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Geogenic perspectives on
potassium dynamics and plant
uptake: insights from natural and
submerged conditions across
different soil types with machine
learning predictions
Saibal Ghosh †, Gourav Mondal †, Shreya Chakraborty,
Sonali Banerjee, Sumit Kumar, Riddhi Basu
and Pradip Bhattacharyya*

Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, India
Four different soil types including red, alluvial, calcareous, and black soils along

with rice cultivated on them were collected from various parts of India and

analyzed for potassium dynamics in the soil plant continuum. Soil potassium (K)

dynamics were studied under submerged and non-submerged conditions, and

potassium content was analyzed in rice roots, shoots, and grains, along with

other soil properties. Red (S1: 5.9) and alluvial (S5: 5.16) soils were moderately

acidic, while black (S8: 8.01) and calcareous (S7: 8.1) soils were alkaline. Black soil

(S8) had the highest cation exchange capacity (CEC: 31.25 cmol (p+)/kg) and clay

content (41.2%), while alluvial soil had the most organic carbon (S5: 1.74%).

Submerged conditions enhanced potassium availability, with red soil showing the

highest levels of water-soluble K (WsK), exchangeable K (ExK), and non-

exchangeable K (NEK), particularly Step-K and constant rate K (CR-K) forms.

Rice potassium content was highest in grains, followed by shoots and roots, with

red soil containing the most available potassium. A strong correlation was found

between soil potassium forms and rice plant potassium uptake. Sensitivity

analysis indicated that WsK and ExK from non-submerged soil to be the most

favorable forms for potassium uptake, especially in the rice roots and grains.

Machine learning models, particularly Random Forest, accurately predicted

potassium availability and uptake, highlighting their potential in optimizing soil

fertility and advancing precision agriculture for better crop yields and soil health.
KEYWORDS

potassium dynamics, potassium uptake, rice cultivation, submerged conditions, machine
learning predictions
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1 Introduction

Potassium (K), one of the most crucial macronutrients for plant

growth and metabolism, often varies in terms of its availability in soil

based on the texture, pH, mineral composition, and cation exchange

capacity (1). In soils, four different forms of K prevail namely, water-

soluble (Ws-K), exchangeable (Ex-K), non-exchangeable (NEK), and

lattice K (LK) (2, 3). Ws-K is the primary form of K available to plants

and is directly absorbed by roots. On the contrary, Ex-K serves as a

crucial buffer in soil systems maintaining a dynamic equilibrium by

replenishing the Ws-K when depleted (3, 4). Even though being less

accessible, non-exchangeable K acts as a reserve pool supplementing

the two previous forms on depletion while playing a crucial role in

long term fertility of soils and overall buffering (5, 6). Lattice or

mineral K is the least accessible form which may convert to other

accessible forms when subjected to long term weathering (7–10). The

two most significant management factors that affect K equilibrium in

soils, aside from these soil characteristics, are fertilization and

cropping (11).

Seven distinct types of soil are found in India due to its varied

landscapes with unique chemical characteristics and formation

history, shaped by the forces of nature (12). Of these type four

major soil types were chosen for this study. Among them, alluvial

soils, which cover over 75 million hectares in the Brahmaputra

Valley and Indo-Gangetic Plains, are generally deficient in organic

matter, phosphate, and nitrogen (13). They support a variety of

crops and are neutral to slightly alkaline in nature. The parent rock’s

potassium-rich minerals, such as mica and feldspar, release K upon

weathering, which accounts for their high potash concentration.

Calcareous soils, which cover roughly 229 Mha in arid and semi-

arid regions, contain a lot of K as they originate from of K-

containing minerals and moreover leach less as compared to

other soil types. But the available K in these soils is now low due

to intensive cultivation and sparse usage of K fertilizer (14).

Calcium carbonate (CaCO3) affects the physical and chemical

characteristics of calcareous soils, including nutrient availability,

water retention and crusting, which in turn affects plant growth

(15). Research shows that increasing fixed potassium levels in soils

through calcium carbonate removal improves plant availability of K

(16). The third type considered in this study, red soil, makes up

around 10.6% of the area, and is mostly found in Jharkhand (17).

These soils are generally rich in minerals like aluminum, iron and

especially in K. However red soils are often reported to have low in

nitrogen, phosphorus, and overall organic matter (18). The largest

and most important soil group in India for agriculture is alluvial

soils, which are created by river silt deposits. These soils are

generally fertile and contain a good balance of essential nutrients

such as potassium, nitrogen, phosphorus, thereby supporting crop

growth. Lastly, black soils of India, are composed of weathered

Deccan basalt alluvium, and are abundant in exchangeable K and

smectite clay minerals such as calcium, magnesium and iron (19).

Among others, one of the crucial parameters on which soil K

availability varies is water activity of soil (20). Given that rice (one of

the most economically important crop in India) is mostly grown in
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submerged environments, changes to the soil’s electrochemical and

chemical characteristics brought about by submergence may be

linked to changes in the dynamics of K availability. This in turn may

have an impact on the availability of K to rice (21). The effect of

submersion and non-submersion on soil’s various K pools and its

bioavailability remains insufficiently explored. Developing effective

fertilizer recommendations, particularly for lowland rice farming,

requires an understanding of the forms and transformations of

potassium in soils under submerged settings. Therefore, it is

essential to develop a model for predicting the uptake of various

K pools into different parts of the rice plant (root, shoot, and grain)

under both submerged and non-submerged conditions, as both are

crucial for plant growth, development and yield. In order to identify

important input parameters and assess their impact on exposure

outcome variability, Sobol sensitivity analysis (SSA) was used (22).

The relative contributions of each variable to the total variance in

model outcomes are measured by Sobol sensitivity indices (SSIs).

This approach makes it easier to identify the input variables that

have a significant, noteworthy, or insignificant impact on the study.

Machine learning approaches such as random forest and Taylor

plot also serve as a great tool for such assessment, and thus a broad

range of investigations have been carried out using such

mathematical models. Thus the four different soil types and rice

grown on them in submerged and non-submerged conditions were

compared in this study and the basic aim was (a) to measure how

different potassium pools change under submerged and non-

submerged conditions, considering soil properties and their

availability for rice plant uptake., (b) to predict the contribution

of different soil potassium pools in various rice plant parts (root,

shoot, and grain) using Sobol, Taylor, and Random Forest methods.
2 Materials and methods

2.1 Collection and preparation of soil and
plant samples

Surface soils (0–15 cm depth) were sampled from eight major

rice-growing regions in India, representing red, calcareous, alluvial,

and black soils. Sites included West Bengal (alluvial), Bihar

(calcareous), Jharkhand (red), and Maharashtra (black), labelled

as red: S1, S2, S4, S6; alluvial: S3, S5; calcareous: S7; and black: S8

(Supplementary Figure 1). Three replicate samples per site were

collected in November 2023 using a W-pattern method, combined

into composite samples, and transported to the lab in sterile bags.

After removing visible residues and roots, samples were dried,

sieved (2 mm), and stored for chemical analyses (13). These dried

and powdered composite samples of soil underwent comprehensive

chemical analyses for their characterization. In addition, a quarter

part of each soil sample was processed for submergence studies. For

this purpose, 25 g of sieved soil was taken from each of the

composite samples and prepared for experimentation. At the

same time, the plant samples of rice crop were collected from the

same geographical sites to assess their potassium contents.
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2.2 Estimation of different K forms and
submergence study

To examine the effect of submergence on different soil types and

potassium forms, a 20 g sample of each soil type was carefully

weighed from 25g sieved soil samples and placed into separate

incubation tubes to investigate the dynamics of soil K (23). After

that, deionized water was poured into these tubes, making sure the

water level remained constant at 5.0 ± 0.5 cm above the soil’s

surface. In order to reduce evaporation or external contamination,

the tubes were tightly sealed with caps. For 30 days, the incubation

was conducted in a laboratory setting at 31 ± 2°C ambient

temperature. The appropriate water level was maintained by

periodically adding deionized water to compensate for

evaporation-related water loss. Three replications of each of the

two different experimental sets were created. The analysis of the

Ws-K, Ex-K, and NEK forms was the main goal of the first set. Step

potassium (Step-K) and constant rate potassium (CR-K) were to be

assessed using the second set. Using accepted techniques, both the

initial and incubated soil samples were thoroughly examined. The

methods presented by Page et al. (1982) (24) were used to

determine Ws-K, Ex-K, and NEK, whereas Haylock’s (1956) (25)

technique was used to evaluate Step-K and CR-K. For natural

(non-submerged) soil, the concentrations of all K forms were

estimated using the standard protocol described earlier in the

submergence study.

This method involves using a sequential extraction procedure to

remove exchangeable K from the soil (25). To get out exchangeable

K, the soil is first immersed in a 0.1M nitric acid (HNO3) solution

for the entire night. In order to more efficiently release K, the soil is

first extracted using boiling 1.0M HNO3 after this pre-treatment.

The soil is then repeatedly extracted using the same 1.0M HNO3

solution until the rate of K release from the soil reaches equilibrium

and stabilizes. Haylock coined the term CR-K in 1956 to describe

this steady release rate (25). The amount of CR-K is deducted from

the total K released at each stage of the subsequent extractions in

order to further investigate K availability. Step-K, the more easily

extractable form of NEK, is represented by the resultant value. This

calculation aids in differentiating between potassium fractions that

are more easily accessible and those that need more time to remove.
2.3 Estimation of the physicochemical
properties of soil

The soil’s pH, electrical conductivity (EC) and cation exchange

capacity (CEC) were measured at room temperature in accordance

with Page et al. (24). The Walkley and Black (26) method was used

to assess the organic carbon (OC) in the soil. The hydrometer

method, as outlined by Page et al. (1982), was used to determine the

particle-size distribution (24). A triangle textural diagram was used

to classify the soil’s textural class according to the amounts of sand,

silt, and clay Brady (27).
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2.4 Estimation of K in different rice
plant parts

In order to determine the K content in the various parts of the

rice plant, viz. dried roots, shoots, and raw rice grains, the samples

(1g) were digested with a di-acid mixture [4:1 HNO3:HClO4 (v/v)]

in a conical flask maintained at 190°C on an electric mantle until a

color change was observed. The K content in the digested solution

was measured using a flame photometer, whereby the method

described by Li et al. (2018) was followed (28).
2.5 Statistical analysis

The correlation was calculated using the Pearson product-

moment correlation coefficient, which was carried out by the

Python (Google Colab). Sobol sensitivity analysis (Python-Google

Colab) and machine learning algorithms including Taylor plots,

and Random Forest model were carried out in R-Studio

(version 4.33).
3 Results

3.1 Physiochemical characteristics of the
experimental soil

The physical and chemical properties of the various soil types are

summarized in Table 1. The soils were classified into the major groups

of red, alluvial, calcareous, and black soils. The pH levels varied across

the soil samples, with red and alluvial soils exhibiting moderately

acidic characteristics, while calcareous and black soils showing an

alkaline pH. The lowest pH were recorded in samples S5 (alluvial soil:

5.16) and S1 (red soil: 5.9). Among the collected soil samples, the

highest EC value was observed in S8 (black soil: 0.73 dS/m), while the

lowest was found in S5 (alluvial soil: 0.13 dS/m). Black soil (S8)

exhibited the highest CEC (31.25 cmol (p+)/kg) and soil clay (41.2%)

content values. The alluvial soil (S5) and black soil (S8) samples

exhibited relatively higher organic carbon (OC) content, with values of

1.74% and 1.12%, respectively, compared to the other soil types.
3.2 Different K forms in soils

The various forms of soil potassium, including Ws-K, Ex-K,

NEK, and TK, were higher in S1 (red soil) under both submerged and

non-submerged conditions compared to other soils (Figures 1A–D).

The observed trend was: S1 > S2 > S3 > S4 > S5 > S6 > S7 > S8.In

contrast, lattice potassium (LK) content was higher in the S2 soil

sample compared to the others (Figure 1E). Under submerged

conditions, all soil samples showed improved results for various

potassium forms compared to natural conditions. A strong negative

correlation was identified between different potassium forms and soil
frontiersin.org
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physicochemical properties in both extraction methods (natural and

submerged) Supplementary Table 1.
3.3 Sequential extraction (Step-K) of soil K
and constant rate K

Soluble K was extracted using 0.1 M HNO3, followed by 1 M

HNO3, revealing two NEK forms: Step-K, which depleted after six

extractions, and CR-K, released at a constant rate in both natural

and submerged soil samples (Figures 2A–H, 3A–H). Among all soil

samples under natural conditions, S1, S2, and S3 exhibited the

highest Step-K and CR-K values, while S8 recorded the lowest.

Under submerged conditions, S1 outperformed all other samples.
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When comparing the two methods, natural soil exhibited a more

sequential release of potassium than submerged soil.
3.4 K content in rice plant pars

Potassium (K) content in various rice plant parts, including

roots, shoots, and grains, was analyzed across different soil types

such as red, alluvial, calcareous, and black soils. Among these, S1

(red soil) showed the highest K content in all rice plant parts

compared to plants grown in other soil samples (Figure 1F). The K

content was highest in rice grain followed by rice shoot and root

across plants collected from all soil type regions. A strong positive

correlation was observed between the different forms of soil K
FIGURE 1

Box plots represent the comparison among the four soil types (red, alluvial, calcareous, and black) across eight soil samples under different
conditions (natural and submerged) in terms of various potassium forms and potassium content in rice plant parts (root, shoot, and grain). Each
sample code represents the following soil types: S1: red, S2: red, S3: alluvial, S4: red, S5: alluvial, S6: red, S7: calcareous, and S8: black soil. (A) Ws-K,
(B) Ex-K, (C) NEK, (D) Lattic K, (E) Total K, (F) Rice plant K.
TABLE 1 Physicochemical attributes different soil samples collected from eight different places from India (mean ± SD) (EC, electrical conductivity;
CEC, cation exchange capacity; OC: organic carbon).

Sample code Soil type pH EC (dS/m)
CEC

(cmol (p+)/kg) OC (%) Clay (%)

S1 Red 5.9 ± 0.42 0.21 ± 0.003 18.6 ± 2.37 0.3 ± 0.002 19.3

S2 Red 6.05 ± 0.49 0.29 ± 0.001 14.7 ± 0.93 0.26 ± 0.003 17.6

S3 Alluvial 6.86 ± 0.73 0.14 ± 0.002 15.9 ± 1.33 0.88 ± 0.006 27.3

S4 Red 7.06 ± 0.68 0.34 ± 0.002 13.89 ± 2.15 0.92 ± 0.007 19.6

S5 Alluvial 5.16 ± 0.34 0.13 ± 0.001 20.31 ± 1.98 1.74 ± 0.002 21.4

S6 Red 6.1 ± 0.48 0.21 ± 0.003 14.9 ± 1.23 0.53 ± 0.003 19.6

S7 calcareous 8.1 ± 0.67 0.67 ± 0.004 15.75 ± 0.95 0.62 ± 0.004 18

S8 Black 8.01 ± 0.61 0.73 ± 0.004 31.25 ± 1.82 1.12 ± 0.001 41.2
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extracted under natural and submerged conditions and the K

content in rice roots, shoots, and grains grown in all soil types

(Supplementary Figures 2A, B).
3.5 Sensitivity analysis (Sobol)

Sobol sensitivity analysis was performed to identify key input

factors, including K forms (WK and EK), under different extraction

methods (natural and submerged), and their availability for uptake

by various rice plant parts (root, shoot, and grain) (29, 30).

According to the results from the Sobol prediction model

(Figures 4A–C), the plant-available K forms (Ws-K and Ex-K)

under both natural and submerged soil conditions influenced K
Frontiers in Soil Science 05
uptake in different rice plant parts (root, shoot, and grain). Among

these, Ws-K and Ex-K from natural soil conditions were the most

favorable for K uptake by rice plants compared to the submerged

condition plant available K forms. In terms of K uptake by plant

root, the Ws-K form from natural soil conditions was the most

significant contributor compared to other available forms. The

order of significance was as follows: Ws-K (natural) > Ws-K

(submerged) > Ex-K (natural) > Ex-K (submerged) (Figure 4A).

For K content in the rice shoot, Ws-K and Ex-K from natural soil

conditions were better contributors compared to submerged soil.

Similarly, for K content in rice grain, Ex-K from natural soil

conditions yielded the best results compared to other available

forms, including Ws-K (natural), Ws-K (submerged), and Ex-K

(submerged) soils.
FIGURE 3

Stag bar graphs of submerged soil represent the continuous extraction (F1, F2, F3, F4, F5, F6, F7, and F8 at 10-minute intervals) of potassium from
the four soil types (red, alluvial, calcareous, and black) across eight soil samples using boiling 1 M HNO3, following the removal of exchangeable
potassium. (A) S1 (Red soil), (B) S2 (Alluvial soil), (C) S3 (Alluvial soil), (D) S4 (Calcareous soil), (E) S5 (Red soil), (F) S6 (Red soil), (G) S7 (Red soil), (H) S8
(Black soil).
FIGURE 2

Stag bar graphs of submerged soil represent the continuous extraction (F1, F2, F3, F4, F5, F6, F7, and F8 at 10-minute intervals) of potassium from
the four soil types (red, alluvial, calcareous, and black) across eight soil samples using boiling 1 M HNO3, following the removal of exchangeable
potassium. (A) S1 (Red soil), (B) S2 (Alluvial soil), (C) S3 (Alluvial soil), (D) S4 (Calcareous soil), (E) S5 (Red soil), (F) S6 (Red soil), (G) S7 (Red soil), (H) S8
(Black soil).
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3.6 Model-based prediction for effective K
forms for plant uptake

Machine learning (ML) techniques are used to predict effective

plant-available K forms in natural and submerged soils for

enhancing plant growth and yield (31). This study employed

seven ML models—RF, RTree, LR, XGBoost, MARS, SVM, and

KNN—to forecast potassium availability for rice plants and its

accumulation within the soil-rice root, shoot, and grain. The most

suitable models were identified through solubility tests and

evaluated using Taylor diagrams (Figure 5) and Supplementary

Table 2. The results demonstrated precise predictions that aligned

well with the training and testing data. Multiple regression models

effectively predicted K availability and uptake, assessed using the

correlation coefficient (r) and root mean square error (RMSE), with

lower RMSE values indicating higher accuracy. The Taylor diagram

confirmed Random Forest (RF) model to be the most reliable

predictor (based on RMSE values). The RF model provided the

best predictions for K availability and accumulation in both natural

and submerged soils for rice plant K uptake.
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3.7 Importance of the fractions of Ws and
Ex potassium forms

The variable importance plot from the Random Forest models

illustrates the influence of each plant-available form of K in both

submerged and natural soils on K uptake in rice grain, as shown in

Figure 6. %IncMSE indicates the reduction in model accuracy when

a specific variable is excluded. IncNode purity measures the purity

of the nodes at the end of the decision tree without including that

variable. Variables that are more significant results in an increase in

terms of node purity, as they enable splits with higher inter-node

variance and lower intra-node variance. For rice plant roots, shoots,

and grains, Ws-K and Ex-K from natural soil were identified as the

most significant variables for plant uptake compared to submerged

soil conditions. The Variable Importance plot highlights the decline

in model performance when each variable is excluded.

Figure 7 presents a three-dimensional (3D) partial dependence

plot illustrating the variation in K content of rice plant roots, shoots,

and grains for each plant-available K form (Ws-K and Ex-K). The

plot incorporates the two most influential variables identified from
FIGURE 5

Taylor diagram showing the accuracy of the different models based on RMSE, r, and SD. (A) Root, (B) Shoot, (C) Grain.
FIGURE 4

Sensitivity analysis using SOBOL based on the available potassium (Ws-K and Ex-K) influencing the uptake of potassium in rice plant parts (root,
shoot, and grain). All the parameters have the unit of mg kg-1. (A) Root, (B) Shoot, (C) Grain.
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the variable importance plots of Random Forest models. It is

evident that Ex-K and Ws-K from natural soil significantly

contribute to K content in plant roots, shoots, and grains.

Conversely, Ex-K and Ws-K from submerged soil conditions

show a relatively lower contribution to K uptake by these plant

parts. A partial dependence plot (PDP) illustrates the marginal

effect of one or two features on the predicted outcome of a machine-

learning model (18). It helps determine if the relationship between a

feature and the target is linear, monotonic, or complex. PDPs show

the connection between a subset of variables (typically 1-3) and the

response while averaging the effects of other predictors, revealing

how specific variables influence the expected outcome.
4 Discussions

The study highlights the diverse physical and chemical

properties of the analyzed soils, categorized into red, alluvial,

calcareous, and black soil groups. The lowest pH values were

recorded in S1 (red soil) and S5 (alluvial soil), collected from

Giridih, Jharkhand, and Darjeeling, West Bengal, India,

respectively. The acidic nature of Giridih soil is attributed to the

presence of mineral-rich mica mines (17), while Darjeeling soil

acidity is primarily due to high rainfall in the Eastern Himalayan
Frontiers in Soil Science 07
region, which leaches basic cations like calcium, magnesium,

potassium, and sodium, leading to an increase in hydrogen (H+)

and aluminum (Al³+) ion concentrations (32). Electrical

conductivity (EC), indicative of soil salinity, ranged from 0.13 dS/

m in S5 (alluvial) to 0.73 dS/m in S8 (black soil). While these values

suggest generally non-saline conditions, the relatively higher EC in

black soil points to a greater concentration of soluble salts, which

could influence water uptake and nutrient mobility (33). CEC and

clay content were highest in S8 (black soil), with CEC reflecting the

soil’s capacity to retain essential cations like potassium. This high

CEC, combined with the significant clay content (41.2%), suggests a

strong capacity for nutrient retention and water holding, enhancing

fertility (17). In contrast, sandy soils or those with lower clay

content typically show reduced nutrient retention, necessitating

more frequent nutrient supplementation (34). Organic carbon (OC)

content, a vital indicator of soil organic matter and microbial

activity, was comparatively higher in alluvial (S5, 1.74%) and

black (S8, 1.12%) soils. Higher OC content promotes soil

structural stability, water retention, and nutrient cycling, which

are essential for sustainable agricultural productivity (35).

Analyzing soil K forms revealed notable variations across soil

samples under natural (non-submerged) and submerged

conditions. Among all the collected soil samples, S1, representing

red soil, exhibited the highest potassium content across all forms of
FIGURE 7

Partial dependence plot from random forest model showing the marginal effect of two most important fractions of soil water-soluble (Ws-K) and
exchangeable potassium (Ex-K) affecting the content of the potassium in rice plant parts such as root, shoot, and grain (represented by values and
color intensity at the right side of each plot). All the parameters have the unit of mg kg-1. (A) Rice root, (B)Rice shoot, (C) Rice grain.
FIGURE 6

Variable Importance plot from Random Forest representing the importance of water-soluble (Ws-K) and exchangeable potassium (Ex-K) fractions of
submerged and natural soil influencing the uptake of potassium in rice plant parts such as root, shoot, and grain (%IncMSE: Mean Decrease
Accuracy, IncNodePurity: Mean Decrease Gini). All the parameters have the unit of mg kg-1. (A) Rice root, (B) Rice shoot, (C) Rice grain.
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soil potassium under both submerged and natural conditions. This

outcome can be attributed to the proximity of S1’s collection site to

agricultural soils near mica mines. Mica is a significant source of

various K forms, and Giridih, where this soil was sourced, is

recognized as one of the largest mica producers globally (17). The

submerged condition consistently enhanced the availability of all K

forms across the soil samples compared to the natural condition.

This improvement under submerged conditions may be attributed

to changes in redox potential and soil microbial activity, which

facilitate the release of potassium from less available pools (36). It

was previously reported by Ghosh et al. (2023b) that rhizospheric

microorganisms have the potential to convert non-exchangeable K

into available forms by producing organic acids which could also be

a potent role player (37). A strong negative correlation was observed

between K forms and soil physicochemical properties (e.g., pH, EC,

and clay content) under both natural and submerged conditions.

This suggests that soil properties significantly influence K dynamics,

potentially affecting its bioavailability for plant uptake. These

findings emphasize the importance of soil type and management

practices in optimizing potassium availability, especially in

agricultural contexts involving submerged cultivation systems

like rice.

S1 (red soil) outperformed all other samples in submerged

conditions, suggesting that this soil is more favorable for potassium

availability under submerged cultivation. A comparable trend was

reported by Ghosh et al. (2023a) in their studies (17). Interestingly,

when comparing the two methods, natural soil demonstrated a

more sequential release of potassium than submerged soil, which

could be attributed to differences in soil redox conditions and

microbial properties and activities between the two environments

(38). This sequential release pattern in natural soils may be linked to

the slower mobilization of K from less available pools, whereas

submerged conditions likely facilitate a more rapid release due to

changes in soil chemistry and microbial processes. The CR-K,

indicative of interlayer K with limited solubility, serves as a

practical measure of the soil’s long-term K supply potential (23).

This parameter showed minimal variation across the studied soils

(17). When compared to the critical threshold of 0.2 cmol(p+)/kg

proposed by (39), the experimental soils demonstrate an ample

capacity to supply K for plant growth. These findings highlight the

importance of both soil type and environmental conditions in

determining the bioavailability of potassium, which is crucial for

efficient nutrient management in agricultural practices (40).

Potassium (K) concentration in rice roots, shoots, and grains

was highest in S1 (red soil) among all soil types, highlighting its

superior bioavailable K levels and suitability for rice cultivation. In

terms of K distribution within the rice plant, the grain had the

highest K concentration, followed by the shoot, and then the root.

The ranking of K content across the rice plant parts was consistent:

rice grain > rice shoot > rice root, irrespective of the soil type. This

pattern is in line with the plant’s physiological needs, as K plays a

key role in grain formation and overall plant health (41). A strong

positive correlation was observed between the different forms of soil

K (natural and submerged conditions soil) and the K concentration

in rice roots, shoots, and grains. This correlation suggests that the

availability of soil K directly influences its uptake by rice plants, with
Frontiers in Soil Science 08
higher potassium concentrations in the soil leading to higher

potassium concentration in the plant tissues. These findings

underscore the importance of understanding soil K dynamics and

their impact on rice plant growth, which is essential for optimizing

fertilization strategies and improving crop yield (42).

Sobol sensitivity analysis was conducted to identify the key

input factors influencing K uptake by various rice plant parts (root,

shoot, and grain) under different extraction methods (natural and

submerged). Among these, Ws-K and Ex-K from natural soil

conditions were found to be the most favorable forms for K

uptake, as compared to the submerged condition. This indicates

that natural soil conditions provide more readily available K for

plant absorption, which is crucial for optimal growth. Potassium

uptake by rice roots was highest from Ws-K in natural soil.

Similarly, Ws-K and Ex-K from natural soil were superior for

shoot K, while Ex-K from natural soil contributed most to grain

potassium. These findings emphasize the critical role of soil K forms

in rice nutrition and optimizing fertilization for better yield and

quality (43).

Machine learning (ML) techniques, including seven models like

Random Forest (RF), XGBoost, SVM, RTree, LR, and KNN were

used to predict soil K availability and its accumulation in the soil-

rice system. Evaluated via solubility tests and Taylor diagrams, RF

emerged as the most accurate model, with strong correlation

coefficients and low RMSE values, demonstrating its reliability for

forecasting K dynamics and optimizing crop yields. The RF model

accurately predicted K availability and accumulation in both natural

and submerged soils, proving valuable for soil fertility management

and crop nutrition. Its effectiveness in different soil conditions

highlights the potential of machine learning in optimizing K

uptake and advancing precision agriculture (44).

The Variable Importance plot from the Random Forest (RF)

models highlights the critical role of Ws-K and Ex-K from natural

soils in potassium uptake by rice plants, particularly in grains, roots,

and shoots. Metrics such as %IncMSE and IncNode purity confirm

that these K forms significantly enhance model accuracy and

decision tree purity, emphasizing their importance over

submerged soil conditions. The three-dimensional partial

dependence plot further illustrates how Ws-K and Ex-K from

natural soils significantly influence K content across rice plant

parts, outperforming submerged soil conditions. PDPs offer

valuable insights into the relationships between K forms and

plant uptake, demonstrating the superiority of natural soils for

optimizing potassium availability and rice yield.
5 Conclusion

The study provides valuable insights into the influence of

different soil types and conditions (natural and submerged) on K

availability and its uptake by rice plants. The soil samples, classified

as red, alluvial, calcareous, and black soils, displayed varying

physical and chemical properties, which significantly impacted

potassium dynamics. Red soil (S1) demonstrated the highest

potassium content, particularly under submerged conditions,

highlighting its suitability for rice cultivation. The study also
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revealed that water-soluble potassium (WsK) and exchangeable

potassium (ExK) from natural soils were the most favorable for

potassium uptake by rice plants, with the grain containing the

highest K concentration. The sequential extraction methods used in

this study, along with machine learning models, provided a

comprehensive understanding of K availability and its

mobilization under different soil conditions. The Random Forest

model proved to be most reliable for predicting K dynamics,

offering a promising tool for precision agriculture and nutrient

management. Sobol sensitivity analysis further reinforced the

critical role of WsK and ExK in enhancing K uptake, emphasizing

their importance in improving rice growth and yield. Overall, the

findings underline the significance of soil management practices,

including optimizing K availability through appropriate fertilization

strategies and understanding the underlying soil properties, to

enhance rice productivity. The use of advanced techniques such

as machine learning and sensitivity analysis presents an innovative

approach to soil fertility management, paving the way for more

efficient and sustainable agricultural practices.
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