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Mechanisms of soil organic
matter formation for perennial
grain Kernza® under contrasting
nitrogen management
Laura K. van der Pol1,2*, Timothy E. Crews2

and M. Francesca Cotrufo1

1Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, United States,
2The Land Institute, Salina, KS, United States
Restoring soil organic matter (SOM) in arable land is considered one of the best

natural solutions to sustain food production and mitigate climate change. With

typically deep, robust root systems compared to annual grains, perennial systems

are likely to promote soil organic carbon (C) sequestration while offering many

ecosystem co-benefits. The intermediate wheatgrass domesticated for grain

production as Kernza® (Thinopyrum intermedium) is the first perennial grain

available to US growers. We quantified the formation of SOM over 2 years from

the roots and shoots of Kernza grown alone and in an alfalfa (Medicago sativa)

intercrop using continuously 13C- and 15N-labeled plant material. We compared

SOM formation of the Kernza tissues under three contrasting agronomic

environments: (1) unfertilized Kernza monoculture, (2) unfertilized Kernza

biculture with nitrogen (N)-fixing alfalfa, and (3) fertilized (100 kg N ha−1 year−1)

Kernza monoculture. We hypothesized that the management and plant tissues

with higher N would enhance mineral associated organic matter (MAOM)

formation by alleviating microbial N-limitation and leading to enhanced

efficiency of microbial residue transformation. Furthermore, we hypothesized

that root tissues would contribute to SOM formation primarily as occluded

particulate organic matter (oPOM) due to their chemistry and interface with

the soil matrix. We found that overall Kernza promoted new SOM formation with

14% of roots and 8% of shoot-derived C recovered in bulk soil after 27 months

compared to 5% for alfalfa roots and shoots. There were no differences between

the efficiency of MAOM formation of alfalfa vs. Kernza. The intercrop sustained

similar C and N stocks to the fertilized treatment, although we found little

evidence that N management was a major influence on SOM formation. Of the

Kernza root tissue C incorporated into SOM, we found 3.5% in MAOM and 6% in

oPOM, implying that 9.5% of root tissue C inputs may be stabilized in the soil.

Legume intercrops can support Kernza cropping systems with minimal synthetic

inputs, although in our study, they did not lead to enhanced SOM formation even

with comparable levels of productivity.
KEYWORDS

intermediate wheatgrass, Thinopyrum intermedium, legume intercrop,Medicago sativa,
stable isotopes 13C, 15N, soil organic carbon
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1 Introduction

Restoring soil organic matter (SOM) in arable land is

considered one of the best natural solutions to sustain food

production (1), restore ecosystem function (2, 3), and mitigate

climate change (2, 4, 5). Towards these goals, perennial grains hold

many promises. With deep, robust root systems compared to

annual grains, perennial systems are likely to promote soil

organic carbon (C) accrual (6–10) and more efficient nutrient

cycling (11). When perennial grains replace annuals, they result

in increased soil C inputs through longer growing seasons and

greater and deeper root growth while also reducing the frequency of

disturbance (12, 13). The intermediate wheatgrass domesticated for

grain production as Kernza® (Thinopyrum intermedium) is the first

perennial grain available to US growers, and it has demonstrated

many ecosystem co-benefits: Kernza reduces erosion and the need

for weed management (14), has high water-use efficiency and

known tendency to act as a C sink (15), and has been shown to

have increased resilience and fewer synthetic inputs when

intercropped with a legume (16). Previous studies have

demonstrated the importance of Kernza roots in the formation of

particulate organic matter (POM) (17), the fraction of SOM that is

chiefly composed of structural, fragmented, and partially

decomposed plant, and, in minor part, microbial materials (18).

Since the POM fraction is more vulnerable to disturbance and

decomposes on shorter timescales than mineral-associated organic

matter (MAOM) (19–21) unless it is protected in aggregates (22–

24), an unanswered question is how to regenerate both POM and

MOAM in cropping systems, as these types of SOM perform

different functions and form via different pathways (9, 25, 26).

Restoring these fractions of SOM has benefits to soil health in

an agricultural context, as the continuous turnover and

replenishment of free POM (fPOM) can stimulate nutrient

cycling and microbial activity. The accumulation of aggregate-

occluded POM (oPOM) can promote soil structure and water

infiltration, crucial to sustain production, while the slower cycling

of oPOM and MAOM fractions can lead to long-term SOC storage

(27, 28).

In a perennial agricultural context, a fundamental management

decision to achieve both increased SOM and grain production is

controlling the inputs to the soil through crop(s) and nutrient

selection, which will have implications for the soil input chemistry

and overall productivity, drivers known to explain roughly half of

the rate change in SOC (29). Intercropping perennial grains with

species with contrasting chemistry such as legumes could achieve a

system with chemically diverse litter, which could promote both

POM and MOAM formation (21). Legume intercrops could also

reduce the need for synthetic fertilizers due to their nitrogen (N)

contributions from biological N fixation and the potential to adjust

the rate that N becomes available during the growing season to the

rate of decomposition (30, 31), minimizing N losses through

volatilization and denitrification (32, 33) and improving nutrient

cycling efficiency and system sustainability (34–36).

Litter chemistry influences SOM dynamics largely through the

proportion of soluble compounds, nitrogen, and the acid
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unhydrolyzable fraction (AUR) (Talbot and Treseder, 2012),

which is often used to describe complex, aromatic compounds

such as lignin, cutins, tannin, and suberin that require specialized

oxidation enzymes to decompose (37, 38). Litter tissues with a high

proportion of AUR and low N such as is commonly observed in

thick roots compared to aboveground plant tissues have long been

thought to limit litter mass loss (39, 40). They can also lead to

greater CO2 losses during decomposition, although, due to low

microbial-use efficiency (41) [as low as 1% (42)–8% (43)] and

contribute little to MAOM (44, 45). Litter with higher AUR/N

would primarily contribute to particulate organic matter (POM)

over time (25, 46). In contrast, litter with substrates easily

metabolized by soil microbes; that is, compounds that are water

soluble and/or high in N, might be most efficiently stabilized in soil

as MAOM (47). This could occur either through direct association

of the water-soluble compounds to fine minerals (48) via the ex vivo

pathway (49) or through microbial assimilation and subsequent

contribution of microbial necromass and extracellular metabolites

to MAOM via the in vivo pathway (47, 49, 50).

While optimizing mixtures of litter chemistry for SOM

formation could theoretically be achieved with a grass–legume

intercrop, the net effect of incorporating a legume on SOM is

unclear. Intercropping with a legume could reduce plant C inputs

due to them having a reduced biomass compared to the grass

species (51, 52) and lead to lower SOM values compared to

monoculture grass crops (53, 54). To the extent legumes reduce

plant C inputs, they may counteract potential benefits derived from

increased C-use efficiency from their more readily digestible tissues

(29, 41). Intercrops can also have variable effects on crop yield, often

showing a net-competitive effect initially and a facilitative

relationship once established (16), thus influencing plant C

inputs. What is the net effect of intercrops on potential SOM

formation, given the changes to litter chemistry, N availability,

productivity, and soil C input? We lack mechanistic understanding

and quantification of SOM formation from litter decomposition of

perennial grain and perennial grain intercrops and how these

systems might differ in their potential to form SOM based on

contrasting C inputs and N management.

We thus set out to understand and quantify how litter from

Kernza and legume intercrop alfalfa (Medicago sativa) form SOM

as well as evaluate their potential for longer-term C storage under

contrasting N management. To this end, we incubated continuously
13C- and 15N-labeled root and shoot residues from both species

within field plots where Kernza was grown either with (1) no

fertilization (KKU), (2) intercropped with alfalfa (KAU), or (3)

with urea (100 kg N ha−1 year−1) (KKF) (Figure 1). During the 2-

year incubation, we traced residues as they decomposed, were

incorporated into microbial biomass, or formed chemically and

functionally distinct pools of SOM, such as fPOM, oPOM, and

MAOM (55). Through this experiment, we aimed to answer the

questions: how does Kernza form SOM, and how does that compare

to legume intercrop alfalfa?

We hypothesized that plant tissues would preferentially

contribute to POM when composed of more structural

components (i.e., higher AUR such as Kernza and alfalfa roots)
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and to MAOM when they had higher N and soluble content (i.e.,

higher HWE C and N) (Figure 1), due to differences in microbial C

use efficiency (47) and formation pathways (25). Our experimental

design also enabled us to address the question of how Nmanagement

influenced SOM stocks and productivity. We hypothesized that

treatments with greater N addition would have higher SOM stocks

because they would support greater plant productivity and thus soil

input. We further hypothesized that adding N through the steady

decomposition of legume residues (vs. annual application of urea)

may further enhance MAOM formation from reduced microbial N

limitation (Figure 1) leading to greater microbial C-use efficiency (56)

and thus SOM accrual. Overall, with this study, we aim to clarify the

mechanisms of SOM formation under perennial grain crops and

evaluate the potential for legume intercrop to replace synthetic N

inputs while sustaining productivity and SOM.
2 Materials and methods

2.1 Field site description and management

This incubation took place in experimental research plots

established in 2015 and maintained by The Land Institute near

Salina, Kansas, USA (38.770284 N, −97.591795 W); this land was

originally home to at least five indigenous nations including Kaw,

Osage, Comanche, and Pawnee Nations (https://native-land.ca/).
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The site is located 370 m above sea level with annual precipitation

averaging 737 mm (1-10th as snow). Rainfall is concentrated during

the spring and fall with common summer droughts. The mean

average temperature is 13.2°C with daily average lows of −6.6°C in

January and average highs of 35°C in July. The experimental plots

were situated in a transition zone of coarse-silty, mixed, mesic

Fluventic Haplustolls in the Cozad series and fine-silty, mixed,

mesic Cumulic Haplustolls in the Hord silt loam series (57).

Prior to use for research, the site was cultivated under annual

wheat production until 1990 (58) and a series of cover crops, Kernza

(Thynopyrum intermedium), and biennial sorghum (Sorghum

bicolor) between 2002 and 2015. In 2015, a randomized block

design consisting of four blocks with 16 treatment plots was

established to compare Kernza–legume intercrop combinations,

fertilizer management, and crop spacing of Kernza (The Land

Institute, cycle 5). Each plot measured 3.6 × 3.6 m2 and was

planted with a drill depth of 1.2–2.5 cm and a seeding rate of

~11–13 kg ha−1. Plots were weeded by hoe twice in the

establishment year and spot-weeded occasionally as needed to

remove individual weeds subsequently.

The treatments utilized in this study consisted of (1) unfertilized

Kernza monoculture (KKU), (2) unfertilized Kernza biculture with

alfalfa (Medicago sativa, StarSeed A100 variety; KAU), and (3)

fertilized Kernza monoculture (KKF; 100 kg N ha−1 year−1 as urea)

(Figure 1A). The row spacing in each plot was 30 cm with alfalfa
FIGURE 1

(A) Depiction of the nitrogen (N) management where the isotopically labeled litter incubation occurred. There were four replicated blocks of each
Kernza monoculture unfertilized (KKU; purple), Kernza-alfalfa intercrop unfertilized (KAU; turquoise), and Kernza monoculture fertilized (KKF; light
green). (B) Study hypotheses: Hypothesis 1 (H1) that the litter with greater soluble content and N would preferentially contribute to the formation of
mineral-associated organic matter (MAOM; <53 mm) while structural components would primarily contribute to particulate organic matter (POM;
(>53 mm) fractions that were occluded in aggregates (oPOM) or free (fPOM). Hypothesis 2 (H2) that the treatments with greater N would lead to
enhanced soil organic carbon (SOC) through greater productivity (soil C inputs) and higher efficiency of C stabilization. (C) Findings of the
proportion each labeled litter contributed to the soil fractions after 27 months of MAOM (gray), fPOM (brown), and oPOM (orange) where the size of
the ring represents the overall amount of litter-incorporation and the area of the ring represents the proportion of SOC formed in each fraction.
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rows replacing alternating rows of Kernza in KAU. In the KKF

treatment, fertilizer was broadcast by hand each spring between

April 15 and May 15. Alfalfa rows in plots were mowed two to four

times each summer with the residue left on the soil surface after

each cutting. There was a gopher infestation that targeted the KAU

plots the summer of 2019; by 2020, there was little detectable alfalfa

remaining in most plots. Kernza harvest took place in the third

week of July using a rice binder.

The amount of surface litter varied by management but did not

mirror the productivity, as the aboveground material for Kernza

was removed each harvest and the alfalfa left in the field as a green

manure. The biculture plots had the greatest surface litter at the

time of sampling in May 2019 (Table 1).
2.2 Background soil analyses

At the time of setting up our experiment in May 2019 as

described below, we collected samples from each plot for native

litter and soil background characterization. Three points within

each plot were randomly chosen for litter and soil core sampling.

We quantified aboveground litter biomass by collecting and

weighing aboveground litter within a 0.04-m2 square. We

estimated bulk density (0–10 cm) using cores collected with a

slide-hammer corer (6.4 cm diameter) by dividing fresh sample

mass minus soil water content by the core volume; coarse fragments

>2 mm were negligible. Average bulk density in the field was 1.28 g

cm3. On the cores collected for bulk density, we measured soil pH

using a 1:5 soil to water ratio and soil texture based on the

hydrometer method (59). We tested for inorganic carbon

presence at the 0–10 cm depth using an acid-fizz test with 1M

hydrochloric acid and did not find any.

Additionally, we used these background soil samples to quantify

and characterize the soil organic C (SOC) and soil N stocks for the

different management in this study. We conducted physical

fractionation of the bulk soil into two size fractions: POM (>53

mm) and MAOM (<53 mm) after dispersing aggregates by shaking

~8 g of 2-mm-sieved soil samples for 18 h with glass beads in a 0.5%
Frontiers in Soil Science 04
sodium hexametaphosphate solution (60). Oven-dried (60°C, 72 h)

fractions and bulk soil were ground to a powder using mortar and

pestle and analyzed for total C and N by dry combustion using a

LECO Tru-Spec CN gas analyzer (LECO Corp., St. Joseph,

MI, USA).

Surprisingly, we found a small soil texture difference across

blocks and treatments, as there was a 3% increase in clay and

decrease in sand content from block one to four (p=0.01, F=8.6 for

sand), such that the plots in blocks 3 and 4 were silty clay loam soils

while all others in the treatment were silt loam. The KKU

management tended to have ~4% more clay than the other

managements (p<0.001, t>8; Table 1). The KKF treatment had a

lower pH than the unfertilized treatments (Table 1; p=0.01, t=2).
2.3 Aboveground net primary productivity
and nitrogen budget

We calculated aboveground net primary productivity (ANPP)

following Crews et al. (16). Briefly, we calculated ANPP based on

the dry weight biomass divided by the row length for each plot

based on two harvested rows of Kernza (~2 m2) and five rows (e.g.,

all rows) of alfalfa (KAU only; 5.4 m2) per plot. Biomass was

weighed using a field scale with a subsample bagged, dried at 60˚C

for 48 h, and re-weighed to determine moisture content.

Measurements were taken for 3 years (2016–2018) prior to the

start of our experiment and 1 year during the experiment (2020).

Notably, 2018 was a severe drought for the region (National

Integrated Drought Information System (US) drought.gov).

We estimated the N balance for each year with ANPP data and

the N inputs as fertilizer or alfalfa N-fixation minus the N exported

by ANPP harvest. Aboveground N-fixation (Nfix) was estimated

based on a linear regression equation (R2 = 0.91, n=120 farms in

Europe) (61) for alfalfa based on the dry matter (DM) yield (kg ha−1

year−1):

Nf ix   =  0:21 * DM  +  17 (1)
TABLE 1 Management differences prior to the incubation experiment.

Percent
Clay

Percent
Sand pH

Bulk
Density

Surface
Litter

MAOM
C

MAOM
N

MAOM
C:N

POM
C

POM
N

POM
C:N

Trt n % % g cm−3 g m−2 % % % %

KKU 4 28.6 (0.9) a 17.4 (0.9)
7.32

(0.03) b 1.26 (0.03) 261 (10) b 1.12 (0.03)
0.118
(0.002) 9.5 (0.1) b

1.04
(0.15) b

0.083
(0.007) 12.2 (0.7)

KAU 4 23.7 (1.0) b 18.9 (0.7)
7.32

(0.05) b 1.30 (0.05) 593 (124) a 1.10 (0.02)
0.123
(0.004) 8.9 (0.2) a

1.07
(0.04) ab

0.094
(0.006) 12.4 (1.1)

KKF 4 24.8 (0.9) b 17.2 (0.9)
7.10

(0.05) a 1.27 (0.03) 384 (39) ab 1.15 (0.03)
0.123
(0.004) 9.4 (0.2) ab

1.32
(0.08) a

0.100
(0.006) 13.3 (0.4)

F-statistic

Trt 54.3**** 4.16 12.1** 0.2 8.6** 2.2 2.08 3.84* 4.17* 3.02 0.86
fron
MAOM, mineral-associated organic matter; POM, particulate organic matter; C, organic carbon; N, total nitrogen. Treatments (Trt) are as described in Figure 1. Values in parentheses are
standard error. Different letters indicate treatment differences based a Tukey test after analysis of variance p<0.05. *p<0.05, **p<0.01, ***p<0.0001.
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To estimate the proportion of N from fixation in alfalfa roots,

we used a root factor of 1.61 (16) to estimate belowground biomass

and estimation that N-fixed in roots is 80% that of shoots (62).

We also calculated the relative yields (RY) to compare the

ANPP of the intercrop and monocrops (16, 63) as follows:

RY   =  
ANPPint ercrop

ANPPmonocrop
(2)

RY values >1 indicate that productivity of the intercrop is

greater than the monocrop in an equivalent area, implying

facilitation, while RY<1 indicates lower productivity in the

intercrop compared to monocrop and suggests competition (63).
2.4 Production of 13C, 15N continuously
labeled litter

Kernza (The Land Institute, breeding cycle 5) and inoculated

alfalfa (Millborn Seed Co) seedlings were grown in a continuous

dual isotope labeling chamber, described by Soong et al. (64). Plants

were grown in 12-L pots with a growing medium of 3:4 ratio of sand

and ceramic clay, inoculated with soil from the Kernza-only plots.

The air-tight chamber continuously received 13C enriched CO2 to

achieve a concentration of 360–400 ppm and a target label of 4 atom

% during the active photosynthetic period. Plants were watered with
15N-labeled Hoagland’s solution to achieve a target 15N label of 6

atom%, with increasing fertilizer quantities as plant biomass

increased. Plants were grown for 3.5 months prior to harvest;

alfalfa plants had begun to flower, and some Kernza plants had

initiated grain production at that time. Upon removal from the

labeling chamber, aboveground biomass was clipped at the surface

of the growing medium and air-dried. Roots were shaken to remove

bulk sand and clay and then rinsed on 2-mm sieves until free of the

growing medium and air-dried. Air-dried plant material was

composited by species and above versus below ground; it was well

mixed and cut to 2 cm prior to being weighed into uniform aliquots

for field application. A subsample of each plant species and above-

and below-ground tissue was finely ground on a Wiley mill

equipped with a 0.75-mm mesh screen and oven-dried at 40°C

for chemical, elemental, and isotopic analysis as described below.
2.5 Litter chemistry analysis

To determine the representativeness of our litter, we compared

the labeled litter material to the Kernza and alfalfa plants growing in

the experimental plots. We analyzed litter chemistry for the field

and chamber grown plant material with the following measures: (1)

hot water extractable (HWE) C and N and (2) estimated

proportions of acid hydrolysable (AHR, e.g., celluloses) and acid

unhydrolyzable (AUR, e.g., lignins, tannins, cutins, and suberins)

residues. At the time of the background sampling (May 2019), we

collected representative tissue samples from five separate plants in

each plot (roots to a depth of 10 cm). Additionally, we analyzed

three lab replicate samples from the labeled litter. For the
Frontiers in Soil Science 05
quantification of HWE, we digested 0.3 g of oven-dried (105°C)

material for 3 h (65) as modified by Soong et al. (66) and measured

C and N on a Shimadzu TOC-L/TNM-L Analyzer (Shimadzu

Corporation, Kyoto, Japan). For the fiber analyses, we used the

acid detergent fiber (ADF) method (67). The ADF digestion

consisted of boiling 0.3 g of oven-dried (105°C) material for an

hour in detergent solution to remove hemicellulose and non-

structural carbohydrates and lipids (“weak acid-soluble”). We

then removed the AHR by digesting the remaining material in

73% sulfuric acid. The remaining residue was considered the AUR

after ash correction (68).

The isotopically labeled litter that we grew in the growth

chamber differed from the plants grown in the field, having

higher C and HWE N in roots and N concentrations in roots and

shoots (Table 2) and ~17% more weak-acid soluble (p<0.001, t>6.6)

than the field-grown plants. For the shoot tissues, labeled litter had

~25 mg N g−1 tissue lower HWE N than the field grown plants

(p<0.001, t>8.0). The C:N of the labeled Kernza litter was 32% lower

for shoots and 54% lower for roots than the plants in the field

(p<0.001, t>4.2); labeled alfalfa litter also had a lower C:N, although

these differences were less robust (40% shoots, p=0.07; 17% roots,

p=0.9). The labeled Kernza roots contained ~10% less AHR than the

corresponding roots in the KKF and KKU treatments (p<0.001,

t>5.2). The AUR/N and LCI tended to be lower for the labeled litter

overall, but it was only significantly different than the

corresponding field-grown plant tissues for Kernza roots for

AUR/N (p=0.04, t=3.8) and both Kernza and alfalfa for LCI

(p<0.04, t>3.8).
2.6 Litter incubation experimental design

To quantify SOM formation from contrasting plant tissues, we

compared the 13C and 15N concentrations (i.e., atom%) in SOM

fractions of soil collars with and without added labeled litter to

estimate the proportion of litter-derived (LD) C and N in SOM (46,

55, 69). The experimental block design consisted of: three

managements (KKU, KAU, and KKF), three harvest times (3, 12,

and 27 months after initial placement), two (roots and shoots from

Kernza for KKU and KKF) or four (with also root and shoot from

alfalfa for KAU), and two no-litter controls for either roots

[“disturbed” (DC) to mimicking root mixing in the soil) or shoots

(“undisturbed” (UC)], all in four replicates. No-litter controls were

established to obtain natural abundance isotope end members for

our mixing models as described below.

For the incubation, polyvinyl chloride (PVC) collars (15 cm

height, 10 cm diameter) with 0.65 cm diameter holes drilled into the

sides to allow root ingrowth were pounded into the ground to a

depth of 10 cm. Any plants growing within the collar were clipped

at the soil surface and placed within the collar. The labeled litter was

added to the collars at a rate of 494 g m−2 (~229 g C m−2) for both

Kernza and alfalfa roots and shoots (~4 g collar−1 or ~1.75 g C

collar−1). This rate was a compromise between the measured surface

litter, the estimated aboveground net primary production of similar

3-year-old stands of Kernza (470 ± 21 g m−2) and alfalfa (180 ± 19 g
frontiersin.org
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TABLE 2 Average litter chemistry values ( ± SE) for greenhouse-grown labeled litter (n=3) and plants from each management of the experimental plots (n=4) in Salina, KS.

Kernza Alfalfa F-statistic

KAU Trt R vs. S

Root Shoot Root Shoot Root

40.7a,A,2

(0.5)
42.0a,A,1

(0.3)
42.8a,B,1

(0.5)
44.0a,A,1

(0.2)
43.0a,B,1

(1.4)
25.6*** 26.3***

1.0b,B,2^

(0.0)
1.5b,B,1*

(0.0)
1.0b,B,2*

(0.1)
3.0a,B,1

(0.1)
2.3a,B,2

(0.0)
96.6*** 280.5***

44b,B,2^ 29b,B,1 44b,B,2* 15a,A,1 19a,A 61.6*** 194.1***

23.8b,A,2

(0.6)
54.2bc,A,1

(2.0)
21.0b,A,2

(0.7)
81.7a,B,1

(5.2)
56.1c,B,2

(1.8)
4.9** 183.1***

10.6b,A,2

(0.6)
46.4b,B,1*

(3.3)
9.1b,A,2

(0.4)
65.4a,B,1

(4.7)
36.0c,B,2

(1.7)
8.2*** 120.1***

42.0b,B,2

(0.4)
53.3a,A,1

(1.2)
46.3a,B,1

(1.4)
52.8a,B,1

(4.7)
51.3a,B,1

(1.3)
25.6*** 16.8***

37.3b,B,1

(1.0)
34.5a,A,1

(1.1)
33.1a,A,1

(1.3)
33.1a,A,1

(1.9)
30.6a,B,1

(1.2)
8.5*** 4.2*

10.3ab,A,2

(1.0)
4.2a,A,1

(1.4)
7.5ab,A,1

(1.1)
8.1a,A,1

(0.6)
13.8ab,A,1

(2.9)
4.0* 6.2**

10.6a,B,2 2.9a,A,1 8.0a,A,1 2.8a,A,1 6.1a,A,1 5.9** 13.7***

0.20a,A,2 0.07a,A,1 0.14a,A,2 0.14a,A,1 0.21a,B,1 1.9 7.1***

o AUR+ acid hydrolyzable (AHR) residues. Letters, numbers, and *^ denote significant differences for p<0.05 based on Tukey
old) compare the same type of litter that was enriched in a labeling chamber or not enriched (e.g., enriched KS vs. field KS);
itter across Nmanagement (e.g., KS vs. KS across KAU, KKF, and KKU). For the F-statistic, all df=3; *p≤ 0.01, ** p<0.001, and

van
d
e
r
P
o
l
e
t
al.

10
.3
3
8
9
/fso

il.2
0
2
5
.15

4
8
5
77

Fro
n
tie

rs
in

So
il
Scie

n
ce

fro
n
tie

rsin
.o
rg

0
6

Alfalfa Kernza Kernza Kernz

Labeling
chamber

Labeling
chamber KKU KKF

Unit Shoot Root Shoot Root Shoot Root Shoot

At.% C ‰
4.29357
(0.0043)

4.40729
(0.0153)

4.3880
(0.0175)

4.3436
(0.03827)

At.% N ‰
5.6758
(0.0836)

6.0026
(0.1593)

6.8485
(0.0244)

6.6697
(0.0617)

C %
45.0aA

(0.1)
45.2bA

(1.9)
43.9b,A

(0.5)
45.3b,A

(1.0)
41.8a,A,1

(0.3)
43.4a,A,2

(0.1)
42.0b,A,1

(0.9)

N %
4.5a,A

(0.1)
2.9b,A

(0.2)
2.2c,A

(0.1)
1.8d,A

(−0.1)
1.3b,B,1^

(0.0)
0.8b,B,2*^

(0.0)
1.9b,B,1*^

(0.1)

C:N 10a,A 16b,A 20a,A 25c 33b,B,1^ 56b,B,2*^ 23b,B,1^

HWE C mg g−1
65.3a,A

(3.0)
79.6b,A

(1.4)
62.9a,A

(0.4)
31.6c,A

(0.8)
50.6bc,B,1

(1.4)
24.0b,A,2

(0.9)
57.3bc,A,1

(0.5)

HWE N mg g−1
40.2a,A

(1.6)
62.0b,A

(1.7)
35.2a,A

(1.0)
19.6c,A

(0.2)
34.8bc,A,1*^

(1.1)
6.0b,B,2

(0.3)
59.4b,B,1*^

(1.8)

Weak
acid-soluble

%
68.3a,A

(0.5)
70.5a,A

(0.5)
58.5b,A

(0.6)
58.4b,A

(0.2)
53.6a,A,1

(1.4)
42.8b,A,2

(0.4)
55.8a,A,1

(1.3)

AHR %
25.7a,A

(0.6)
22.8ac,A

(0.4)
33.6b,A

(0.7)
26.4ab,A

(2.8)
33.1a,A,1

(0.6)
36.5a,B,1

(1.1)
33.1a,A,1

(1.6)

AUR %
5.8a,A

(0.2)
3.1a,A

(0.2)
3.5a,A

(0.1)
5.3a,A

(1.9)
5.3a,A,1

(0.5)
7.5ab,A,1

(0.9)
3.5a,A,1

(1.1)

AUR/N 1.1a,A 1.2a,A 1.2a,A 3.6a,A 4.1a,A,1 9.7a,A,1 2.0a,A,1

LCI 0.08aA 0.04aA 0.06aA 0.08aA 0.09a,A,1 0.15a,A,2 0.06a,A,1

Plant tissue samples were collected in May 2019. HWE. hot-water extractable; LCI, ligno-cellulose index, which is a ratio of the acid unhydrolyzable (AUR)
comparison after ANOVA as follows: lowercase, contrast enriched vs. field grown litter across litter types (e.g., AS vs. AR, KS, and KR); uppercase (also b
numbers indicate differences between root or shoot for enriched or not enriched (e.g., KS vs. KR); symbols (*^) indicate differences between the same type of
*** p<0.0001. Management abbreviations are as described in Figure 1. Trt, N-management treatment; R vs. S is root vs. shoot litter.
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m−2), the amount of available labeled root and shoot material for

the two crops, and the desire to minimize the proportion of soil C

stock the labeled litter addition represented (15% ± 2% SD by mass).

This application rate is comparable to other studies using this

approach [~227 g C m−2 (46) and ~302 g C m−2 (69)]. Root litter

was incorporated with the 0–10-cm soil depth by scooping soil

within the collar and mixing it within a plastic bag, then returning

the soil to the collar and compacting it to return to the original soil

volume (see drawing Figure 1B). Disturbed control collars to pair

with the root litter underwent the same procedure but without

receiving litter addition. Shoot litter was applied to the soil surface;

undisturbed control collars to pair with the shoot litter were clipped

of any weeds at the soil surface but otherwise had nothing applied to

them. Each collar was covered with a nylon, mesh screen with 2-cm

square openings to contain the added litter; these screens were

subsequently replaced (August 2020) with screens with a 1-cm

square openings as the original mesh had the unfortunate

consequence of trapping snakes.

2.6.1 Field collection of soil collars
Soil collars were first installed in May 2019 at a time when the

site experienced record rainfall. Collars were destructively collected

in August 2019 (3 months), May 2020 (12 months), and August

2021 (27 months). At each harvest, the live plants in the collars

remaining in the field for later sampling points were clipped and the

aboveground material placed inside the collar. Harvested collars

were pulled from the ground intact, wrapped in foil, placed in

plastic bags, and refrigerated at 4°C until processed. The excavated

hole was measured at 5 points and averaged to obtain the average

sample depth for bulk density determination.

Gophers present in half of the KAU plots buried three collars,

resulting in deeper soil being deposited on top of the collars. The

deposited soil could be easily distinguished by its color and reduced

density and was collected and processed separately, but data are

not included in the analysis. While the gophers did eliminate

much of the alfalfa in the intercrop, alfalfa residue would have

continued to decompose and contribute to soil N for the duration of

the study.
2.7 Processing and analysis of soil

Each intact sample was weighed to obtain the total mass, minus

the mass of the collar. Surface litter >2 mm and live plants clipped at

the soil surface were carefully removed prior to processing the soil

samples. Collars from undisturbed samples were split in half by

depth (0–5 and 5–10 cm) to ensure that isotopic label could be

traced in samples with surface litter application.

Soils were sieved to 8 mm, and a sub-sample for each was

analyzed for gravimetric water content by mass loss after drying for

48 h at 105°C. A soil sub-sample was immediately sieved to 2 mm

and frozen at −80°C for microbial biomass (see Supplementary

Methods). The remainder of the sample was air-dried and then

passed through a 2-mm sieve before further analysis. All plant
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materials including live plants, surface litter, and below-ground

(root) litter were dried at 40°C for 48 h, weighed, and ground on a

Wiley Mill with a mesh size of 0.75 mm for further analyses.

We estimated soil bulk density (BD) of each soil core as

described above for the field samples and used an equivalent soil

mass approach to calculate soil C and N stocks (70). The average

soil mass sampled in the collars (0–10 cm) was 126.5 kg soil m−2 ±

SD 1.2. Soil C and N stocks were calculated by normalizing all

samples to the mean sample mass minus one standard deviation

(114.0 kg m−2) to compare equivalent soil mass across soil collars

over time.
2.8 Soil organic matter density and size
fractionation

We used a density and size fractionation to quantify the

formation of newly formed SOM into three chemically and

physically distinct pools. The fractionation scheme that we

followed was as described by Haddix et al. (55); however, while

we isolated the dissolved organic matter, we elected to not analyze

it, as it only made a negligible contribution to the total SOM. The

measured fractions consisted of free light POM (fPOM), sand sized

and occluded POM (oPOM), and silt and clay-sized, mineral-

associated organic matter (MAOM). The sample was gently

shaken in a solution of sodium polytungstate (SPT) at a density

of 1.85 g cm−3, placed in a vacuum chamber for 10 min to remove

air trapped within soil aggregates, and centrifuged at 1,069

gravitation for 30 min. We then aspirated off the fPOM and

rinsed the remaining soil sample four times with DI water to

remove the remaining SPT. We separated the oPOM from

MAOM by wet-sieving the heavy fraction on a 53-mm sieve

(oPOM >53 mm, MAOM <53 mm) after dispersing aggregates by

shaking the samples for 18 h with glass beads in a 0.5% sodium

hexametaphosphate solution. It is noteworthy that the fraction we

here define as oPOM may also contain small amounts of organic

matter associated with free sand particles (71). The fractions were

finely ground by hand on a mortar and pestle for elemental and

isotopic analysis measured on a Costech elemental combustion

system coupled to a Thermo Scientific Delta V Advantage isotope

ratio mass spectrometer for %C, %N, d13C, and d15N. Mass recovery

after fractionation was on average 99% ± 1.5% SD. After

fractionation, we achieved an average recovery (n=243) of 89% ±

11% SD for C and of 84% ± 6% SD for N. d13C and d15N values were

converted to atom% for further calculation, following equation in

Cotrufo and Pressler (72).

2.8.1 Calculation of SOM formation from litter
decomposition

We quantified the litter-derived C (LDC) and N (LDN) in litter

residue, bulk soil, and SOM fraction as described by Cotrufo et al.

(25) and Soong and Cotrufo (46). We first calculated the relative

contribution of labeled litter C (and N) to litter residue, bulk soil,

and SOM fractions (FL) using the mixing model in Equation 3 (73).
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FL  =  
(atom‰  13Cm  −  atom‰ 13Ct0)
(atom‰ 13CL  −  atom‰ 13Ct0)

(3)

FL is the fraction of labeled LDC for each replicate, atom‰13Cm

is the atom percent 13C in the fraction for each replicate, atom

‰13Ct0 is the average
13C in the corresponding control fraction, and

atom‰ 13CL is the average percent
13C of the C in the initial labeled

litter. The same equation was applied for N using the respective

atom% 15N values.

Then, we calculated the amount of LDC (or N) in bulk soil by

multiplying FL by the amount of C (or N) in the respective pool (i.e.,

litter residue, bulk soil, and SOM fraction). As done in previous

studies (25, 46), to avoid the variability in C and N concentrations

among replicate samples affecting the variability of the calculated

LDC and N, we averaged the percent C and N for control soil and

litter samples by fraction (or litter type) for each treatment. For the

control soil samples, we additionally averaged the percent C and N

across time. Furthermore, we calculated the SOM fractions C and N

formation efficiency at each sampling point as the amount of LDC

(or N) in the fraction divided by the amount of labeled litter C (or

N) added minus the labeled litter that remained undecomposed

(25). This value represents the proportion of SOM formed from the

decomposition of the labeled litter.
2.9 Statistical analyses

We assessed the normality of the data residuals by Shapiro-Wilk test

and visual assessment on QQplots. To determine the extent that

management and litter treatment affected the litter mass loss and

formation of LDC and N in bulk SOM, fPOM, oPOM, and MAOM,

we ran the linear-regression analysis of variance (ANOVA) using R (74)

version 4.4.2. We also tested for differences by management, litter type,

plant species, and ANPP. Negative values (n=17/618) for the calculated

proportion of LDC and N were converted to zero prior to analyses.

To account for sampling the same plots over time, we included a

unique variable that combined the block and management in each

analysis. Time, litter type, treatment, and soil fraction were treated

as fixed variables, as was the treatment-block variable in cases where

the mixed-effects model was singular. For each test of significance of

litter type, we included an interaction between litter type, time, and,

where applicable, soil fraction. We used Tukey-adjusted pairwise

comparisons to evaluate the differences in management and litter

treatment over time and by litter fraction using the dplyr (75), car

(76), emmeans (77), and lmer (78) packages; data were processed

and figures were made with several packages including tidyr (79),

openxlsx (80), xplorerr (81), ggplot2 (82), and superb (83).
3 Results

3.1 Litter chemistry

The litter chemistry of the plants growing in the field under

contrasting management were similar in the proportion of

structural and metabolic components, %C, and HWE C (Table 2).
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Kernza tissues had higher N concentrations in the fertilized than the

unfertilized plots (p<0.001, t>4.1); the KKF and KAU Kernza roots

both contained more N than the KKU (p=0.009, t=4.0 KKF; p=0.01,

t=4.0 KAU). Species differences between Kernza and alfalfa grown

in the field were consistently higher C (2%) and N (1.5%) and HWE

C and N in alfalfa compared to that in Kernza (p<0.0001, t>4.7).

Alfalfa roots additionally had 9% more weak-acid soluble

components than Kernza roots in the KKF and KKU treatments

(p<0.01, t=4.2). While roots tended to have an AUR/N ~7 higher

than shoots, the same tissue type across species were similar. The

lignocellulose index (LCI), calculated as the ratio of AUR to AUR

+AHR (84), was only greater for Kernza roots than shoots (p<0.04,

t=3.8). Alfalfa and Kernza shoots contained similar proportions of

weak-acid soluble components (p=0.8), although these more

digestible components were ~9% higher in alfalfa roots than those

of Kernza (p<0.01, t>4.3).
3.2 Soil carbon and yields across the
contrasting Kernza N management

The soils in this experimental site had a large proportion of

MAOM (74%–91%; median, 84% ± 0.2 SE) and very little POM

(0.1%–1.9%; median, 0.4% ± 0.02 SE; Supplementary Figure S1).

The soil in fertilized management contrasted with the unfertilized in

a few ways prior to the start of the incubation experiment.

Compared to the unfertilized treatments, soil in KKF had soil C

stocks that were 1.1 and 1.4 Mg ha−1 greater than KAU and KKU,

respectively (Supplementary Figure S1, Supplementary Table S1).

The fertilized plots also had a tendency for higher C:N in the POM

and MAOM fractions; KAU had similar N stocks to KKF

(Supplementary Figure S1, Supplementary Table S1) but lower

mean C:N in the SOM fractions (Table 1).

The aboveground net primary production (ANPP) varied

significantly from year to year (Figure 2, Supplementary Table

S2), with a significant decline (p<0.03, t> 2.91) in Kernza

production each year measured across managements except for

2017 and 2020 (p>0.1, t>2.25). The KKF management had higher

yields than both KAU and KKU in 2020 (p<0.02, t=2.81). KAU had

the highest overall ANPP in 2018 (Figure 2, Supplementary Table

S2; p ≤ 0.0001, t≥5.0).

Total (root+shoot) estimated fixation-derived N from the alfalfa

intercrop (KAU) ranged from 39 (2020) to 129 (2018) kg N ha−1

year−1 (Equation 1). Considering the N balance (Supplementary

Figure S2), we estimated that there were net N losses from each

management and year, with losses averaging 39 kg N ha ha−1 year−1

± 22 SE, except for 2018. The N supplied, in KAU from alfalfa N

fixation and in KKF by fertilizer application, fell short of the Kernza

ANPP export by 7–73 kg N ha−1 year−1and 18–122 kg N ha−1 year−1

(Supplementary Figure S2) for KAU and KKF, respectively. In 2018

(the drought year), both KAU and KKF managements had positive

estimated N balances of ~100 and ~73 kg N ha−1, respectively. The

relative yield (RY) ratios (16) (Equation 2) for the intercrop were >1

in 2018 compared to the KKF and in both 2017 and 2018 compared

to KKU (Supplementary Table S3).
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3.3 Litter decomposition and bulk soil
organic matter formation

All labeled litter achieved almost full mass loss by the end of the

incubation as 0.01%-5% of the initial litter C remained after 27

months of incubation (Figure 3). Below, we detail the results of

SOM formation and litter decomposition considering N

management treatments, type of litter (root vs. shoot), and

plant species.

3.3.1 N management
Nmanagement had only small effects (p=0.17, F=1.87) on litter-

derived SOM formation (Supplementary Figure S3). The greatest

instances where N-management may have influenced SOM

formation was in the incorporation of labeled litter into microbial

biomass C and N (p<0.001, F>15; Supplementary Figure S4,

Supplementary Table S4) where management with higher N

seemed to reduce litter-derived microbial C and N. Additionally,

N management may have influenced the rate of decomposition

at least initially, as there was greater litter-N remaining

undecomposed after 3 months in the KKF treatment than the

other two (p<0.03 , t=2.6) and more apparent rapid

decomposition by N management for C and N for KAU

(Supplementary Figure S5), although these were not statistically

meaningful (p=0.2). Along those lines, the C and N formation

efficiency from Kernza shoots tended to be higher for the KKU and
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KAU especially for bulk soil andMAOM (Supplementary Figure S3;

p=0.1, F=1.98 C; p=0.07, F=2.72, N). The root litter, in contrast, had

higher SOM-C formation efficiency for the KKF and KAU

treatments especially for the bulk and POM (fPOM and oPOM)

fractions, although often similar (or higher) formation efficiency of

SOM-N in the KKU and KAU treatments than the KKF

(Supplementary Figure S3). Differences in SOM formation

efficiency from root litter were slight, however, and did not

emerge to have statistical significance (p>0.2). Since there

otherwise were no significant N-management effects and results

on litter decomposition and SOM formation, we averaged them

across N-management.
3.3.2 Root vs. shoot litter
Independent of the plant species, shoots had higher relative

mass remaining than roots (2%–5%), with <1% of roots remaining

undecomposed at the end. The alfalfa roots exhibited the fastest

decomposition, with only 1.5% initial litter C remaining by the first

harvest at 3 months and 0.01% detected after 27 months (Figure 3).

Root and shoot litter showed distinct trends in how they were

incorporated into soil over time (Figure 4, Table 3; p<0.001, F=6.2).

Root litter of both Kernza and alfalfa, which was mixed into the soil

matrix, quickly contributed to soil C and N with 25% ± 5 SE of root

C and 54% ± 5 SE of root N recovered in SOM by month 3.

The proportion of shoot-derived C and N recovered in bulk

soil, in contrast, remained static or increased slightly over the
FIGURE 2

Annual net primary productivity (ANPP) of Kernza (purple) and alfalfa (green) by management (described in Figure 1) for 2016, 2017, 2018, and 2020.
No data were collected in 2019. Kernza ANPP (grain and aboveground tissues) was measured at harvest each year for Kernza and at each mowing
event (1–3× growing season) for alfalfa; whiskers represent standard error. Brackets with * indicate significant differences based on a Tukey
comparison of means following ANOVA (Supplementary Table S2) where *p<0.05, **p<0.001, and NS means “not significant.” Panels without
brackets indicate no significant differences between treatment.
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course of the incubation (Figure 4, Supplementary Figure S3,

Table 3). The formation efficiency of Kernza roots was

higher than the other litter types in the bulk (~15% C; ~21%

N) and fPOM (~11% C; ~7% N) fractions (Figure 1C; p<0.001,

t>4.2). Root N was retained more efficiently in MAOM than

the shoot litter for both species (+12.5% alfalfa; +18.3%

Kernza; p<0.001, t>4.6), but there were no differences in C

(Supplementary Figure S3).

Roots contributed roughly 50% more C and 30% more N to

SOM than did the shoots (Table 3). The biggest differences were in

the MAOM fraction, where roots added 8 g C m−2 ± 1.2 SE more

than shoots and 18 g C m−2 ± 1.2 SE more overall (bulk). The only

instance where shoots exceeded root contribution to soil fractions

were for fPOM where greater portions of shoot-derived N were

incorporated into this fraction (Table 3). Overall shoot litter C

mostly became POM (~4:1 POM : MAOM), while shoot N was

equally distributed across fractions (1:1 POM : MAOM) (Figure 1C,

Table 3, Supplementary Table S5). Roots, in contrast, had greater

contributions to MAOMwhere C was 2:1 (Figure 1C) and N was 1:2

POM : MAOM.
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3.3.3 Kernza vs. alfalfa
Generally, Kernza contributed greater amounts of C and N to

the soil than alfalfa, although these differences were only significant

for fPOM (Figures 1C, 4, Table 3; p<0.05). Each species contributed

similar proportions of C and N to oPOM (~43% LDC, ~23% LDN),

with Kernza C forming fPOMmore than MAOM (35% fPOM, 23%

MAOM) and alfalfa tending to form more MAOM than fPOM

(19% fPOM, 37% MAOM). N from both species chiefly contributed

to MAOM (~60% of N). Notably, the alfalfa litter contributed

greater amounts of N to MAOM than did Kernza (Table 3). The

total amount of LDN from alfalfa was ~31% ± 8 SE (2.5 g N m−2 ±

0.9) higher than from Kernza, suggesting that proportionately more

of the original alfalfa-N was lost, but a greater overall amount

formed SOM-N than from Kernza.
4 Discussion

For a newly domesticated, perennial crop and with a goal of

managing low-input, diverse systems for food production, we
FIGURE 3

Percent litter of (A) carbon (C) and (B) nitrogen (N) remaining undecomposed at each harvest during the 27-month litter incubation. Undecomposed
litter was the litter-derived C and N in the corresponding labeled litter for each soil collar. Small dots represent measured values for each soil collar
(n=4 for alfalfa, n=12 for Kernza); larger dots represent the mean values. Darker colors represent root litter while lighter colors represent shoots.
Shading represents the standard error.
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studied how Kernza as monoculture and intercrop with legume

alfalfa form SOM and estimated the potential to form SOM. This

study revealed the surprising lack of influence of N management

influencing SOM formation and how the interaction of litter

chemistry with the soil matrix shifts how SOM forms and

ultimately persists. We synthesize these findings and their

implications below.
4.1 How does N management affect SOM
dynamics and productivity: N management
important for C and N stocks but little
effect on SOM formation

We tested the effects of N management on SOM dynamics with

two overarching motivations: First, the source of N has implications

for the overall sustainability of the system with potential feedback

between productivity and soil C and N stocks. Second, we

hypothesized that N introduced to the soil via legume

decomposition may enhance SOM formation.

We examined whether the intercropped management (KAU)

was comparable to the fertilized treatment (KKF) in terms of

productivity and soil C and N stocks and found mixed results.
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System ANPP was highest for KKF; as the KAU plots followed a

replacement design (16), however, we would expect these plots to

have a reduced above-ground biomass, since there are fewer Kernza

plants per area (Figure 2). Intercrops of grass and legumes including

Kernza and alfalfa (16, 85) often have 15%–30% greater

productivity and yield resilience (86) compared to monocultures

[summarized in Renard and Tilman (87)], however.

In this study, the intercrop did not match the productivity of the

fertilized treatment likely due to combined N limitation and

interspecies competition most years (Supplementary Table S3).

When examining the role of N management in SOM dynamics,

we found surprisingly little effect. The contrasting management did

lead to differences in productivity, plant N content (and C:N)

(Table 2), and SOC and soil N stocks at the beginning of the

incubation (Supplementary Figure S1) with the highest N content in

plant and soil in the fertilized treatment. Resulting in greater soil

inputs, the increased productivity of the KKF treatment explains

how this treatment tended to have higher soil C and N stocks. That

the KAU plots had similar SOC stocks as the KKF likely reflects the

retention of alfalfa aboveground residues as soil inputs while the

aboveground biomass in the monocultures are removed. The net

trend of negative N balance may limit the capacity of these

treatments to accrue SOM, particularly as MAOM, which has a
FIGURE 4

Percent litter-derived soil (A) carbon and (B) nitrogen in each measured soil and litter fraction over 27 months averaged across treatment (0-10 cm).
Bars represent standard error. Root (solid) and shoot (dashed) refer to those respective litters in the soil collar; MAOM is mineral-associated organic
matter (<53 mm); oPOM is occluded particulate organic matter; fPOM is free particulate organic matter.
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lower C:N (<15) (88). A net SOM gain of 0.3 Mg C ha−1 over 5 years

would require at least a positive N balance of 20 kg N ha−1

year−1 (16).

In terms of the new formation of SOM or distribution of C and

N among soil fractions, we saw no effect of N source. The similarity

of the KKF and KAU treatments supports the notion that the

intercrop was able to maintain similar soil conditions as the

fertilized treatment without reliance on synthetic inputs. Our

hypothesis that the continuous decomposition and potential

availability of N in the KAU plots would result in greater MAOM

formation was not supported, however. Rather than promote more
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C-efficient microbial communities (89) as we hypothesized, the N

made available from decomposing alfalfa residues may have

promoted faster turnover of the soil microbes. The lower C:N of

the KAU soil (Table 1) indicates a stronger microbial signature,

potentially indicating an enhanced in vivo pathway of SOM

formation (49). An accelerated microbial turnover may result in

greater C losses and negate efficient new SOM formation even if the

individual microbial C use efficiency was higher.

The absence of N inputs (KKU) did have some consequences

for the SOM dynamics. The microbial biomass was similar for all

treatments, but the microbes in the KKU plots incorporated
TABLE 3 Mean ( ± SE) litter-derived (LD) carbon (C) and nitrogen (N) by soil fractions by (a) plant species and (b) tissue type calculated using Equation
3 by soil fraction (0-10 cm).

Fraction n LDC g C m−2 LDN g N m−2 Percent LDC Percent LDN

a. Sum litter-derived organic matter by species

Kernza

Bulk 12 42.3 ± 4.3 7.0 ± 0.6 a 19.8 ± 2 73.8 ± 6.6

fPOM 12 16.5 ± 3.3 a 1.3 ± 0.2 7.7 ± 1.5 a 13.4 ± 2.2 a

oPOM 12 19.9 ± 1.8 1.4 ± 0.1 9.3 ± 0.9 14.9 ± 1.4

MAOM 12 10.6 ± 0.9 3.6 ± 0.2 5.0 ± 0.4 38.7 ± 2.3

Alfalfa

Bulk 4 26.3 ± 3.0 9.6 ± 0.6 b 11.6 ± 1.3 59.5 ± 3.8

fPOM 4 4.6 ± 2.2 b 1.2 ± 0.3 2.1 ± 1.0 b 7.2 ± 1.7 b

oPOM 4 11.3 ± 2.1 1.9 ± 0.3 5.0 ± 0.9 11.9 ± 1.7

MAOM 4 9.4 ± 0.6 5.0 ± 0.3 4.1 ± 0.3 31.2 ± 1.7

b. Sum of litter-derived organic matter by litter type

Shoots

Bulk 16 25.1 ± 3.3 a 7.6 ± 0.5 a 11.7 ± 1.5 a 55.4 ± 3.4 a

fPOM 16 10.1 ± 3.3 a 1.6 ± 0.3 a 4.7 ± 1.5 a 11.4 ± 2.1 a

oPOM 16 12.0 ± 1.7 a 1.7 ± 0.1 ab 5.6 ± 0.8 a 12.1 ± 1 ab

MAOM 16 6.0 ± 0.5 a 3.4 ± 0.2 a 2.8 ± 0.2 a 24.4 ± 1.3 a

Roots

Bulk 16 43.4 ± 4.1 b 9.0 ± 0.8 b 19.6 ± 1.8 b 77.9 ± 7 b

fPOM 16 11.1 ± 2.2 b 0.9 ± 0.2 b 5.1 ± 1.0 b 9.2 ± 1.8 b

oPOM 16 19.3 ± 2.2 b 1.7 ± 0.2 ab 8.7 ± 1.0 b 14.7 ± 2.0 ab

MAOM 16 14.0 ± 1.0 b 5.2 ± 0.3 b 6.3 ± 0.5 b 45.5 ± 2.7 b

Source df F-statistic

Treatment 2 0.2 0.3 0.3 0.4

Species × Litter Type 3 24.4*** 62.6*** 24.3*** 76.2***

Soil Fraction 4 24.3*** 469*** 23.7*** 295***

Harvest time 1 19.8*** 4.1* 19.2*** 4.9*

Species × Litter Type × Fraction 12 4.4*** 20.0*** 4.4*** 16.1***
Different letters denote significant differences between either (a) species or (b) tissue type based on a Tukey test of means following ANOVA to p<0.05. ANOVA statistical significance as follows:
*p<0.05, ***p<0.0001. Soil fraction abbreviations are as described in Figure 1.
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significantly more of the labeled litter N initially than did the

microbial community in KKF or KAU (Supplementary Figure S4,

Supplementary Table S4). This implies a tendency for N

immobilization, consistent also with the lower N content of the

plant tissues in KKU. The KKU also had lower microbial

incorporation of C by the end of the experiment (Supplementary

Figure S4, Supplementary Table S4), suggesting lower C efficiency

with greater N limitation.

Overall, the absence of N management effects on the SOM

dynamics were surprising given the observed differences in

productivity, plant tissue chemistry, and soil C and N stocks. The

similarity of the KKF and KAU treatments, however, supports the

intercrop’s ability to replace synthetic fertilizer with similar

outcome for the soil.
4.2 Determinants of SOM formation: the
role of litter chemistry vs. incorporation in
the soil matrix

Comparing the formation of MAOM and POM helps us

understand the stability of the newly formed SOM and its

potential to contribute to longer-term soil C storage.

We hypothesized that the greater proportion of structural

components in roots and Kernza tissues would result in greater

POM formation (fPOM and oPOM) with roots having greater

oPOM formation due to their presence in the soil matrix. We

predicted that alfalfa, with a higher concentration of extractable

components and N, would have more efficient MAOM formation

than Kernza. Broadly, our hypotheses were supported with

differences among litter types that highlight how litter chemistry

influences SOM formation.

4.2.1 fPOM formation determined primarily by
litter chemistry, MAOM promoted by
incorporation in soil, and oPOM driven by soil

Our results shed some light on the relative importance of

aspects of litter chemistry in contributing to SOM over time.

Previous studies have estimated that roots contribute at least

twice as much C to the soil than aboveground tissues (90–94) and

often estimates are substantially greater (95, 96). Given their

chemistry compared to aboveground materials, roots would more

likely form POM (25, 97). In this study, the relative contribution of

Kernza roots and shoots to SOM fractions were broadly similar,

although the overall amount of SOM formed from Kernza roots was

twice as high as from shoot tissues or alfalfa roots (Figure 1C,

Table 3). The greater formation rate of Kernza roots underlines the

importance of the fibrous components of plant litter in leading to

greater SOM formation (98).

The relatively low SOM formation rate of alfalfa roots and that

they formed SOM in equal parts MAOM and POM was surprising,

given their placement in the soil matrix (Figure 1). The litter

chemistry of the alfalfa roots was unusual, however, as it had the
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highest concentrations of HWE C and N and a ratio of AUR/N six

times lower in the labeled litter than the field-grown plant tissues;

the other litters had an AUR/N only three times lower (Table 2).

The more labile composition of the labeled litter is an artifact of the

young age and low stress environment from growing under

greenhouse vs. field conditions. As alfalfa typically develops thick,

lignified tap roots, early-stage development in a greenhouse may be

more different for alfalfa than for the perennial grass. The HWE C

and N can strongly influence the composition and dynamics of the

microbial community (99, 100), potentially promoting rapid

bacterial community growth. The AUR/N predicts direct plant

contributions to SOM, especially as fPOM in early stages of decay

(101). High AUR/N ratios also characterize litter with a slower

decomposition rate (40, 102). The low AUR/N and location in the

soil matrix of alfalfa roots likely resulted in greater microbial

processing (97, 103) as suggested by the tendency for higher

microbial biomass with alfalfa root litter (Supplementary Figure

S4). This may have led to proportionately more MAOM formation

but also may have resulted in greater total C loss from respiration

(104, 105). Other studies have found that high concentrations of N-

rich leachates may lead to reduced SOM formation, as they quickly

but temporarily alleviate nutrient limitation and shift microbial

community stoichiometry in a way that favors lignin decomposition

early in the decomposition process, ultimately limiting SOM

stabilization (97, 100). Had our labeled alfalfa root litter more

closely resembled the chemistry of plants grown outdoors, it may

have decomposed more slowly and had greater potential to form

SOM as was the case with Kernza roots compared to the shoots.

4.2.2 MAOM formation influenced by litter
chemistry and both oPOM and MAOM are
promoted by incorporation in the soil matrix

What we can learn from this study is that incorporation into the

soil matrix increases the likelihood of MAOM and, to a lesser extent

oPOM, formation regardless of litter chemistry. This may be even

more true for N than for C, as root-derived N recovery in MAOM

was twice as large as shoot-derived N (Figure 1, Table 3). The

oPOM formed was greater for roots than shoots (and for Kernza

more than alfalfa), suggesting that incorporation in the soil results

in greater oPOM formation. Another study that compared SOM

formation from the same surface-applied and incorporated litter

found 56% greater MAOM-C formation (and overall greater SOM

formation) from litter incorporated in the soil (69), supporting the

role of the soil matrix influencing SOM formation pathways (106).

A study of root litter decomposition over multiple depths found

SOM formation efficiency increased with depth and that there was

greater SOM formation from root tissues as POM that started with a

higher C:N (92). These findings seem also to be supported by

incubation studies comparing litter with contrasting root and shoot

chemistry that were uniformly mixed in the soil found no difference

in MAOM-C formation (107) or preferential formation from

incorporated litter with higher N content (108) between litter

types. Similarly, a field study measuring oPOM found formation
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to be influenced by soil texture, although litter with higher N

content having higher oPOM formation (109), which we did not

observe in this study. Thus, this study supports the finding that

broad differences in root vs. shoot SOM formation efficiency are

driven by interaction with the soil matrix, while the litter chemistry

strongly influences the form of SOM with higher C:N tissues

preferentially forming POM and N-rich and soluble compounds

contributing preferentially to MAOM.
4.3 Evaluation of observed formation rates
compared to similar studies

Estimates of C inputs retained as SOM range widely from ~4%

LDC (46) to 46% (69) after 1 year or even higher as reported in

reviews (96, 110). Given the wide variation reported in the literature

(110) and the longer incubation time of this experiment compared

to many (27 vs. <12 months), the estimates in this study [5%-14%

LDC, 12-31 g C m−2 (Table 3)] are within range although lower

than some studies that reported 21%-46% formation efficiency after

2 years (92). Other studies have observed lower formation rates

such as a 17-month pulse-labeling field study of SOM formation

from cover crop residue where MAOM-C from roots and shoots

was 7%-11% and POM ~2% (94). Unlike in this study, they found

no difference in root and shoot SOM formation by the end of the

experiment, although differences had been evident in the first year.

Much of the variation in estimates could be attributed to the climate

(55, 111) and soil minerology (106, 112). Given the difference in

litter chemistry of the labeled litter and the plants grown in the field

and the importance of the structural plant components to SOM

formation, we might expect the formation rates in this study to

be underestimated.
4.4 Evaluating the potential for low AUR/N
litter to affect SOM accrual

We had hypothesized that the KAU treatment could potentially

lead to greater SOM formation due to the steady release of N during

the growing season through the decomposition of alfalfa tissues.

Providing N at this slow but steady rate, we argued, could lead to

microbial communities with greater C-use efficiency and ultimately

accrue higher SOM overall as may have been observed in field

studies with a legume in rotation with grains (28). Our preliminary

analysis of the SOM across treatments showed this not to be the

case, however (Supplementary Figure S3). The lower formation of

SOM by alfalfa compared to Kernza, likewise, does not support the

hypothesis that higher quality (i.e., lower AUR/N) litter would lead

to greater SOM formation overall, although it did lead to a greater

proportion of MAOM formation (Figure 1). Does this mean that

the hypothesis that including legumes with a grass might increase

SOM is flawed?

The question is relevant for how Kernza and Kernza-legume

intercrops might alter SOM stocks and soil structure over time.
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Other studies that examined the role of plant diversity and legumes

on increasing SOM have found no relationship between rate of C

accrual in SOM and legumes (53, 113–116). A study that used

isotope tracers to assess soil C dynamics found that plant diversity

(but not legumes as a functional group) promoted SOM accrual

primarily by increasing productivity as net primary production

(NPP) and slowing the decomposition of the plant tissues (117).

The legume intercrop in this study supported higher ANPP only 1

out of 4 years, meaning this management had lower soil inputs and

litter likely to decompose more rapidly (Figure 2, Supplementary

Table S2). Notably, the intercrop SOM stock, although lower than

the fertilized treatment, was not significantly different

(Supplementary Figure S1, Supplementary Table S1), suggesting

that the reduced crop inputs to soil may have been partially

compensated by the alfalfa. Further testing of this question

should evaluate SOM formation and change to SOM over time

using combinations of grass and legume tissues, holding the total

amount of input constant.

Previous studies have found that fields under Kernza crops had

significantly greater soil C in POM than in MAOM (17), suggesting

that Kernza may enhance SOM initially and most easily detectably

through the accumulation of POM from root tissues. Meta-analyses

focused on perennials and cover crops have shown that POM

increases proportionately to increases in root C inputs and that

the degree of increased root C input from previous management

may ultimately limit MAOM accumulation (9). Our findings

support this conclusion, as the majority of Kernza tissues

contributed to the POM fractions. This study does not support

the idea that legumes would enhance SOM formation overall,

however. While the alfalfa in this study did contribute similar

amounts of N (Table 3) to SOM while supplying an important

source of N to the system, three times as much legume residues are

needed above or belowground to form a similar amount of SOM as

the Kernza. Given the lack of synthetic inputs in the intercrop,

however, management should be considered wholistically given the

reduced reliance on fossil fuels (and subsequent emissions) when

evaluating its overall effect in the climate and sustainability (118),

although this type of evaluation was beyond the scope of this study.

There is likely a “sweet spot” of litter chemistry to optimize

SOM formation in climates with grassland ecosystems. A meta-

analysis comparing soil C sequestration and N losses based on C:N

of residues found that only residues with C:N > 30 supported SOC

accrual (104). Notably, all of the labeled litter in this study had a

C:N < 25 (Table 2). A question worth exploring is whether there is

evidence to support that the community-level average of C:N and

AUR/N of the plants growing in close proximity or over time such

as an intercrop or prairie can promote SOM formation (119–121)

or if the chemistry of the individual plant is the best predictor of

how it will contribute to SOM. Plant species may also alter the

microclimate and thus influence decomposition rates in multiple

ways (122), and this may vary depending on the underlying soil

minerology (123). In our pursuit of this question, we have in a way

assumed that the community average of litter traits is important,

but the physical separation of litter especially in low-disturbance
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systems may mean that microbial communities derive little C-use

efficiency benefit from the mixing of high and low C:N and AUR/N

litters or that those effects may change over time (124, 125).
5 Conclusion

Perennial grains have the potential to restore many ecosystem

services hampered by annual agriculture including increasing SOC.

Roughly 15% of Kernza root tissue C incorporated into SOM after

27 months with 3.5% as MAOM and 6% as oPOM, implying that

9.5% of root tissue C may be stabilized in soil. We did not find

evidence that the alfalfa tissues or intercrop management enhanced

SOM formation, although it did sustain similar levels of SOM as the

fertilized monoculture. Thus, we conclude that legume intercrops

are unlikely to lead to enhanced SOM accumulation, although they

may, as they did in this study, support similar levels of SOM as

fertilized grass monocultures without synthetic inputs. Future

studies should focus on the net energy balance associated with

contrasting management to evaluate the energetic and greenhouse

gas cost of potential SOM accumulation.

Since our labeled litter differed in its chemical composition

significantly from the field-grown plants, future studies using

greenhouse chamber-produced crop residues should use caution

when extrapolating their results, as the more labile chamber-grown

plants may be inherently more likely to contribute to the MAOM

soil fraction and have accelerated decomposition rates. Introducing

greater plant stress into the chamber environment such as deep,

bottom-fed pots and vigorous fan cycles may reduce the

discrepancy between field and greenhouse-grown plant chemistry,

although these efforts are unlikely to eliminate these differences.

Finally, this study points to the role of litter chemistry and

integration in the soil matrix being more influential in the form and

stability of SOM than the N management. The N management

seems to influence plant growth and tissue chemistry, thus

potentially driving long-term trends in SOM formation. However,

the N management had little effect at the fine scale of this

experiment; there may be a threshold of labile:structural

components that optimizes SOM formation and protection.

Experimentation with the proportions of the structural and labile

tissues in soils and soil N could identify the relevant thresholds for

optimizing microbial litter transformation efficiency and

aggregation for long-term SOM accumulation.
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