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Background: Soil fertility varies within fields of smallholder farmers in Africa.

Drone-based field mapping may quantify this within-field variability with high

resolution. This study analyzed if variation in spectral vegetation indices from

early season weed cover could offer criteria to quickly assess heterogeneity in

soil fertility. We tested (i) whether within field spatial patterns in early season

weed cover and soil organic matter could be correlated and (ii) whether

predicted soil organic matter could indicate within-field heterogeneity in

crop yields.

Methods:We collected images of early season weed cover using a DJI Phantom

4 proV2 drone and data on maize and soybean final above-ground biomass from

on-farm experiments, conducted in Bognaayili and Gauwogo (northern Ghana),

during 2022 and 2023 cropping seasons. There were eight experiments in total,

i.e., two of each crop at each site and in each year. In these experiments, we

varied planting density, variety, mulching, ridging, and fertilizer application, as

management options to increase productivity. Spectral vegetation indices

extracted from early season weed cover were used to predict soil organic matter.

Results: Variation in spectral vegetation indices from early season weed cover

was higher in Bognaayili than in Gauwogo. Predicted soil organic matter from a

model built with spectral vegetation indices had a significant relationship (Radj
2 =

0.54) with measured soil organic matter in Bognaayili, but not in Gauwogo. In

Bognaayili, predicted soil organic matter was significantly and positively

correlated with soybean above-ground biomass in 2022 (r = 0.53) and 2023

(r = 0.65). There was no relationship observed between predicted soil organic

matter and maize above-ground biomass.

Conclusions: The use of spectral vegetation indices from early season weed

cover images as proxy for within-field variation in soil organic matter is a

promising option although it still requires some soil sampling for organic
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matter analysis. Incorporating drone-based early season weed cover assessment

into field crop experimentation by researchers, to explore inherent soil organic

matter variations would lead to detailed understanding of the characteristics and

delineation of areas with lower or higher productivity in regions where soil

organic matter is limiting crop productivity.
KEYWORDS

soil organic matter, yield variability, smallholder farmers, maize, soybean, spectral
vegetation indices
1 Introduction

The variation in crop yields within fields of smallholder farmers

in sub-Saharan Africa (SSA) has been extensively reported in the

literature. It has been suggested that within-field variation (localized

soil heterogeneity) and its interaction with erratic rainfall are the

primary causes of variable crop yields (1–3). Soil fertility is among

the within-field factors responsible for localized soil heterogeneity

in the fields of smallholder farmers in SSA (4).

Soil fertility refers to soil qualities that allow crops to grow and

produce good yields (5) and includes physical, chemical and

biological aspects. Low soil fertility is one of the biggest hurdles

to attain food and nutrition security in Africa (6). All major plant

nutrients and soil organic matter required by the crops to produce

good crop yields, are limited in many agricultural soils in Africa (7,

8). The recognition that low soil fertility is a major yield-limiting

factor has led the majority of African governments and

international organizations to take measures to make fertilizers

more available to farmers as a means to bridge the yield gap caused

by low soil fertility (9). Despite the efforts that have been made over

the past decades, crop yields in smallholder farmer’s fields remain

low due to soil nutrient mining, and variability in crop yield

response to fertilization (1, 3, 10, 11).

Understanding the causes for soil heterogeneity in farmer’s

fields and the relationship with soil fertility management practices

could help determine fields in which such management strategies

may be effective, and thus help identify fields where crop

intensification could be remunerative. Several studies have

identified variability in secondary- and micro-nutrients to be the

cause of soil heterogeneity among different fields of smallholder

farmers in northern Ghana, using composite soil sampling (3, 12).

However, using this technique to diagnose localized soil

heterogeneity appears to be expensive, laborious and time

consuming as multiple nutrients could be responsible for the

localized soil heterogeneity, and the methods employed for

analysis of different essential nutrients often differ (8, 12). Using

drone imagery which is cheap (in the long-term), less laborious and

quick to diagnose localized soil heterogeneity could be a win-win
02
solution to stakeholders, offering insights applicable to identify

productive portions of fields (13–15).

Compared to satellite images, drone images have a higher

spatial resolution and are not hindered by cloud cover and

visiting time (16). Drone-based digital imaging sensors that

capture vegetation cover information in the visible range of the

electromagnetic spectrum (i.e., red (R), green (G) and blue (B)

spectral bands; RGB) have the highest spatial resolution and are the

cheapest (14, 17, 18). Assessment of variation in vegetation cover

from drone-based RGB images is done using transformed spectral

bands (spectral vegetation indices) or the intensity values for

multiple spectral bands (19). Hence, spectral vegetation indices

from drone-based RGB images could be useful to assess localized

soil heterogeneity.

Soil organic matter (SOM) content is one of the key

components of soil fertility (20). SOM provides multiple

ecosystem services including storing and releasing plant nutrients

(21, 22). SOM affects the efficiency of crop nutrient uptake and

utilization through its influence on soil structure, soil moisture

holding capacity, and diversity and activity of soil organisms (23).

Soil laboratories in Ghana have the capacity to quantify the

amounts of SOM in soil samples (8, 12). In fields with low and

variable SOM, naturally occurring vegetation cover and spectral

vegetation indices have significant relationships with soil organic

matter (24, 25). Hence, complementing spectral vegetation indices

from drone-based RGB mapping for natural vegetation cover in a

field, with manual detailed soil sampling and SOM analysis, could

provide proof of any correlation between natural vegetation cover

and SOM.

Northern Ghana is one of the areas in SSA experiencing crop

yield variability within the fields of smallholder farmers (1) and

hence, smallholder farmers’ fields in this region could be used as

case study for possible correlation between spectral cover data, soil

organic matter and within-field variability in crop performance.

Maize and soybean grown as sole crops are the two most important

crops in northern Ghana in terms of number of households that

cultivate them and land area allocated to them; they serve as

primary sources of household food, feed and income (26). The
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harvested grains are used for household food and the excess is sold

for income (26), while the stover is used for livestock feeding,

mulching, or sold for income (27, 28).

To enhance production per unit area of land, several

interventions are used and tested by farmers as well as the actors

supporting these farmers (29, 30). These interventions include the

use of compound NPK fertilizer to supply the main nutrients

nitrogen (N), phosphorus (P) and potassium (K) (31). Any other

added nutrients applied, are meant to enhance the uptake and

utilization efficiency of N, P and K (26, 32). Ploughing with or

without NPK fertilization are the commonly used management

practices in maize and soybean cropping systems (33). Some

farmers implement mulching and ridging as strategies for water

retention to adapt to the increasing in-season rainfall variability (26,

30, 33). The common sowing pattern for maize is two seeds per hill

with 75 cm inter-row and 40 cm intra-row spacing; for soybean, it is

one seed per hill with 75 cm inter-row and 5 cm intra-row spacing

(31, 34). Single seed planting with reduced intra-row spacing

(plant arrangement), NPK fertilizers containing sulfur (sulfur

fertilization), and increased planting density through reduced row

spacing are some other management practices being promoted by

intervention projects and the government of Ghana with the aim to

enhance maize and soybean productivity (26, 35).

Given the potential of drone-based field mapping in enabling

high spatial resolution assessment of within-field variability,

understanding how variations in spectral vegetation indices from

early season weed cover relate to variation in SOM, could offer

criteria to quickly assess localized soil heterogeneity. The objectives

of the study were to assess (i) whether within field spatial patterns in

early season weed cover and soil organic matter could be correlated

and (ii) whether predicted soil organic matter could indicate within-

field heterogeneity in crop yields.
2 Materials and methods

2.1 The study area and characteristics of
the sites at the start of the experiments

The study was conducted in the Tolon and Sagnerigu districts,

both located in the northern part of Ghana, West Africa (Figure 1).

The study area has a unimodal rainfall which starts in May and ends

in October, followed by a long dry season that lasts from October to

May (36, 37). Climatic data for the study area shows seasonal

rainfall ranges between 700 and 1250 mm (38). Field experiments

were conducted in farmers’ fields in two villages [Bognaayili, (9° 27’

47.4228’’N; 0° 55’ 48.7596’’W) and Gauwogo (9° 23’ 15.8604’’N; 1°

1’ 43.3956’’W)] for two years (2022 and 2023), both for maize (Zea

mays L.) and soybean (Glycine max (L.) Merr.), resulting in eight

unique experiments in total across years, villages and crops.

Soil organic matter (SOM) and pH at the start of the study,

which were measured on a composite sample from 20 soil cores per
Frontiers in Soil Science 03
site were 0.55% and 5.95 in Bognaayili, and 0.62% and 6.10 in

Gauwogo. The clay content in both sites was 4%, and the sand

content was higher than 90%. The soil properties of the study sites

are within the ranges of values reported for the area (8).

The same farmers’ fields were used in both years and the crop

management treatments in 2023 were repeated on exactly the same

plots where they were conducted in 2022, on purpose using the

same randomization. The fields in both locations were prepared in

2022 by ploughing followed by manual levelling using a hoe.

Ploughing was not done in 2023, to avoid possible soil movement

from one plot to another. Weeds were manually cleared using a hoe

during the experiment. To avoid unintended addition of fresh

organic matter to the experimental plots, all weed biomass and

crop above-ground biomass was removed after weeding and

harvest, respectively.
2.2 Crop data

A randomized complete block design with four replications was

used in each of the experiments. The design, establishment and

management of the experiments were entirely done by the

researchers. The crops were sown on the 2nd and 3rd July in 2022,

and on the 22nd and 23rd June in 2023. The plots in the experiments

were subjected to various treatment combinations of plant

arrangement, planting density, mulching, NPK, ridging, sulfur,

and variety (Table 1). Plant arrangement in maize involved

planting one seed per hill at 20 cm intra-row spacing (P1) or the

common farmer practice of two seeds per hill at 40 cm intra-row

spacing (P2). Soybean was sown at one seed per hill at 5 cm intra-

row spacing. Standard and increased planting density (D1 and D2)

were achieved in maize and soybean respectively by planting at 75

cm inter-row spacing (D1) or 60 cm inter-row spacing (D2). There

were 5 or 6 plant rows for D1 and D2 plots, respectively. Some of the

D1 plots were made up of 4 5-plant row subplots that were adjacent

to each other and were treated as one main plot. The N, P and K

applied in maize were equivalent to 120 kg N, 40 kg P and 40 kg K

per hectare for the full dosage in the treatments, and in the soybean

experiments, equivalent to 15 kg N, 30 kg P and 30 kg K per hectare.

While half of this dosage (½NPK) was imposed as one of the

treatments next to no fertilizer (0NPK). N application in maize was

done in two splits of 60 (NPK) or 30 (½NPK) kg N per hectare, at

two and four weeks after planting, respectively. The first N split was

applied with P and K in the form of compound fertilizer and the

second split was applied in the form of urea. The N, P and K

application in soybean was done once at two weeks after planting in

the form of compound fertilizer. When applied, the rates of sulfur

(as a component of NPKS compound fertilizer) and mulch were 12

kg S per hectare and 4000 kg air dry grass per hectare, respectively,

in both crops. At the start of the seasons, some plots were ridged.

Then the vertical distance between ridge tops and the furrow base

was 30 cm. Open pollinated maize varieties CSIR-Sanzal Sima and
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Obatanpa, and soybean varieties CSIR-Favour and Jenguma were

used in the experiments. The maize variety, CSIR-Sanzal Sima, and

the soybean variety, Jenguma, adopted in the study were reported to

be relatively tolerant to drought conditions (34, 39).

At the end of both cropping seasons, 3 (D1) or 4 (D2) inner

plant rows were cut at soil level, leaving a 0.75-cm border at each

end of the plant rows. The cut plants were sundried to 12%moisture

(moisture determined using GM-103 moisture meter), and hand-

threshed to extract the grains. The parts of the plants remaining

after removing the grains constituted the stover. Above-ground

biomass of the two crops was obtained by summing the separate

grain and stover weights.
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2.3 Early season weed cover and soil
organic matter data

Prior to the start of the experiments in 2022, images of early

season weed cover of all the fields were taken using a DJI Phantom 4

proV2 drone carrying the manufacturer’s fitted RGB camera

(Phantom 4 Pro V2.0 - DJI). The images were captured from an

altitude of 30 m and had 80% front and side overlap. The images

were stitched using the approach described in (40) to derive

vegetation cover maps of the fields. Seventeen spectral vegetation

indices (Supplementary Table S1) were extracted from the field

maps using the approaches described in (41–49).
FIGURE 1

Maps showing the country (A), region within country (B), districts within region (C), and villages within districts (D) where the study was conducted.
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Images of crop cover in the experimental fields were taken at mid-

grain filling (77 days after planting) in 2023 and stitched, using the

same tools and approach described above, to derive crop cover maps.

Five experts were invited to select from the crop cover maps, the

experimental field(s) they considered to be variable, when the plots in

the experimental fields were assessed crop management treatment-

wise. This exercise was followed by a field visit during which a sixth

expert and local farmers whose fields were used for the experiments

were asked to select crop management treatment-wise, which of the

experimental field(s) they considered crop growth to be variable.

The soybean experimental field in Bognaayili was identified by

the experts and local farmers to exhibit largest within-field

variability, and hence, that field and the soybean experimental

field in Gauwogo were sampled at the end of season in 2023 for

SOM analysis. During soil sampling, five soil samples were collected

in each plot or subplot from the 0–30 cm soil depth, bulked on plot

basis for Bognaayili and for Gauwogo, and analyzed for organic

carbon using the Walkley-Black wet combustion method (50). The

organic carbon values were converted to organic matter values

using a conversion factor of 1.724 (51).

Correlation analyses were conducted between the spectral

vegetation indices and SOM separately for both Bognaayili and

Gauwogo. The indices that did not have significant correlation with

SOM in either of the villages were removed (Figure 2), and the
Frontiers in Soil Science 05
retained indices were combined with the SOM data. Seventy percent

of the data was used to build a random forest model for respectively

Bognaayili and Gauwogo to predict SOM from the retained spectral

vegetation indices, and the remaining 30% data was used to evaluate

the model’s performance. The built random forest models were

applied to predict SOM using the spectral vegetation indices from

early season weed cover of the maize fields that were not sampled

for SOM analysis. Making SOM predictions for the fields that were

not sampled was considered possible since the crops were grown on

adjacent fields in each village and the weed vegetation cover from

which the spectral vegetation indices were extracted was the same in

terms of species composition and magnitude of percentage cover.
2.4 Statistical analysis

Levene’s test for equality of variances and Welch’s T-test for

comparing means were used to assess the differences in the spectral

vegetation indices from both Bognaayili and Gauwogo sites.

Correlation analysis was done between above-ground biomass

and predicted SOM values, separately for each combination of

crop, location, and year. All data analyses and the plotting of figures

were done using the “R” statistical software (version 4.4.2) and the

tidyverse suite, ggpubr package and tidyterra suite of R (52–55).
TABLE 1 Crop management treatment combinations used in the experiments in the northern region of Ghana from which the crop yield data
were obtained.

No. Maize Soybean

1 CSIR-Sanzal Sima+P2+D1+0NPK CSIR-Favour+D1+0NPK

2 Obatanpa+P2+D1+0NPK Jenguma+D1+0NPK

3 CSIR-Sanzal Sima+P2+D2+0NPK CSIR-Favour+D2+0NPK

4 CSIR-Sanzal Sima+P2+D1+NPK CSIR-Favour+D1+NPK

5 Obatanpa+P2+D1+NPK Jenguma+D1+NPK

6 CSIR-Sanzal Sima+P2+D2+NPK CSIR-Favour+D2+NPK

7 CSIR-Sanzal Sima+P1+D1+NPK

8 CSIR-Sanzal Sima+P2+D1+NPK+M CSIR-Favour+D1+NPK+M

9 CSIR-Sanzal Sima+P2+D1+NPK+R CSIR-Favour+D1+NPK+R

10 CSIR-Sanzal Sima+P2+D1+NPK+S CSIR-Favour+D1+NPK+S

11 CSIR-Sanzal Sima+P2+D1+½NPK+R+M CSIR-Favour+D1+½NPK+R+M

12 Obatanpa+P2+D1+½NPK+R+M Jenguma+D1+½NPK+R+M

13 CSIR-Sanzal Sima+P2+D1+NPK+R+M CSIR-Favour+D1+NPK+R+M

14 Obatanpa+P2+D1+NPK+R+M Jenguma+D1+NPK+R+M

15 CSIR-Sanzal Sima+P2+D2+NPK+R+M CSIR-Favour+D2+NPK+R+M

16 CSIR-Sanzal Sima+P2+D1+NPK+R+M+S CSIR-Favour+D1+NPK+R+M+S

17 CSIR-Sanzal Sima+P2+D2+NPK+R+M+S CSIR-Favour+D2+NPK+R+M+S
D1 = 75 cm inter-row distance; D2 = 60 cm inter-row distance; 0NPK = no fertilizer; NPK = maize: 120, 40, 40 kg ha–1 and soybean: 15, 30, 30 kg ha–1 N, P and K, respectively; ½NPK = half of N,
P and K applied in NPK; P1 = 20 cm intra-row, 1 seed hill–1; P2 = 40 cm intra-row, 2 seeds hill–1; M = mulching at 4000 kg air dry grass ha–1; R = ridging; S = 12 kg S ha–1.
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3 Results

3.1 Within-field variation in spectral
vegetation indices from early season weed
cover, mid-season crop cover density, and
measured soil organic matter

Spectral vegetation indices extracted from the early season weed

cover from Bognaayili had numerically higher variances (except

intensity values for Green band) compared to Gauwogo, and were

statistically significant for Blue, GrCycl, Grcl, GA, GGA, DGCI,

GLI, BGI and RAGP (Table 2). The means of Blue, GrCycl, Grcl,

GGA, BI and BGI were significantly (p < 0.05) higher in Bognaayili.

On the other hand, the mean values of YeGrcl, Yecl, GLI and RAGP

were significantly higher in Gauwogo (Table 2).
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The soybean field in Bognaayili was identified by experts and

local farmers to exhibit largest within-field variability compared to

the other fields (Figures 3A, B). The soybean field at Bognaayili had

extensive patchiness in crop cover that could not be attributed to

differences in crop management treatments that were being tested

(Figures 3B, C). For instance, at 77 days after planting, crop canopy

in most soybean plots in Bognaayili had not closed whereas other

plots had closed or near-closed crop canopy (Figures 3B, C).

Within-field variability in the maize field at Bognaayili and

at Gauwogo and soybean field at Gauwogo was more related

to the crop management treatments that were being tested.

For instance, all plots in the maize fields in Bognaayili and

Gauwogo and soybean field in Gauwogo with low crop cover

belonged to crop management treatments that did not have

fertilizer (Figures 3A–C).
FIGURE 2

Summary of the key steps used in the approach to predict soil organic matter from spectral vegetation indices. YeGrcl, yellow-green class; Yecl,
yellow class; VARI, variable atmospherically resistance index; RAGP, relative amount of green pixels; OrYecl, orange-yellow class; NGRDI, normalized
green-red difference index; GrCycl, green-cyan class; Grcl, green class; GLI, green leaf index; GGA, greener area; GA, green area; DGCI, dark green
color index BI, brightness index; BGI, blue-green pigment index; Blue, intensity in blue color band; Green, intensity in green color band; Red,
intensity in red color band; Soy, soybean; Gau, Gauwogo; Bog, Bognaayili; Mai, maize; NA, data that was not used in a step; VI, spectral vegetation
indices; Train, training; Eval, evaluation; Pred, prediction; Corr, correlation; SOM, soil organic matter and RF, random forest. *, **, ***, ****, ′, ′′, ′′′, ′′′
′,.,.., …, and …. refer to classes of the partitioned data at various steps.
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Because of the visually assessed higher within-field variability in

soybean crop cover at Bognaayili, all plots in soybean fields in

Bognaayili and Gauwogo were individually sampled at the end of

season in 2023 for soil organic matter (SOM) analysis.

Variation in the measured SOM was higher in the soybean field

in Bognaayili than in the soybean field in Gauwogo (Figure 4). For

instance, the standard deviation of the measured SOM in Bognaayili

(0.12%) was almost twice what was observed in Gauwogo (0.07%).

The mean of the measured SOM in the soybean field in Bognaayili

(0.33%) was lower, reaching only half of the mean of measured

SOM in the soybean field in Gauwogo (0.65%).
3.2 Correlation between spectral
vegetation indices from early season weed
cover, soil organic matter and crop above-
ground biomass

In the soybean field in Bognaayili, all spectral vegetation indices

except YeGrcl and BGI had significant (p < 0.05) correlations with

measured SOM (Table 3). The correlation coefficients for Red,

Green, Blue, Yecl, OrYecl and BI were negative, whereas correlation

coefficients for GrCycl, Grcl, GA, GGA, DGCI, NGRDI, VARI, GLI

and RAGP were positive. In the soybean field in Gauwogo, the
Frontiers in Soil Science 07
spectral vegetation indices had no significant correlation (p > 0.05)

with measured SOM.

Statistically significant (p < 0.05) correlations were observed

between soybean above-ground biomass and measured SOM in

Bognaayili, for 2022 and 2023 biomass data (Figure 5). In Gauwogo,

no significant correlations (p > 0.05) were observed between the

2022 and 2023 soybean above-ground biomass and measured

SOM (Figure 5).

The spectral vegetation indices had no correlation (p > 0.05)

with maize above-ground biomass in both villages and years, and

with soybean above-ground biomass in Gauwogo, in 2022 and 2023

(Table 4). In contrast, all the spectral vegetation indices except

YeGrcl and BGI had significant correlations with soybean above-

ground biomass in Bognaayili in 2022 and 2023 (Table 4). Among

the spectral vegetation indices which had significant correlations

with soybean above-ground biomass in Bognaayili, Blue had the

lowest correlation coefficients followed by Green, in both years.
3.3 Predicting soil organic matter using
spectral vegetation indices from early
season weed cover

The 15 spectral vegetation indices that had significant

correlations with measured SOM in Bognaayili (Table 3) were the
TABLE 2 Test of variances and means of natural vegetation cover indices.

VI1

Levene’s Test (variances) Welch’s T-test (means)

Bognaayili Gauwogo p-value Bognaayili Gauwogo p-value

Red 209 195 0.25 141 141 0.92

Green 100 112 0.87 138 138 0.66

Blue 236 131 1.58×10−03 116 102 2.08×10−14

GrCycl 6.00×10−04 0.00 2.03×10−04 7.94×10−03 7.58×10−07 2.47×10−04

Grcl 3.25×10−02 1.56×10−02 2.27×10−03 0.18 0.14 3.07×10−02

YeGrcl 1.48×10−02 1.47×10−02 0.56 0.18 0.26 1.93×10−08

Yecl 6.50×10−03 3.90×10−03 0.37 0.13 0.17 1.73×10−05

OrYecl 8.10×10−03 5.70×10−03 9.55×10−02 0.16 0.16 0.95

GA 6.17×10−02 3.83×10−02 7.37×10−03 0.40 0.44 0.18

GGA 4.10×10−02 1.77×10−02 1.58×10−03 0.20 0.15 3.05×10−02

DGCI 1.16×10−02 3.90×10−03 3.61×10−05 0.44 0.42 5.94×10−02

NGRDI 1.00×10−03 8.00×10−04 0.58 −2.93×10−03 −6.15×10−03 0.38

VARI 2.70×10−03 1.90×10−03 0.23 −5.12×10−03 −9.94×10−03 0.42

BI 131 127 0.26 133 129 4.77×10−03

GLI 1.10×10−03 6.00×10−04 1.71×10−02 0.04 0.07 1.95×10−10

BGI 8.50×10−03 2.40×10−03 5.08×10−06 0.83 0.73 2.20×10−16

RAGP 1.00×10−03 6.00×10−04 1.79×10−02 −0.29 −0.27 3.97×10−10
1 VI, spectral vegetation index; Red, intensity in red color band; Green, intensity in green color band; Blue, intensity in blue color band; GrCycl, green-cyan class; Grcl, green class; YeGrcl, yellow-
green class; Yecl, yellow class; OrYecl, orange-yellow class; GA, green area; GGA, greener area; DGCI, dark green color index; NGRDI, normalized green-red difference index; VARI, variable
atmospherically resistance index; BI, brightness index; GLI, green leaf index; BGI, blue-green pigment index; RAGP, relative amount of green pixels.
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ones used to build random forest models for respectively Bognaayili

and Gauwogo to predict SOM. After model building, the random

forest model in Bognaayili performed reasonably well as predicted

SOM from the spectral vegetation indices explained 42% of

variation in measured SOM. The performance of the random

forest model in Gauwogo was considered not good because

predicted SOM values from the spectral vegetation indices had no

relationship (Radj
2 = 0.00) with measured SOM. The distribution of

the minimal depth of predictor variables (Figures 6A, B) revealed

that some spectral vegetation indices used to build the random

forest model in Bognaayili were never used to split the root node,

i.e., minimal depth at root node was zero (Figure 6A). Indices
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OrYecl and GrCycl contributed most to the random forest model’s

overall predictiveness in Bognaayili; they each had minimal depths

of 2.8. During model evaluation, predicted SOM from the spectral

vegetation indices explained 54% and 0% of variation in measured

SOM in Bognaayili (Figure 6C) and Gauwogo (Figure 6D),

respectively. The built random forest model for each village was

used to predict SOM for the maize fields. The relationship between

maize and soybean above-ground biomass and the predicted values

(from prediction for maize, and from training and evaluation for

soybean) were assessed.

Predicted SOM values were more variable in the soybean field in

Bognaayili compared to the maize field in that same village
FIGURE 3

Variation in crop canopy cover at 77 days after planting. (A) is the soybean field at Gauwogo, (B) is the soybean and half of maize fields at Bognaayili,
and (C) represents four selected crop management treatments to show variation in more detail. R1 to R4 in (C) are replicate one to four. Crop
varieties captured in (C) were CSIR-Sanzal Sima (maize; first and second columns from the left) and CSIR-Favour (soybean; third and fourth columns
from the left). In each location and replicate in (C), the image has been purposefully rotated so that P2+D2 + 0NPK (maize) or D2 + 0NPK (soybean)
plot is in the upper left plot, and each of the other three plots is one of P2+D2+NPK+R+M, P2+D1+NPK+R+M+S or P2+D2+NPK+R+M+S (maize),
or D2+NPK+R+M, D1+NPK+R+M+S or D2+NPK+R+M+S (soybean).
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FIGURE 4

Distribution of the measured soil organic matter in the soybean fields in Bognaayili and Gauwogo. The box and whisker plots within the violin plots
show the quartiles, and the red dots show the means.
TABLE 3 Correlation between natural vegetation cover indices and measured soil organic matter.

Spectral
vegetation

index

Bognaayili Gauwogo

Correlation coefficient p-value Correlation coefficient p-value

Red −0.52 9.56 × 10−06 −0.13 0.31

Green −0.34 6.39 × 10−03 −0.15 0.25

Blue −0.28 2.41 × 10−02 −0.17 0.19

GrCycl 0.75 8.98 × 10−13 0.00 1.00

Grcl 0.63 2.66 × 10−08 −0.10 0.44

YeGrcl −0.20 1.20 × 10−01 0.20 0.11

Yecl −0.43 3.95 × 10−04 0.04 0.73

OrYecl −0.55 2.16 × 10−06 −0.02 0.89

GA 0.57 8.82 × 10−07 0.07 0.59

GGA 0.67 1.53 × 10−09 −0.09 0.47

DGCI 0.66 3.03 × 10−09 0.08 0.53

NGRDI 0.64 1.06 × 10−08 −0.01 0.93

(Continued)
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TABLE 3 Continued

Spectral
vegetation

index

Bognaayili Gauwogo

Correlation coefficient p-value Correlation coefficient p-value

VARI 0.65 4.77 × 10−09 0.00 0.97

BI −0.41 6.72 × 10−04 −0.15 0.22

GLI 0.55 2.72 × 10−06 0.03 0.81

BGI −0.09 5.00 × 10−01 −0.08 0.53

RAGP 0.55 2.63 × 10−06 0.03 0.82
F
rontiers in Soil Science
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Codes of the spectral vegetation indices have the same meaning as in Table 2.
FIGURE 5

Scatter plots showing the correlations between soybean above-ground biomass and measured soil organic matter. Texts in the upper-left conner of
each panel show the correlation coefficient and p-value.
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(Figures 7C, D) and maize and soybean fields in Gauwogo

(Figures 7B, D). Predicted SOM contents in maize and soybean

plots and subplots in Gauwogo were higher than 0.55%

(Figures 7B, D).

The mean model predicted SOM content in the maize field in

Bognaayili was 0.28% and in Gauwogo it was 0.65% (Figure 7D).

Standard deviations of the model predicted SOM values in the maize

fields were 0.04% in Bognaayili and 0.03% in Gauwogo (Figure 7D).

In Bognaayili, predicted SOM values were higher in portions of

the maize and soybean fields where the cover density of Icacina

oliviformis (Poir.) J.Raynal weed was higher. For instance, model

predicted SOM in the north-easternmost section of the soybean

field in Bognaayili where Icacina oliviformis (Poir.) J.Raynal weed

was present was 0.50%, while model predicted SOM in the north-

westernmost section in the same field, where the weed was absent,

was 0.30% (Figures 7A, C). The maize and soybean fields in

Gauwogo had higher cover density of Icacina oliviformis (Poir.)

J.Raynal weed in all portions of the fields, and the measured and

predicted SOM in all portions of the fields were higher also

(Figure 7B; Supplementary Figure 1).
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3.4 Correlation between predicted soil
organic matter and maize and soybean
yield

The 2022 and 2023 above-ground biomass of maize in

Bognaayili and Gauwogo and soybean in Gauwogo had no

relationship (p > 0.05) with predicted SOM (Figure 8). However,

a strong positive relationship was observed between the 2022 and

2023 above-ground biomass of soybean in Bognaayili and predicted

SOM. The correlation coefficient between soybean above-ground

biomass and predicted SOM in Bognaayili was 0.53 (p = 1.08 ×

10−4) in 2022 and 0.65 (p = 5.66 × 10−9) in 2023 (Figure 8).
4 Discussion

Variation in crop yield within the fields of smallholder farmers

in sub-Saharan Africa is high, and it has been associated with high

within-field (localized) heterogeneity in soil organic matter (SOM)

(4). We assessed the relationship between spectral vegetation
TABLE 4 Correlation coefficients between crop above-ground biomass and spectral vegetation indices extracted from early season weed
cover images.

Maize Soybean

Bognaayili Gauwogo Bognaayili Gauwogo

VI1 2022 2023 2022 2023 2022 2023 2022 2023

Red −0.03ns 0.05ns −0.12ns −0.04ns −0.48*** −0.48*** 0.15ns 0.24ns

Green −0.09ns 0.03ns −0.05ns 0.04ns −0.37** −0.32** 0.07ns 0.24ns

Blue 0.02ns 0.03ns −0.05ns 0.04ns −0.33* −0.28* 0.03ns 0.17ns

GrCycl −0.03ns 0.14ns 0.05ns 0.24ns 0.52*** 0.54*** 0.00ns 0.00ns

Grcl −0.01ns 0.05ns 0.20ns 0.15ns 0.48*** 0.55*** −0.24ns −0.18ns

YeGrcl 0.07ns 0.01ns 0.08ns 0.07ns 0.01ns 0.02ns 0.01ns 0.04ns

Yecl −0.01ns 0.01ns 0.00ns −0.09ns −0.27ns −0.21ns 0.25ns 0.19ns

OrYecl −0.21ns −0.16ns −0.19ns −0.21ns −0.47*** −0.40** 0.13ns 0.14ns

GA 0.04ns 0.04ns 0.18ns 0.14ns 0.51*** 0.54*** −0.16ns −0.12ns

GGA −0.01ns 0.06ns 0.19ns 0.14ns 0.51*** 0.57*** −0.24ns −0.18ns

DGCI −0.02ns −0.02ns 0.17ns 0.11ns 0.54*** 0.59*** −0.18ns −0.15ns

NGRDI −0.06ns −0.03ns 0.21ns 0.17ns 0.50*** 0.58*** −0.19ns −0.10ns

VARI −0.05ns −0.02ns 0.20ns 0.16ns 0.52*** 0.59*** −0.20ns −0.11ns

BI −0.04ns 0.04ns −0.08ns 0.00ns −0.43** −0.39** 0.10ns 0.24ns

GLI −0.09ns −0.03ns 0.16ns 0.10ns 0.44** 0.50*** −0.11ns −0.06ns

BGI 0.08ns 0.02ns −0.04ns 0.01ns −0.09ns −0.12ns −0.03ns 0.01ns

RAGP −0.09ns −0.03ns 0.16ns 0.10ns 0.43** 0.50*** −0.11ns −0.07ns
1 VI = spectral vegetation index. Codes of the spectral vegetation indices have the same meaning as given in the footnote to Table 2.
ns represent no statistical significance, and *, ** and *** represent statistical significance at p < 0.05, 0.01, and 0.001, respectively.
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indices and SOM, and the relationship between crop yield and

predicted SOM in northern Ghana. We found that the relationship

between spectral vegetation indices from early season weed cover

and measured SOM was site dependent (Table 3), and the

relationship between crop productivity and predicted SOM was

site and crop dependent (Figure 8).
4.1 Within-field variation in early season
weed cover, soil organic matter and crop
yield, and their relationships

Within-field variation in spectral vegetation indices from early

season weed cover was higher for the maize and soybean fields in

Bognaayili than in Gauwogo (Table 2). Variation in crop cover

density was higher in soybean in Bognaayili, compared to maize in

Bognaayili and maize and soybean in Gauwogo (Figure 3). The

values of measured SOM in the soybean field in Bognaayili were

almost twice as variable as in Gauwogo (Figure 4). From these

results, it can be observed that there were consistent patterns of high

variability in the soybean field in Bognaayili.
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The mean of the measured SOM was 0.33% in Bognaayili and

0.65% in Gauwogo (Figure 4), which are at the very low end of SOM

values reported in other parts of sub-Saharan Africa (10, 56). The

spectral vegetation indices from early season weed cover had

significant correlations with measured SOM and soybean above-

ground biomass in Bognaayili, but not in Gauwogo (Figure 5;

Tables 3, 4). As such, it could be inferred that in areas where the

soils have low organic matter, such as the sites used in this study,

strong correlations between spectral vegetation indices from early

season weed cover and measured SOM could signal high likelihood

of within-field variation in crop productivity occurring.
4.2 Variation in early season weed cover as
indicator of variation in soil organic matter

In Bognaayili, the trained random forest model using spectral

vegetation indices from early season weed cover and measured

SOM performed reasonably well in predicting SOM (Figure 6).

However, in Gauwogo, the performance of the trained random

forest model using spectral vegetation indices and measured SOM
FIGURE 6

Summaries from the random forest after model building (A, B) and evaluation (C, D). (A, B) show the distribution (colors) and mean (number) of the
minimal depth of predictor variables across trees at respectively Bognaayili and Gauwogo. A smaller minimal depth value for a predictor variable
indicates that the predictor variable’s contribution to overall predictiveness of the model is higher. (C, D) show the linear relationship between
predicted soil organic matter from spectral indices and measured soil organic matter during model evaluation at respectively Bognaayili and
Gauwogo. The Radj

2 indicates the coefficient of determination. Codes of spectral variables in (A, B) have the same meaning as in Table 2.
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was poor in predicting SOM (Figure 6). The poor model

performance in Gauwogo (Figure 6), which was likely due to the

lack of relationship between spectral vegetation indices from early

season weed cover and measured SOM in that field (Table 3),

suggests that variation in spectral vegetation indices from early

season weed cover may not always be a good indicator of localized

heterogeneity in SOM. This is because in fields in which inherent

SOM is not low enough to limit weed growth, variation in SOM

does not translate into variation in weed biomass, resulting in

saturation of spectral vegetation indices when the field is imaged

(57, 58). Our results showed that the mean of measured SOM in

Gauwogo was twice the mean of measured SOM in Bognaayili, and

the standard deviation in Gauwogo was half what we observed in

Bognaayili (Figure 4), indicating higher and more homogenous

SOM in Gauwogo than in Bognaayili. The variances of the spectral

vegetation indices were also lower in Gauwogo than in Bognaayili

(Table 2) suggesting a more homogeneous weed cover density

in Gauwogo.

In Gauwogo, not only was the early season weed cover density

higher than in Bognaayili, the prevalence of Icacina oliviformis

(Poir.) J.Raynal weed was also much higher in Gauwogo

(Supplementary Figure 1). Meanwhile, portions of the maize and

soybean fields in Bognaayili with high cover density of this weed
Frontiers in Soil Science 13
also had high SOM, reaching SOM levels similar to what was

observed in Gauwogo (Figure 7). Hence, including texture-based

spectral vegetation indices (59) from early season weed cover

images in a model for predicting SOM could make the model

more effective. On the other hand, simply visually checking the

types of weeds present in a field could give useful information about

the levels of SOM in the field. It must be emphasized that visually

assessing the types of weeds present and their indication of the

levels of SOMmay be very subjective, and in large fields or when the

fields to be visited are many, manually assessing the types of weeds

would be laborious, time consuming, and therefore more expensive.
4.3 Relationship between crop yield and
predicted soil organic matter

In Bognaayili, predicted SOM had no relationship with maize

above-ground biomass, but had strong positive relationship with

soybean above-ground biomass (Figure 8). There could be several

reasons why, unlike the maize, the soybean above-ground biomass

was highly correlated with SOM in that village. For instance, both

crops belong to different species, and their biological differences

cause them to react differently to soil conditions (60). The maize
FIGURE 7

The natural vegetation cover in visible (RGB) color space in Bognaayili (A) and map of model predicted soil organic matter (SOM) content within the
field in Bognaayili (C) and Gauwogo (B). Violin plots of model predicted soil organic matter within the fields in Bognaayili and Gauwogo (D). In Pane
(D), the large dots and error bars represent means and standard deviations, the dashed dark khaki and solid dark green lines represent measured soil
organic matter from composite soil samples taken immediately after the drone flight in Bognaayili and Gauwogo, respectively.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1548645
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Kassim et al. 10.3389/fsoil.2025.1548645
was fertilized with the amount of nitrogen it requires in northern

Ghana. Meanwhile, the soybean crop relied on nitrogen from

biological nitrogen fixation to meet its nitrogen needs, and SOM

enhances the abundance and diversity of soil microbiota (including

nitrogen fixing bacteria) by serving as a source of energy and

nutrients (61–64). Intra-aggregate particulate SOM has been

reported to influence nitrogen fixation (61). The impact of SOM

on nitrogen-fixing bacteria and hence nitrogen fixation could be

enough a factor to trigger a relationship between soybean above-

ground biomass and SOM, since nitrogen is the most important

nutrient in plants (65). Further research is needed to establish the

role of SOM in soybean growth at the observed levels in the soil.

The range of predicted SOM in the soybean field in Bognaayili

was larger than the range of predicted SOM in the maize field in that
Frontiers in Soil Science 14
same village (Figure 7). The smaller range of values for predicted

SOM in the maize field in Bognaayili could have contributed to the

lack of relationship between maize above-ground biomass and

predicted SOM in that village (66).
4.4 Limitations and implications of our
study

This study has some limitations. For instance, soil sampling was

done at the end of season in 2023. Ideally, soil sampling for organic

matter analysis should have been done immediately at the start of

season in 2022, before organic matter additions were made. Despite

this limitation, we think that our results are valid because yearly
FIGURE 8

Correlation between crop above-ground biomass and predicted soil organic matter.
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changes in SOM in continuously cultivated fields are minor even

when large amounts of organic matter are added for one or two

years (67), hence, the SOM values obtained from the soil samples

collected in 2023 were considered valid for 2022 also.

The contrasting findings between Bognaayili and Gauwogo on

relationships between spectral vegetation indices from early season

weed cover and measured SOM, and the performance of random

forest models, suggest that to apply the method presented in this

study in another site, local calibration is required. Further research

steps are needed to extend the database.
5 Conclusion

Spectral vegetation indices from the early season weed cover

strongly correlated with soil organic matter (SOM) in the field

where levels ranged between 0.19 and 0.65%, but not when SOM

ranged between 0.45 and 0.65%. In the field with the lower and

more variable SOM, soybean growth was also variable and there was

a strong positive relationship between soybean above-ground

biomass and both observed and predicted SOM. The use of

spectral vegetation indices from early season weed cover images

as proxy for within-field variation in SOM is a promising option

that still requires some soil sampling for organic matter analysis.

Integrating drone-based early season weed cover assessment

with field crop experimentation to predict variation in SOM or in

fact crop performance would allow delineation of productive and

unproductive plots within envisioned experimental fields, especially

in regions where SOM is limiting crop performance.
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