diversion terraces and grassed waterway systems, and the results of

this study may inform decisions on the addition of tile drainage.
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