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Predicting select soil health
genes using hyperspectral
reflectance in nematode-
infected and drought stressed
greenhouse cotton
John P. Brooks1*, Martin J. Wubben1, Renotta K. Smith1,
Josh Waldbieser1, Sathishkumar Samiappan2,
Purushothaman Ramamoorthy2 and Raju Bheemanahalli 3

1USDA-ARS, Genetics and Sustainable Agriculture Research Unit, Starkville, MS, United States,
2Geosystems Research Institute, Mississippi State University, Starkville, MS, United States,
3Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
Introduction: Predicting, or correlating, soil microbiome metrics with above

ground phenotypic plant measurements would enable rapid diagnosis of soil

microbiome imbalances. Rapid plant measurements through remote sensing are

a leading innovation in agriculture and have reduced the need for labor-intensive

plant and soil measurements. In the current study we utilized cotton (Gossypium

hirsutum) as a plant model whereby stress was induced by drought and root-knot

nematode (RKN; Meloidogyne incognita) infection to induce a change in the soil

microbiome which would be reflected as a plant phenotypic response.

Methods: The experiment was a randomized complete block design with two

cotton genotypes (RKN-susceptible or RKN-resistant) and four stress

combinations. Rootzone samples were collected upon plant termination and

quantified for five soil health genes: 16S rRNA, 18S rRNA, ureC, phoA, and cbbLR.

Plant physiology, biomass, and remote sensing hyperspectral readings were

previously reported.

Results and discussion: Overall, RKN infection and plant genotype treatments

had little effect on genes. Interestingly, drought stress increased most gene

abundances, while plant physiological and biomass measurements decreased,

indicating microbiome response to plant stress. Hyperspectral reflectance,

through machine learning, accurately predicted the presence of drought stress

with an area under the receiver operating characteristic curve value of 0.864.

Furthermore, the readings were able to predict the abundance values for all

genes except 18S rRNA within one standard deviation of ground truth levels. This

study demonstrated that there are key plant characteristics that are registered via
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hyperspectral wavelengths which can be used to accurately predict soil health

gene abundance. While the use of hyperspectral readings and soil microbiome

status to inform plant health and vice versa are still in their infancy, the current

study provides us with future directions towards this end.
KEYWORDS

soil, microbiome, soil health, plant stress, plant physiology, cotton, root-knot
nematode, machine learning
1 Introduction

Linking biological soil health to plant measurements to

potentially diagnose or predict the effect of abiotic or biotic stresses

is one goal associated with remote sensing and large-scale agriculture

(1). Traditionally, identifying problems associated with the large-scale

production of crops such as cotton, corn, or soybean can be

conducted by a trained field technician/extension agent or grower,

but this can be limited to hands-on contact with the plants or a more

detailed sampling protocol to ascertain the problem. Typical

problems, such as drought-stress, salt-stress, or nutrient deficiencies

may be more readily identified; however, issues or deficiencies within

the soil biology can be more difficult to determine.

Microorganisms and the broader soil microbiome comprise a

minor component of overall soil volume (<1% v/v); however, all

major soil activities are directly or indirectly a result of the soil

microbiome. Furthermore, microorganisms comprise a major

portion of the surface biomass and are responsible for

biogeochemical processes, such as nutrient and carbon cycling,

nitrogen fixation, denitrification, and metal detoxification (2).

While these biochemical processes are widely recognized,

measuring these microbial processes is wrought with caveats. For

example, quantifying enzymes may represent idealized assay

conditions (3); meanwhile the use of cultivation-dependent

approaches only captures approximately <1% of the microbial

population and are often focused on bacteria/fungi which are

easily cultured but not necessarily key members of the soil

microbiome (4). While the use of cultivation-independent (e.g.,

DNA-based) approaches are not without their drawbacks (5), the

potential to target a multitude of genes and quantify the

microbiome potential (e.g., DNA) can be useful. The use of key

taxonomic ratios as a metric for soil biological quality has been

reported in previous studies and reviews (6, 7), though the

abundance of 16S and 18S rRNA has also been utilized (8).

Meanwhile, the assay of specific genes such as phoA (phosphatase

A), ureC (urease C), and cbbLR (red-like ribulose-1, 5-biphosphate

carboxylase) represent genes key in biogeochemical macronutrient

cycling such as P, N, and C processes, respectively (9–13).

Additionally, these processes have a direct and/or indirect effect

on the aboveground plant biomass by providing plant-available

macro- and micro-nutrients liberated from organic matter or fixed
02
through autotrophic processes. Soil fungi provide key genes as well,

and generally represent the largest percentage of biomass. Key

fungal members, such as arbuscular mycorrhizal fungi, provide

glomalin proteins which protect plants from drought and nutrient

stress by stabilizing soil aggregates, thus promoting water and

nutrient infiltration and scavenging (14).

Fortunately, the soil microbiome is relatively stable, with

changes that occur on temporal timespans (e.g., seasonal,

climatic, or anthropogenic management). Often, the relative

fluctuations expected throughout a growing season are plant-

dependent or weather-related (15–17), but these can be

considered temporary occupation of important ecological niches,

as one microbial group or population makes way for the functions

of another group or population. However, larger, or more

permanent shifts may be expected given climatic change or large-

scale agronomic management such as monocropping (18), cover

cropping (19), or catastrophic events, such as strip-mining or fire

(16, 20). Capturing these subtle shifts are key to understanding the

influence of biotic and abiotic stresses on the soil microbiome,

particularly as it affects plant physiology and ultimately yield.

Plant health status is often expressed phenotypically by leaf

coloration, senescence, and spotting, or stunted growth and

premature flowering (21). While these presentations are not

necessarily tied to the soil microbiome, there is evidence to suggest

that while these abiotic and biotic stresses are affecting the plant, there

exists constant communication between the plant and the soil

microbiome through phytohormones, root exudates, nutrients, and

metabolites (17, 22, 23). This in turn may cause a subtle change in the

soil microbiome. The use of hyperspectral imaging can help ameliorate

these issues before they become a problem (24). Hyperspectral imaging

encompasses approximately 250 – 2500 nm, thus identifying critical

spectral bands has yet to be realized. Recently, Ramamoorthy et al. (24)

sought to accomplish this with respect to plant physiological status.

Leaf spectral properties comprise both visible and non-visible spectra,

which lends itself to remote sensing and hyperspectral imaging (25).

When combined with machine learning and deep learning techniques,

hyperspectral data have been used to monitor several crop

physiological effects, including nutrient quantities, disease and

contaminant detection, and drought stress (26, 27). Using these

bands to predict the changes in abundance of key soil microbial

genetic elements is a logical next step as suggested by Hamada et al. (1).
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Cotton (Gossypium hirsutum) infection with the southern root-

knot nematode (RKN), Meloidogyne incognita, causes estimated

losses in the United States of up to $168 million dollars based off

2022 losses of ~387,000 bales of cotton (28). The lifecycle of RKN

has been covered extensively (29); however, its subsequent effect on

the phenotypic presentation of cotton plants and its recognition via

remote sensing is in its infancy (24). Furthermore, tying plant

phenotypic presentation with effects on the soil microbiome

remains an untapped area of research (1). Thus, this study aims

to understand the effect of these plant stresses on the soil

microbiome, while simultaneously using the plant as an indicator

of the stress presentation via traditional plant physiological and

remote sensing measurements. Therefore, to accomplish this, the

objectives of the present study were to: 1) relate soil health genes to

biological and drought stress; and 2) relate soil health genes to

above ground plant measurements using leaf physiological and

remote-sensing hyperspectral measurements.
2 Materials and methods

2.1 Experimental design

The experimental design was thoroughly described in

Ramamoorthy et al. (24). Briefly, the greenhouse experiment was

conducted in 2021 utilizing a randomized complete block design,

10x2x4 (10 replications, 2 cotton genotypes, and 4 stress treatment

combinations) pot (~8L vol) combinations. Two cotton genotypes,

denoting cotton resistance to RKN, were used (RKN susceptible and

RKN resistant). Stress variables included: Irrigation (Full water

requirement (Full) and Drought (Half)); and Inoculation (RKN

inoculation (Inoculated) and No RKN inoculation (Control)). Thus,

the four stress treatment combinations comprised Irrigation and

Inoculation stressors: 1) no stress (Full, Control); 2) drought stress

(Half, Control); 3) RKN infection stress (Full, Inoculated); and 4)

full stress (Half, Inoculated).Meloidogyne incognita race 3 was used

for RKN infection. Approximately 100,000 RKN eggs were

inoculated per inoculated pot. Greenhouse conditions were

maintained as described in Ramamoorthy et al. (24). Successful

RKN infection of susceptible plants was confirmed at the end of the

experiment by the presence of large RKN-induced galls throughout

the root system.
2.2 Sample collection

Physiological data collection and remote sensing leaf

hyperspectral reflectance measurements were described in detail in

Ramamoorthy et al. (24). Chlorophyll content and nitrogen balance

index was measured with a handheld Dualex Force A DX16641

(Dualex, Paris, France). Stomatal conductance and transpiration were

measured with a LI-600 porometer (Li-COR Biosciences, Lincoln,

NE, USA). Root and shoot biomass was measured after drying at 75°

C for three days and measuring dry weights. Leaf hyperspectral

reflectance was measured with a PSR+ 3500 spectroradiometer
Frontiers in Soil Science 03
(Spectral Evolution, Haverhill, MA, USA). Physiological data was

collected at 92 days post planting, with measurements taken between

10:00 and 12:00. Harvested portions were collected on the final day of

the experiment. Hyperspectral readings were made utilizing a PSR +

3500 spectroradiometer (Spectral Evolution, Haverhill, MA, USA) on

the final day of the experiment. Briefly, a leaf probe was clipped onto

the leaf and hyperspectral readings were measured 5 times (each

measurement equals 10 readings) between 350-2500 nm with a

resolution ranging from 2.8 to 6 nm.
2.3 DNA extraction and quantitative PCR

Rhizosphere soil was collected on the final day of the

experiment (92 d post seed). Briefly, roots were carefully removed

from the pots and any bulk soil not immediately attached to the

roots was removed by gently shaking the roots and discarded. Soil

attached to the roots was gently removed by aseptically suspending

the roots in a 1-liter plastic bag and shaken to remove any attached

rhizosphere soil, equal to approximately 5-10 moist g (30). DNA

was extracted from a 250 mg aliquot of soil using the MPBio

Fastprep Soil DNA extraction kit (MP Biomedicals, CA, USA)

following the manufacturer’s recommended protocol. An MPBio

Fastprep-24 grinder and lysis system were used to carry out all

bead-beating steps. Extracted DNA was quantified using a Qubit 4

Fluorometer (Thermo Fisher Scientific, CA, USA) using the

recommended manufacturer’s protocol.

Following DNA extraction, quantitative polymerase chain

reaction (qPCR) for five genes was conducted according to

Brooks et al. (15) and Adeli et al. (31). Briefly, 10-fold dilution

aliquots of extracted DNA were prepared prior to qPCR analysis to

avoid inhibition due to DNA extraction impurities. The 16S rRNA

(32), 18S rRNA (33), ureC (34), phoA (10), and cbbLR (35) genes

were targeted. These genes were selected based on prior research

indicating that these genes responded well to agronomic changes as

indicators of soil health and the microbiome. The 16S and 18S

rRNA genes each represent total bacterial and fungal populations,

respectively, while ureC, phoA, and cbbLR genes represent key genes

associated with the N, P, and C biogeochemical cycles. All qPCR

assays were conducted on an Applied Biosystems StepOne Plus

real-time PCR system utilizing SYBR green chemistry (Applied

Biosystems, CA, USA). All reactions were conducted in technical

duplication following the expected positive confirmation criteria: 1)

both duplicate reactions cycle threshold (Ct) had to be within 1

standard deviation of each other; 2) Ct < 37; and 3) confirmed melt-

curve analysis peak temperature. Qualitative assurance and control

were conducted using positive and negative controls comprised of

sequence confirmed G blocks (IDTDNA, IA, USA) or positive

confirmed bacterial isolate DNA, and negative PCR quality water,

respectively. Inhibition controls were included with all qPCR plates,

whereby three randomly selected samples were spiked with known

quantities of DNA and checked for recovery of +/-25% expected

results. Efficiencies were expected >90% across the standard curve.

Deviations from these QA/QC criteria resulted in repeat assays. All

results were reported as genomic unit per g (GU g-1).
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2.4 Statistics

Prior to statistical analysis, all qPCR data was log10 transformed,

and geometric means were calculated to achieve normality. R ver.

4.3.1 and R Studio (2023.06.1 build 524) were used for statistical

analysis. R packages lme4, lmerTest, and ggplot2 were used for

statistical analyses and figures. Differences in response variables,

16S rRNA, 18S rRNA, ureC, phoA, and cbbLR, were analyzed for

influence of treatment (irrigation, inoculation, and cotton

genotype) using the Linearized Mixed model (lmer) function with

replication as a random block (response variable~irrigation

+inoculation*genotype+(1|block)). Each model was checked for

goodness of fit (AIC). The influence of stress treatments on

hyperspectral and plant physiological and biomass data was

analyzed and presented previously (24). Hyperspectral and plant

physiological and biomass data was utilized here to correlate to gene

abundance levels utilizing Pearson correlation via the

(cor.test) function.

Hyperspectral readings from 250-2500 nm per treatment pot

were previously reported in Ramamoorthy et al. (24). In the current

study we attempted to correlate those findings with the rootzone

biological abundance levels utilizing a simple Pearson correlation

and reduced data. To do this, we parsed and averaged datapoints

(n=5) to biologically meaningful wavelengths (i.e., 350-2500; 560,

668, 840, and 1450 nm) which covered the entire hyperspectral

measurable range, as well as the center wavelength (l) for the green,
red, near infrared, and red edge l, respectively.
2.5 Machine learning

Machine learning classification and regression models were

developed within the Tidymodels framework in R to predict the

presence of drought stress and log10 qPCR data using only the

hyperspectral data. The dataset was split into a training set (80%)

and testing set (20%), and the wavelength reflectance values were

normalized with respect to that wavelength. Lasso, elastic net, and

random forest models were built using 10-fold cross validation for

hyperparameter tuning within the training set. Classification

models predicted the drought stress treatment, and regression

models predicted the transformed 16S rRNA, 18S rRNA, phoA,

cbbLR, and ureC gene abundance levels. The area under the receiver

operating characteristic curve (ROC AUC) and F1 scores were

calculated for the classification models, and root mean square error

(RMSE) was calculated for each regression model. The model

specific hyperparameters were: the lasso models’ L1 regularization

penalties, the elastic net models’ regularization amounts and L1/L2
mixtures, and the random forest models’ number of wavelengths

sampled at each split, the number of trees in the ensemble, and the

minimum number of data points in a node for it to be split. The

possible values tested for each hyperparameter were automatically

generated using Tidymodels’s dials package, and the number of

possible values was set so 64 hyperparameter combinations for each

model type could be trained. Additionally, two versions of each

model were built: one using the entire set of wavelengths (350 –
Frontiers in Soil Science 04
2500 nm) and another using only wavelengths with an absolute

Pearson correlation of less than 0.95. Since the reflectance values at

each wavelength were very strongly correlated with one another,

this correlation filter reduced the number of wavelengths

considered from 2151 to 6. After each model’s locally optimal

hyperparameter configuration was discovered, the model was

finalized and evaluated on the testing set.
3 Results

3.1 Gene levels

Overall, rootzone soil health genes (16S rRNA, 18S rRNA,

phoA, cbbLR, and ureC) were similar across treatments, but there

were obvious effects of treatment, particularly with drought

conditions. Soil health genes ranged from: 8.71x108 - 2.99x1010

(16S rRNA); 5.53x105 – 1.71x107 (18S rRNA); 9.65x102–7.80x104

(phoA); 9.87x104-2.15x106 (ureC); and 2.71x107-1.91x109

(cbbLR) (Table 1).

A linear mixed model was chosen to determine the effects of

stressors on the response variables (Table 2). The linear mixed

model estimated that effects were mostly related to irrigation. For

example, 16S rRNA was slightly affected by irrigation level (t(1,70)

=1.722, p=0.08), whereby the drought irrigation predicted an

increase in 16S rRNA values over the full irrigation scheme.

Fungal gene abundance (18S rRNA) was significantly predicted to

increase by the drought irrigation scheme (t(1,70)=3.888,

p=0.0002) (Figure 1).

Genes associated with biogeochemical pathways were also

predicted to increase in response to drought stress, cbbLR and

phoA abundance values (t(1,70)=4.447,p<0.0001) and (t(1,70)

=3.104, p =0.002), respectively (Figure 2). Additionally, ureC was

found to be slightly influenced by plant genotype whereby ureC

values were lower in RKN-susceptible plants (t(1,70)=-1.784, p=0.07).

Minor interactive effects between irrigation*inoculation, and

irrigation*inoculation*cotton genotype were noted for 16S rRNA

abundance levels (t(1,70)=1.825, p=0.07) and (t(1,70)=-1.860,

p=0.06), respectively. However, model selection criteria (AIC)

values were larger for this model suggesting it was a weaker fit

than models ignoring these interactive effects. Figure 3 demonstrates

the relationship between irrigation and inoculation treatments and

16S and 18S rRNA via principal component analysis.

Pearson correlations between plant physiological and biomass

and soil biological measurements suggested there were moderate

significant correlations (Table 3). However, hyperspectral data was

not correlated with any rootzone biological measurements, using

these simple correlations. Abundance levels for 16S rRNA were

moderately negatively correlated with plant height (r(78)=-0.25,

p=0.02), leaf dry weight (r(78)=-0.33, p=0.003), stem dry weight (r

(78)=-0.37, p=0.0005), and shoot dry weight (r(78)=-0.23, p=0.04).

Fungal abundance (18S rRNA) was negatively correlated with soil

moisture content (r(78)=-0.37, p<0.001)) (Figure 4), max

fluorescence (r(78)=-0.27, p=0.02), quantum efficiency (r(78)

=-0.22, p<0.05)), and positively correlated with leaf temperature
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(r(78)=0.23, p<0.05)). Additionally, fungal abundance levels

demonstrated significant interactions with plant height (r(78)

=-0.29, p=0.008), and shoot dry weight (r(78)=-0.25, p=0.02).

Pearson correlation indicated significant interactions between

cbbLR abundance and soil moisture content (r(78)=-0.36,

p=0.0009) (Figure 4), stomatal conductance (r(78)=-0.28, p=0.01),

max fluorescence (r(78)=-0.23, p=0.03), leaf temperature (r(78)

=0.27, p=0.01), canopy temperature difference (r(78)=-0.25,

p=0.02), plant height (r(78)=-0.35, p=0.001), and shoot dry

weight (r(78)=-0.23, p=0.04). Phosphatase A (phoA) abundance

was also negatively correlated with soil moisture content (r(78)

=-0.27, p=0.02).
3.2 Machine learning

However, when machine learning was employed, the linear

models (lasso and elastic net) were able to accurately predict the

presence of drought stress given the hyperspectral data, with the

best model (elastic net without a correlation filter) having ROC

AUC = 0.864 and F1 = 0.795 (Figures 5, 6). The linear models were

able to predict qPCR values with RMSE within approximately one

standard deviation of the ground truth data for all five genes

considered in this study (Figure 6). While the best models

predicting 16S rRNA, cbbLR, phoA, and ureC gene abundance

values all had RMSE under the gene level’s standard deviations,

models evaluated for 18S rRNA did exceed this metric.

Both linear models (lasso and elastic net) had similar metrics

(Figures 5-7), regardless of the task (classification or regression) or

presence of a correlation filter. Additionally, these linear models

almost universally outperformed the random forest models. The

correlation filter reduced most models’ predictive accuracy,

affecting the linear models more strongly than the random forest

models, but even the reduced prediction quality was considered

acceptable for our purposes. Figures 8, 9 demonstrate the Pearson

correlations between wavebands and the plant physiological and

biomass variables of interest, and mean reflectance by treatment

combination, respectively.
4 Discussion

We determined that many measured genes correlated well with

the previously reported plant physiological and biomass dataset. In

addition, rootzone gene abundances were significantly influenced

by soil moisture regimes, a finding similar to the plant physiological

dataset (24), which in general was negatively associated with low

soil moisture. However, there was little evidence suggesting that

cotton genotype (resistant or susceptible to RKN) or inoculation

regime affected gene levels. This was also corroborated by the

previous publication (24), suggesting that plant physiological and

biomass measurements were also not associated with genotype

and inoculation.

Gene abundance levels were influenced by soil moisture regime,

specifically, linear mixed models suggested that the half moisture
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regime (i.e., drought) selected for significantly greater levels of 16S

rRNA, 18S rRNA, cbbLR, and phoA levels. Additionally, as seen

during exploratory visualization (Figure 3), PCA demonstrated that

while there is a trend associated with 16S and 18S rRNA towards

irrigation and inoculation stresses, the microbial genetic responses

overlapped as a result of these stresses. It is important to note that

soil samples, for gene abundance levels, were sampled near the root

and not the bulk soil, thus the response by the soil microbiome may

have been influenced by a plant stress response (17). This was also

further corroborated by negative correlations between 18S rRNA,

cbbLR, and phoA with soil moisture content, as recorded by probe.

While it may seem counterintuitive for gene abundance levels to

increase under drought stress, it is possible that the soil microbiome

is being positively influenced by the plant’s response to drought

stress, as has been reported by others (2, 14, 36). Pineda et al. (36)

demonstrated that plant herbivorous insects can be repelled by an

inoculated soil microbiome as well as from plant microbiome

selection resulting from specific plant species. Similarly, Puschel

et al. (14) showed that arbuscular mycorrhizae fungi (AMF) would

increase their colonization of plant growth substrate and remained
Frontiers in Soil Science 06
reasonably colonized on plant roots as gravimetric water content

decreased. Furthermore, in the current study, plant physiological

measurements suggested drought stress was manifested in

transpiration and stomatal conductance (24), while visual

indicators such as chlorophyll didn’t indicate drought or RKN

stress. This may explain the difficulties in directly correlating

hyperspectral data with soil gene abundances. The initial

wavelengths chosen from the hyperspectral dataset were selected

based on key visual indicators (e.g., chlorophyll).

It is well known that members of the fungal microbiome, such

as AMF, offer some level of protection from drought stress through

the production of glomalin which binds soil particles together, thus

enhancing moisture retention (14). In the current study, we noted

an increase in overall fungal abundance (18S rRNA) under drought

conditions, suggesting that this was a possibility. While AMF were

not specifically targeted in this controlled experiment, the fungal

abundance primer set captured many fungal species or groups,

including AMF. In a recent study, Puschel et al (14) demonstrated

that AMF respond to drought stress by increasing P uptake, but also

by persisting in root colonization. Other gene abundance levels were

also positively selected with drought stress, such as cbbLR and

phoA. This may indicate as plant stress increased, the soil

microbiome responded by increasing abundance. Likewise, an

increase in phoA, may indicate an increase in fungal recruited

alkaline phosphatase activity in response to drought stress (37).

Phosphatase A (phoA) and cbbLR are each involved in opposite

ends of nutrient cycling, with phoA primarily involved in phosphate

release from organic matter (9), while cbbLR is associated with CO2

fixation by autotrophic bacteria (35). Drought stress decreases the

availability of PO4 (14), thus the presence of increased phoA could

indicate a soil microbiome response to promote P availability.

Similarly, an increase in plant-mediated communication during

drought stress may signal rhizosphere or rootzone bacteria and

fungi to increase production of biogeochemical genes (22).

It is also known (38) and was corroborated in the current study,

that plant physiology and biomass will respond negatively to drought

stress as indicated by transpiration, stomatal conductance, and shoot

dry weight (24). Many of the measured gene abundance levels were

negatively correlated with plant physiological measurements. For

example, carbon fixation (cbbLR) was negatively correlated with

stomata conductance and photosynthesis (Fm); however, cbbLR

abundance levels were positively correlated with leaf temperature.

There is some evidence to suggest that plants can uptake soil C via
TABLE 2 Statistical analysis of linear mixed model (lmer Program R) by treatment.

Treatment 16S rRNA 18S rRNA ureC phoA cbbLR

Genotype *

Irrigation * *** ** ***

Inoculation

Irrigation x Inoculation *

Irrigation x Inoculation x Genotype *
*p<0.1; **p<0.05, ***p<0.001.
Genes – 16S rRNA, 16S ribosomal RNA; 18S rRNA, 18S ribosomal RNA; ureC, urease C; phoA, phosphatase A and cbbLR, red-like ribulose-1,5-biphosphate carboxylase/oxygenase form I.
FIGURE 1

Fungal gene abundance levels (18S rRNA) measured in rootzone soil
influence by irrigation regime (Full and half irrigation regimes). Color
dots are associated with cotton resistance genotype (root-knot
nematode resistant (Res) or susceptible (Susc)). Different letters
above box plot indicates significant difference based on stress using
linearized mixed model.
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the rootzone (<5% of total plant C) (39). In a study by Majlesi et al.

(39), it was suggested that soil C, determined via C14 labeling, could be

up taken at between 3-5% in pine roots. While this may be related to

plant specific responses, there is evidence that it happens in other

species such as cereal (40). The available soil C is undoubtedly related

to the soil rootzonemicrobiome. An increase in C fixation in the soil by

rootzone bacteria may indicate lower intake via stomatal atmospheric

C and subsequent photosynthetic-driven C fixation. Furthermore, an

increase in cbbLR rootzone gene abundance coupled with an increase

in leaf temperature may indicate a response to plant drought stress. An
Frontiers in Soil Science 07
increase in leaf temperature could indicate a decrease in transpiration,

which coupled with decreased stomatal conductance suggests a drop in

CO2 acquisition. This is further corroborated by negative correlations

between cbbLR, phoA, and 18S rRNA and soil moisture content.

Furthermore, plant leaf quantum efficiency was also negatively

correlated with 18S rRNA abundance levels, further suggesting that

as the plants were drought stressed, there was a subsequent response

and increase in key microbiome members and genes.

Interestingly, plant biomass characteristics were negatively

correlated with most measured gene abundance levels. Plant
FIGURE 2

Biogeochemical gene abundance levels (cbbLR and phoA) measured in rootzone soil influence by irrigation regime (Full and half irrigation regimes).
Color dots are associated with cotton resistance genotype (root-knot nematode resistant (Res) or susceptible (Susc)). Different letters above box plot
indicates significant difference based on stress using linearized mixed model.
FIGURE 3

Principal component analysis demonstrating the effect of irrigation and inoculation regime for 16S and 18S rRNA parameters, respectively.
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biomass characteristics, such as plant height, leaf dry weight, stem

dry weight, and shoot dry weight were negatively correlated with

16S rRNA, cbbLR, phoA, and 18S rRNA levels. This corroborates

the noted interactions stated above, whereby increased plant stress

led to increased demand on the soil rootzone microbiome, at least as

measured by these five genes. As stated in Ramamoorthy et al. (24),

drought stress manifested in negative biomass interactions, such as

shoot dry weight losses which decreased by up to 50% relative to

control plants.
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Infection with RKN and/or cotton genotype susceptibility to

RKN did not significantly influence linear mixed model responses

for any of the reported gene abundance levels. While this was

surprising; as previously reported by Ramamoorthy et al. (24), plant

physiological nor biomass were significantly influenced by RKN nor

RKN susceptibility genotype. In fact, in order of rank, drought stress

and RKN w/drought stress both demonstrated stronger reactions

from plant growth measurements, indicating that drought stress

was the key stressor. Similarly, gene abundance levels responded the
TABLE 3 Significant (p<0.05) Pearson correlations between soil health genes and select plant biomass, plant physiological, and environmental conditions.

16S rRNA 18S rRNA ureC phoA cbbLR

Plant height 0.25 -0.29 NS NS -0.35

Leaf dry weight 0.33 NS NS NS NS

Stem dry weight 0.37 NS NS NS NS

Shoot dry weight -0.23 -0.25 NS NS -0.23

Soil moisture content NS -0.37 NS -0.27 -0.36

Leaf temp NS 0.23 NS NS 0.27

Canopy temp difference NS NS NS NS 0.25

Stomata conductance NS NS NS NS -0.28

Maximum fluorescence NS -0.27 NS NS -0.24

Air temp NS 0.23 NS 0.23 NS

Photosynthesis
NS

-0.22 NS NS NS
Genes – 16S rRNA – 16S ribosomal RNA, 18S rRNA – 18S ribosomal RNA, ureC – urease C, phoA – phosphatase A, and cbbLR – red-like ribulose-1,5-biphosphate carboxylase/oxygenase form
I. Non-significant results = NS.
FIGURE 4

Pearson correlations between 18S rRNA, cbbLR gene abundance levels measured in rootzone soil and soil moisture content.
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same. However, hyperspectral readings were able to successfully

denote RKN stress from control (24).

Overall, the intent and purpose of this experiment was to

correlate plant associated hyperspectral reflectance values with
Frontiers in Soil Science 09
rootzone gene abundance levels. Direct relationships were not

found utilizing a pared down dataset (e.g., averaging of

wavelengths) and simple Pearson correlations; however, through

machine learning, the hyperspectral dataset was able to predict soil

health genes. The vast amount of data collected in a single

hyperspectral session needs to be successfully and correctly

dimensionally reduced prior to manual data analysis. Initially, we

attempted to reduce some of the data dimensionality by averaging

and selecting wavelengths of biological significance, more careful

selection is necessary to capture the plant physiological or biomass

presentations that were significantly correlated to gene abundance

levels. Stomatal conductance, leaf temperature, photosynthetic

efficiency, and soil moisture, while all significantly explanatory for

gene abundances, may not necessarily be represented in

hyperspectral readings (25). As can be seen in Figures 8 and 9,

there are trends associated with plant biomass measurements and

wavelength, for example leaf dry weight and stem dry weight were

both moderately associated with increasing wavelength. There were

moderate positive correlations at >1000 nmwith leaf dry weight and

moderate negative correlations with plant height between 500 and

700 nm. Reflectance (shifted) was also greater in the resistant and

susceptible genotypes during drought stress conditions. These peaks

occurred between 700 and 1200 nm, covering red and near infrared
FIGURE 5

Area under the receiver operating characteristic curve (ROC AUC) and F1 scores for models predicting the presence of drought stress using
hyperspectral data. The correlation filter threshold removed all features with an absolute Pearson correlation greater than or equal to that value.
FIGURE 6

Receiver operating characteristic (ROC) curves for models predicting
the presence of drought stress using hyperspectral data. The
correlation filter threshold removed all features with an absolute
Pearson correlation greater than or equal to that value.
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spectra, both of which are known to suggest plant health (25), thus

indicating plant stress.

Utilizing machine learning, lasso and elastic net linear models

were capable of predicting drought stress and soil health gene levels.

To the best of our knowledge, this is the first time a hyperspectral

dataset has been successfully used to accomplish these tasks. While

other reports, such as Hamada et al. (1) proposed such an

endeavour, there has been little movement on this front. Khan

et al. (26) reviewed the literature and only found a few studies

utilizing hyperspectral imaging to investigate soil micro- and

macro-nutrient concentrations. However, the current study

proposed the use of the plant as an intermediary between the soil

microbiome and plant phenotypic presentation as captured by

hyperspectral imaging. In doing so, we propose that this

approach is applicable to diagnostic purposes, whereby specific

soil health genes could be used to identify soil microbiome

deficiencies. Measuring this by hand is a tedious and costly
Frontiers in Soil Science 10
process, but the use of hyperspectral imaging could allow for a

more rapidly deployable method.

In the models tested in this study, wavelengths were treated as

distinct variables, unrelated from the models’ perspectives. Future

studies might also consider models which treat the reflectance

across the spectrum as a single variable. Since each wavelength

was highly correlated with neighboring wavelengths, future studies

might investigate models incorporating this property. Binning

wavelengths together or applying a one-dimensional convolution,

as opposed to the simple average approach first conducted, might

simulate a coarser spectral resolution, potentially allowing for

generalization to more affordable equipment.

Random forest models are more complex than linear ones; this

can be a strong advantage when the underlying pattern to be

predicted is nonlinear, but it runs a higher risk of overfitting than

a simpler model. Since the linear models outperformed the random

forest models so thoroughly, it suggests that the underlying pattern
FIGURE 7

Root mean square error (RMSE) scores for models predicting the log10 qPCR levels using hyperspectral data, with standard deviation within the
ground truth distribution included for comparison. The correlation filter threshold removed all features with an absolute Pearson correlation greater
than or equal to that value. Genes – 16S rRNA, 16S ribosomal RNA; 18S rRNA, 18S ribosomal RNA; ureC, urease C; phoA, phosphatase A and cbbLR,
red-like ribulose-1,5-biphosphate carboxylase/oxygenase form I.
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is inherently linear, a useful property for any future studies

investigating hyperspectral reflectance and gene abundance

values. However, it is important to note, the hyperspectral dataset

was collected proximally, which reduced the risk of environmental

noise without limiting the throughput. Ultimately, the intention is

for the application of these approaches utilizing remote sensing

mounted to unmanned aerial or ground vehicles. The reflectance

was measured across a wide spectrum, but this led to the dataset

having far more independent variables (2151 wavelengths) than

samples (398, after removing erroneous measurements). This

imbalance in dimensionality can be problematic for machine

learning models; however, since all wavelengths ultimately
Frontiers in Soil Science 11
represented the same type of value (i.e., reflectance), and since

these values were highly correlated among nearby wavelengths, the

imbalance proved less of a concern in this study.

Interestingly, the selected five genes were considered for their

implications on soil biological health, and in serving that purpose,

were generally negatively correlated with plant physiological and

biomass metrics, indicating that as the plant was stressed, there was

a small but commensurate response from the rootzone microbiome

to increase abundance of these bacterial or fungal groups and

related physiological pathway genes. This suggests that there is a

route forward for understanding and relating the many disciplines

associated with agriculture and remote sensing; the key is to
FIGURE 8

Pearson correlations between each waveband and four variables of particular interest.
FIGURE 9

Mean reflectance values for each genotype-treatment combination, shifted by subtracting the minimum mean reflectance at each waveband to
display relative differences.
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correctly analyse these high throughput data sources to biological

meaningful corollaries.

In conclusion, this study aimed at establishing a relationship

between above ground plant measurements with below ground gene

abundance levels. This study demonstrated the feasibility of

estimating soil microbial gene abundance and plant properties

using hyperspectral reflectance data through machine learning

model development.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

JB: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing. MW:

Conceptualization, Investigation, Methodology, Project

administration, Resources, Writing – original draft, Writing –

review & editing. RS: Data curation, Investigation, Methodology,

Writing – review & editing. JW: Formal analysis, Methodology,

Software, Validation, Writing – original draft, Writing – review &

editing. SS: Data curation, Formal analysis, Investigation,

Methodology, Software, Validation, Writing – review & editing.

PR: Data curation, Formal analysis, Investigation, Software, Writing

– review & editing. RB: Conceptualization, Data curation, Formal

analysis, Investigation, Methodology, Software, Validation, Writing

– review & editing.
Frontiers in Soil Science 12
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by USDA-ARS National Program 216: 6064-21600-001-00D.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Author disclaimer

Mention of trade names or commercial products in this

publication is solely for the purpose of providing specific

information and does not imply recommendation or endorsement

by the U.S. Department of Agriculture.
References
1. Hamada Y, Gilbert JA, Larsen PE, Norgaard MJ. Toward linking
aboveground vegetation properties and soil microbial communities using remote
sensing. Photogrammetric Eng Remote Sens. (2014) 80:311–21. doi: 10.14358/
PERS.80.4.311

2. Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, et al.
Life and death in the soil microbiome: how ecological processes influence
biogeochemistry. Nat Rev Microbiol. (2022) 20:415–30. doi: 10.1038/s41579-022-
00695-z

3. van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB,
Mensonides FI, et al. Measuring enzyme activities under standardized in vivo-like
conditions for systems biology. FEBS J. (2010) 277:749–60. doi: 10.1111/j.1742-
4658.2009.07524.x

4. Shade A, Hogan CS, Klimowicz AK, Linske M, McManus PS, Handelsman J.
Culturing captures members of the soil rare biosphere. Environ Microbiol. (2012)
14:2247–52. doi: 10.1111/j.1462-2920.2012.02817.x

5. Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be
used to assess soil health. Soil Biol Biochem. (2021) 153. doi: 10.1016/
j.soilbio.2020.108111

6. Frey SD, Knorr M, Parrent JL, Simpson RT. Chronic nitrogen enrichment
affects the structure and function of the soil microbial community in temperate
hardwood and pine forests. For Ecol Manage. (2004) 196:159–71. doi: 10.1016/
j.foreco.2004.03.018

7. Ochoa-Hueso R. Global change and the soil microbiome: A human-health
perspective. Front Ecol Evol. (2017) 5:71. doi: 10.3389/fevo.2017.00071
8. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil
bacterial and fungal communities across a pH gradient in an arable soil. ISME J. (2010)
4:1340–51. doi: 10.1038/ismej.2010.58

9. Garaycochea S, Altier NA, Leoni C, Neal AL, Romero H. Abundance and
phylogenetic distribution of eight key enzymes of the phosphorus biogeochemical
cycle in grassland soils. Environ Microbiol Rep. (2023) 15(5):352-369. doi: 10.1111/
1758-2229.13159

10. Han J, Jung J, Hyun S, Park H, Park W. Effects of nutritional input and diesel
contamination on soil enzyme activities and microbial communities in Antarctic soils. J
Microbiol. (2012) 50:916–24. doi: 10.1007/s12275-012-2636-x

11. Fisher KA, Yarwood SA, James BR. Soil urease activity and bacterial ureC gene
copy numbers: Effect of pH. Geoderma . (2017) 285:1–8. doi: 10.1016/
j.geoderma.2016.09.012

12. Qin J, Li M, Zhang H, Liu H, Zhao J, Yang D. ). Nitrogen Deposition Reduces the
Diversity and Abundance of cbbL Gene-Containing CO(2)-Fixing Microorganisms in
the Soil of the Stipa baicalensis Steppe. Front Microbiol. (2021) 12:570908. doi: 10.3389/
fmicb.2021.570908

13. Xiao KQ, Bao P, Bao QL, Jia Y, Huang FY, Su JQ, et al. Quantitative analyses of
ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes
(cbbL) in typical paddy soils. FEMS Microbiol Ecol. (2014) 87:89–101. doi: 10.1111/
1574-6941.12193
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