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Gainesville, FL, United States, 3AgroTechnology and Sustainability Department, Agronomy Institute,
Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil, 4Brazilian Agricultural Research
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Digital Soil Mapping (DSM) enhances the delivery of soil information but typically

requires costly and extensive field data to develop accurate soil prediction

models. The Reference Area (RA) approach can reduce soil sampling intensity;

however, its subjective delineation may compromise model accuracy when

predicting soil properties. In this study, we introduce the autoRA algorithm, an

innovative automated soil sampling design method that utilizes Gower’s

Dissimilarity Index to delineate RAs automatically. This approach preserves

environmental variability while retaining accuracy compared to an exhaustive

predictive model (EPM) based on extensive sampling of the entire area of interest.

Our objective was to evaluate the sensitivity and efficiency of autoRA by varying

target areas (10–50% of the total area) and block size spatial resolutions (5–150

pixels) in regions of Florida, USA, and Rio de Janeiro, Brazil. We modeled a

hypothetical soil property derived from a combination of commonly used DSM

covariates and user inputs into autoRA. Model performance was assessed using

R², root mean square error (RMSE), and Bias, aggregated into a Euclidean

Distance (ED) metric. Among all configurations, the optimal RA selection –

characterized by the lowest ED – was achieved with a target area of 50% and a

block size of 10 pixels, closely matching the accuracy of the EPM. For example, in

Rio de Janeiro, the EPM produced an ED of 0.17, while the best RA configuration

yielded an ED of 0.15. In Florida, the EPM had an ED of 0.35 compared to 0.38 for

the optimal RA. Additionally, the 50%-RA with a block size of 10 significantly

reduced total costs by approximately 61% in Rio (from US$258,491 to US

$100,611) and 63% in Florida (from US$289,690 to US$106,296). Overall,
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autoRA systematically identifies cost-effective sampling configurations and

reduces the investigation area while maintaining model accuracy. By

automating RA delineation, autoRA mitigates the subjectivity inherent in

traditional methods, thereby supporting more reproducible, strategic, and

efficient DSM workflows.
KEYWORDS

sampling strategies, autoRA, reference area, digital soil mapping (DSM), smart
soil sampling
1 Introduction

Digital Soil Mapping (DSM) has revolutionized soil science by

enabling the prediction of soil properties and classes across

extensive and heterogeneous regions using limited site-specific

measurements combined with environmental covariates (1, 2).

Central to DSM’s methodology is the SCORPAN model, which

identifies the key soil-forming factors – Soil, Climate, Organisms,

Relief, Parent material, Age, and spatial Position – that drive soil

variability (1). Advances in global positioning systems, remote

sensing technologies, proximal sensors, and computational

capacities have further empowered DSM, facilitating the

development of sophisticated machine learning algorithms that

produce high-resolution gridded soil maps for informed land

management and agricultural practices globally (3–5).

Despite significant progress, creating fine-resolution soil maps

remains challenging due to the limited availability of ground-truth

soil data necessary for accurate models. Large-scale initiatives like

the Harmonized World Soil Database and SoilGrid provide soil

maps at resolutions of approximately 250 m and 1000 m,

respectively (6, 7). However, extending these resolutions to

broader scales is hindered by the scarcity of extensive, high-

quality soil measurements that capture the intricate spatial and

temporal variability in diverse landscapes. This limitation highlights

the need for optimized sampling strategies that efficiently allocate

limited resources to maximize data representativeness and model

accuracy, especially in remote and ecologically complex regions

such as the Brazilian Amazon and the Rocky Mountains in the USA.

One promising solution is the Reference Area (RA) approach,

which strategically focuses sampling efforts within a sub-region that

encapsulates the essential variability of soil-forming factors present

in the larger Area of Interest (AOI) (8–10). This method can

significantly reduce sampling costs and logistical burdens while

maintaining DSM models’ integrity and predictive power (11, 12).

Ferreira et al. (13) demonstrated that using Gower’s Dissimilarity

Index to assess RA representativeness effectively identifies areas

where environmental covariates diverge from the broader AOI,

indicating regions where model predictions may falter. Integrating

dissimilarity metrics into RA delineation can thus enhance DSM

efforts’ precision and scalability.
02
However, the RA approach has predominantly relied on

subjective expert judgment for delineating RA boundaries,

introducing potential biases and limiting reproducibility (14, 15).

Existing algorithms like CLAPAS require manual input of candidate

RAs and do not fully automate the delineation process, allowing for

human error and inconsistency. Additionally, methods such as

conditioned Latin hypercube sampling (cLHS) and divergence

metrics (e.g., Kullback-Leibler Divergence) have been explored to

optimize sample design and size but often lack direct applicability to

the RA framework or fail to clearly link sample size with model

performance (2, 16).

These methodological gaps have significant implications for

regions with vast spatial extents and diverse soil landscapes, such as

Brazil and the USA. In Brazil, with approximately 8.5 million square

kilometers, soil mapping is challenged by diverse climate zones,

varied geomorphology, and remote, ecologically sensitive areas.

Current soil maps cover less than 5% of the national territory at

scales finer than 1:100,000 (17–20). Similarly, the USA,

encompassing around 9.4 million square kilometers, has achieved

detailed soil mapping in agriculturally intensive regions through

initiatives like the SSURGO database and SOLUS soil maps (21),

but faces challenges in natural areas such as the Greater Everglades

in Florida due to complex geomorphology and difficult

sampling conditions.

Addressing these challenges requires automated, objective methods

for RA delineation to mitigate subjectivity and enhance the

reproducibility and scalability of DSM studies. In response, we

introduce the automatic Reference Area algorithm (autoRA version

1.0), a novel tool designed to standardize and automate RA delineation

by leveraging Gower’s dissimilarity index and a comprehensive

sensitivity analysis framework. autoRA systematically identifies RAs

that capture the full spectrum of environmental covariate variability

within an AOI, ensuring accurate and cost-effective soil models without

relying on expert intuition.

To validate autoRA’s efficacy, we apply the algorithm to two

distinct study areas: the State of Florida (USA) and the State of Rio

de Janeiro (Brazil). These regions were chosen for their contrasting

pedodiversity patterns and varying sampling difficulties – Florida

represents an agriculturally intensive and accessible landscape,

while Rio de Janeiro encompasses remote and ecologically
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complex terrains. We conduct a sensitivity analysis by varying the

spatial resolution of environmental covariate maps and RA sizes to

evaluate impacts on model accuracy and sampling costs.

Additionally, we use simulated theoretical surface attribute maps

to assess autoRA-generated RAs’ robustness under different

modeling scenarios.

This study presents autoRA as a replicable, data-driven tool for

DSM practitioners, contributing to the broader discourse on

optimal sampling strategies in soil science. By automating RA

delineation, autoRA facilitates efficient and objective soil survey

designs, enhancing DSM efforts’ scalability and reliability in both

remote, ecologically complex regions and more accessible,

intensively studied landscapes. Ultimately, autoRA represents a

significant advancement toward standardized and scalable DSM

methodologies, enabling comprehensive soil mapping to inform

sustainable land management and agricultural practices globally.
2 Material and methods

2.1 The autoRA algorithm

The novel autoRA was developed by the authors’ team and is

patented under the number BR1020240208676, and the brand

autoRA is under the registered trademark number 937505684.

This registration took place in Brazil, and soon, they will be

registered in the United States Patent Office. The autoRA allows

for the automatic delineation of RAs with different dimensions (i.e.,

RA target area) to implement smart soil sampling designs. A

fundamental challenge is whether a delineated RA can generate

accurate predictive soil models comparable to the exhaustive

simulated soilscape (“on-the-ground truth”).

Simulated soilscape rasters ensured that each pixel was

populated, providing continuous data across the AOI that

characterized soil patterns exhaustively. In contrast, real-world

soil measurements were typically sparse, with substantial gaps

between pedons/sites. Thus, real-world soil datasets did not allow

us to characterize the variability of a soil property of interest

exhaustively, precisely, and accurately. Interpolated or estimated

soil properties of real-world soilscapes showed uncertainties at

unsampled locations. Thus, published soil maps were also ill-

suited for assessing the sensitivity and effectiveness of the autoRA.

Therefore, we simulated hypothetical exhaustive rasters assumed to

represent the “ground truth” of a variable of interest, Sexh (i.e., a

simulated theoretical surface, STS). The STSs were generated from

SCORPAN variables of the two AOIs serving as benchmark maps.

We simulated two soilscape rasters using soil-forming

(SCORPAN) factors in two contrasting study areas (Rio de

Janeiro and Florida). The simulated soil properties provide an

idealistic representation of these soilscapes, allowing the

assessment of the autoRA algor i thm ’s behavior and

demonstrating its sensitivity to its optional settings (precisely the

parameters block size, representing the resolution of the covariates

entered, and target area, representing the desired RA dimensions in

the ratio of the AOI to be mapped) on soil predictions accuracy.
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Underpinning autoRA’s rationale is a statistical theorem

addressing heterogeneous coverage and extrapolation: Let be the

set of all possible spatial units (blocks or pixels) in an AOI, each

characterized by a feature vector X(x)∈ Rp, where p is the number of

covariates, including continuous and categorical covariates. Define

a dissimilarity function dG (22) over W, and let D(W)be the

maximum dissimilarity range found in the AOI, which is defined

as the largest pairwise dissimilarity between any two spatial units in

Was D(W)  =   max
x,y ∈ W

dG(X(x), X(y)).

In this way D(W)is the maximum dissimilarity, meaning the

most significant observed distance between any two feature vectors

in the AOI according to the Gower dissimilarity function. We aim

to find a subset W*⊆ W, referred to as the Reference Area (RA),

which “covers” a large portion of the AOI’s heterogeneity in which

∀  x ∈ W,   ∃ r ∈ W*such that dG(X(x), X(r))  ≤  d,for some

small d> 0.

Suppose the AOI satisfies a Lipschitz-like condition (23) for a

soil property

S , meaning there exists L> 0 such that (24):

 S(x)  −  S(y)j j  ≤  L · dG(X(x), X(y)),   ∀  x, y  ∈ W :

In this way, small changes in the covariates lead to

proportionally small changes in S. If W*is an RA for which  

max
x,y ∈ W

  min
r ∈ W*

dG(X(x), X(r))  ≤  d,then a predictive model f

trained on W*can extrapolate to Wwith maximum error

bounded by L d , meaning that for every x ∈ W, there exists

some y ∈ Wsuch that (25):

max
x∈W

 S(x)  −  f (x)j j ≤  Ld :

This ensures that the error bound accounts for distances

between all possible pairs of points in W, addressing the concern

about the absence of yin the final bound.

A RA W*that captures the most heterogeneous pixels in the

covariate space ensures good predictive coverage (26). Under mild

assumptions, if the RA encloses the full range of environmental

variability, a soil model (e.g., using a Random Forest predictive

model) trained on W*can extrapolate to the remainder of the AOI

with limited error (bounded by L d ). This underpins the autoRA
rationale: locate a small portion of the area rich in heterogeneity so

that any unvisited point in the AOI remains “close” to some

training point in W*.

The next step was to implement the sensitivity analysis, varying

the parameters of the autoRA within upper and lower bounds to

generate possible RAs and their associated accuracies of the target

soil variable of interest, SRA. The selected block size lower and upper

bounds were set to 5 and 150 pixels, respectively.

An overview of our methodology applying the autoRA to

perform the sensitivity analysis is presented in Figure 1, while

details of each step are described in the section below. The first step

was to assemble geodata to represent the soil-forming factors of the

SCORPANmodel comprising various qualitative (nominal/ordinal)

and quantitative (discrete/continuous) data (STEP 1, Figure 1).

Once the covariate files were loaded, the autoRA algorithm worked

simultaneously along two paths for each AOI. Path 1 generated the
frontiersin.org
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STS, predictions of Sexh using machine learning (Random Forest)

from 500 Strain locations from the STS surface (STEP 2.1A and STEP

2.2), validation of the Sexh using an independent validation dataset

(STEP 2.1B), and model performance assessment (STEP 2.3;

metrics: coefficient of determination, R2; root mean square error,

RMSE; and Bias).

Path 2 involved computations of possible RAs via the sensitivity

methodology entailing calculation of the Gower’s Dissimilarity

Index, delineation of the RA boundaries, predictions of SRA using

machine learning (Random Forest) with various parameter settings

of lower and upper bounds, validation of the various SRA using an

independent validation dataset, and model performance assessment

(metrics: R2, RMSE, and Bias).

Path 2 represents the part of the algorithm that effectively

creates the RAs by cropping the input raster maps (blue border

boxes on the right of Figure 1). It involved STEP 3.1, which

calculated the Gower’s dissimilarity index for each covariate of

the SCORPAN model loaded into autoRA, considering different

block sizes. In STEP 3.2, the algorithm delineated the limits of the

RAs by mosaicking the highest values of the Gower’s dissimilarity

index concerning the average Gower’s dissimilarity index of the full

extension of the study area. In STEP 3.2, the algorithm created RAs

with different dimensions (i.e., respecting the size of RAs inputted

by the user on the parameter target area), represented in terms of %

of the area relative to the full extension of the study area (10 to 50%,

increasing at a 10% growth rate). STEP 3.3 used a fixed number of
Frontiers in Soil Science 04
points sampled within each generated RA to build SRA prediction

models to be applied for the whole AOI. The prediction models are

called Reference Area Model (RAM).

Results from Path 1 (i.e., the exhaustive benchmark, the EPM

raster surface) and Path 2 (i.e., RAM raster surfaces for multiple

RAs) were compared to each other using evaluation metrics (R2,

RMSE, and Bias) in STEP 4. To compare the metrics and choose the

RA that produces the best model, the Euclidean Distance (ED) of

the metrics of each RA with an idealized standard vector of these

metrics was used (R2 = 1, RMSE = 0, and Bias = 0). The RA with the

smallest ED value concerning the standard vector was identified as

the best-performing RA for a given study area.
2.2 Applying the autoRA in two contrasting
soilscapes

2.2.1 The study sites
Two study areas were selected to evaluate the effectiveness of the

autoRA algorithm in different pedological contexts characterized by

different soil formation factors. The regions chosen are the State of

Florida, located in the USA, with an area of 170,304 km², and the

State of Rio de Janeiro in Brazil (BR), with an area of 43,653 km²

(Figure 2). Florida is characterized by a predominantly flat terrain,

with elevations ranging from sea level up to 110 m. The soil’s parent

material mainly comprises marine sediments and limestone rocks,
FIGURE 1

The workflow of the methodology (SCORPAN= Theoretical, quantitative model for soil modeling and mapping (1), S, Soil; C, Climate; O, Organisms
including land cover and natural vegetation; R, Relief including terrain attributes; P, Parent material including lithology; A, Age/the time factor; and N
space, spatial or geographic position; STS = Simulated Theoretical Surface; RMSE= Root Mean Squared Error; R2 = Coefficient of Adjustment; EPM,
Exhaustive Predicted Model; RAM, Reference Area Model Prediction for the target properties STS; RF, Random Forest. autoRA logo before STEP 1
(trademark number 937505684).
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resulting in a geology dominated by sedimentary formations (27).

The climate is mostly humid subtropical, with annual precipitation

ranging between 1,200 mm and 1,800 mm, significantly influencing

pedogenetic processes. The primary soil types in Florida are

Spodosols with acidic spodic horizons and Entisols and

Inceptisols. Ultisols, which are clayey soils that are intensely

weathered, are present in regions with slightly elevated relief.
Frontiers in Soil Science 05
Histosols, carbon-rich wetland soils, are prominent throughout

Florida, occurring in the form of isolated wetlands and the

Greater Everglades in South Florida (28). The main factors in soil

formation in Florida include sedimentary material, hot and humid

climate, moderate to high precipitation amounts, predominant

vegetation of coniferous forests and coastal plains, and flat relief

that favors slow drainage and accumulation of organic matter (29).
FIGURE 2

Raster stacking (Path 1) to calculate the STS for Florida and Rio de Janeiro. Pedo, Pedology; Geol, Geology; DEM, Digital elevation model (meters);
Precip., Annual average precipitation in millimeters; Temp., Annual average temperature in °C.
FIGURE 3

Location map of Florida and Rio de Janeiro and their respective elevation profiles.
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The State of Rio de Janeiro has a complex geology composed of

igneous and metamorphic rocks, such as granites and gneiss,

associated with sedimentary rocks and colluvial and alluvial

deposits (30). The relief is mountainous, with altitudes that reach

1,600 meters, as in the Serra dos Órgãos Mountains (Figure 3). The

climate is humid tropical, with annual precipitation between 1,000

mm and 2,500 mm, influenced by the proximity of the Atlantic

Ocean (31). The pedological diversity includes the majority

occurrence of Oxisols, Inceptisols, and Ultisols (32). Soil

formation factors in Rio de Janeiro are influenced by geological

diversity, mountainous relief, humid climate, and dense vegetation

of the Atlantic Forest, which contribute to the high rate of

weathering and deep soil formation (33–35).

2.2.2 The environmental covariates
To represent the soil formation factors (36), five environmental

covariates were selected for each study area (STEP 1, Figure 1) to

apply the autoRA algorithm and generate the STS (Path 1, Figure 1).

The soil map provided by the Natural Resources Conservation

Service (NRCS) (37) was used to identify the types of soils in Florida

at a scale of 1:250,000, containing seven soil levels. The U.S.

Geological Survey (38) the geologic map containing 35 geologic

levels for the Florida region alone at a scale of 1:100,000 was made

available. The relief was represented by a digital elevation model

(DEM) with a resolution of 30 m and made available by the

National Aeronautics and Space Administration using Advanced

Spaceborne Thermal Emission and Reflection Radiometer satellite

data. The raster data of average annual precipitation and average

annual temperature from 1981 to 2010 were obtained from the

PRISM Climate Group (39).

For Rio de Janeiro, the soil maps were made available by the

Brazilian Institute of Geography and Statistics (32) at a scale of

1:250,000 containing 21 soil levels. The IBGE provided the geology

map at a scale of 1:250,000 with nine geological levels. To represent

the relief of Rio de Janeiro, the DEM of the Shuttle Radar

Topography Mission (SRTM) satellite with a spatial resolution of

90 m was used. The precipitation and average annual temperature

maps were obtained from the WorldClim database (40) with a

spatial resolution of 1 km from 1980 to 2016. All covariates for both

case studies were harmonized to 1 km spatial resolution.

2.2.3 The simulated theoretical surface
The STS (Path 1) in Figure 1 was implemented using an adapted

methodology from Meyer and Pebesma (41). The STS acts as a

hypothetical target variable (Sexh) that is both explainable and

plausible, reflecting soil information derived from environmental

covariates for a given study area. Before the map algebra, all

categorical covariates (e.g., a geology map with multiple classes)

were split into separate raster layers using dummy transformations

of 0 or 1. Thus, each category becomes an individual map with

presence coded as 1 and absence as 0. Numeric covariates, such as

digital elevation models (DEM), precipitation, or temperature, were

scaled to a 0–1 range to ensure comparability across all variables.

Using these standardized covariates, the STS is generated via

map algebra interactions among the covariate maps (Figure 2),
Frontiers in Soil Science 06
ensuring consistency with their spatial patterns. For example, the

STS in Florida (STSFlo) is computed by STSFlo =   PedoFlo + GeoFlo +

(DEMFlo*   PrecipFlo) +  TempFlo, while the STS in Rio de Janeiro

(STSRio) is calculated as STSRio =   PedoRio + GeoRio + DEMRio +   (P

recipRio*TempRio).

As a calculated synthetic map, the STS is assumed to be error-

free. Figure 2 illustrates this process for both Florida and Rio de

Janeiro. To facilitate direct comparison, each STS is subsequently

normalized to a 0–1 scale using STSnormalized =
STS−STSmin

STSmax−STSmin
and then

multiplied by 100 to yield a final scale from 0% to 100%. Because

this map algebra product is solely an interaction of covariates, it

does not represent a physically measured quantity. Instead, it is a

spatially plausible synthetic surface that reflects the relative

influence of each covariate on a hypothetical soil property. These

dimensionless STSnormalizedvalues serve as a reference populated

with Sexh for all subsequent analyses, functioning as a benchmark

map to assess the efficiency of parameters of the autoRA algorithm.

2.2.4 Training and validation datasets
A grid of 500 points (representing site locations) was randomly

generated (STEP 2.1A). We chose a random distribution of these

points to ensure adequate spatial representativeness and avoid

excessive concentration in certain areas that could introduce biases

in the predictive model. To allow side-by-side comparisons of Path 1

(EPM) and Path 2 (RAMs), the same number of points (N: 500) were

chosen in each of the two study areas. We used the spatial extraction

function in ArcGIS Pro to extract the variable Strain at the 500 site

locations of STSFlo and STSRio. The Strain values were then used as the

target (dependent) variable for predictive model development using

machine learning (training phase). A second grid of 100 points

(representing site locations) was randomly extracted from the STS

raster, with variable Sval serving as an external validation dataset in

each study area (STEP 2.1B). An independent validation set is

essential to verify the model’s ability to generalize its predictions to

new samples not used during a model’s training, thus ensuring the

reliability and applicability of the results obtained.

Figure 4 illustrates the spatial distribution of the training and

validation points in both study areas (Florida and Rio de Janeiro).

We used the Random Forest (RF) machine learning algorithm to

develop predictive models using the environmental covariates of the

SCORPAN model (pedology, geology, digital elevation model,

average precipitation, and average temperature) as input

(independent) variables and Strain as output (target) variable

(STEP 2.2 of Path 1 in Figure 1). Training models were

customized to study areas with separate RF training models

developed for Florida and Rio. We employed the “randomForest”

package (42) available for the R software (43).

In our RF regression modeling for the Florida and Rio datasets,

we employed the default parameters provided by the R package

randomForest to ensure consistency and reliability across our

analyses. Specifically, each model was constructed with 500 trees

(ntree = 500), a number sufficient to ensure that every input row is

predicted multiple times, thereby enhancing the stability and

accuracy of the predictions. The number of variables randomly

sampled as candidates at each split (mtry) was set to 1, following the
frontiersin.org
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default of one-third of the total predictors (p/3), given that each

dataset contained five predictors. Additionally, the minimum size of

terminal nodes (nodesize) was maintained at the default value of 5,

encouraging the growth of smaller, more computationally efficient

trees while preventing overfitting. By adhering to these default

parameter settings for the Florida and Rio Random Forest

regression models, we ensured a balanced approach that

optimizes predictive performance and computational efficiency

without requiring extensive parameter tuning.
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The RF algorithm was chosen based on its ability to handle large

volumes of data, its robustness in noisy data, and its ability to

capture highly nonlinear relationships between the covariates and

the dependent variable. In addition, RF offers internal validation

mechanisms, such as estimating the importance of variables, which

contribute to the interpretation and improvement of the model

(44). The trained machine learning model for Florida using the Sexh
generated the STS-EPM raster for Florida while the same procedure

was used to create the STS-EPM for Rio de Janeiro.
FIGURE 4

Spatial distribution of the training (N: 500) and validation (N: 100) datasets for the selected study areas. Path 1, Simulated Theoretical surface (STS);
sampling training and validation dataset (STEP 2.1A and STEP 2.1B of Figure 1); Exhaustive Prediction Model (EPM) using the training dataset and
Random Forest machine learning – STEP 2.2).
FIGURE 5

Block sizes and masks were used to calculate the Gower dissimilarity index in Florida and Rio de Janeiro (Path 2, STEP 3.1 of Figure 1).
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2.2.5 Determining the Gower index and
delineating the reference areas

In Path 2 (STEP 3.1 and 3.2 in Figure 1), the autoRA algorithm

was run by cropping the Florida and Rio de Janeiro covariates and

then calculating Gower’s dissimilarity index. The algorithm offers

an argument called block size (block size) that is dependent on the

original spatial resolution of a given input raster. The block size

parameter allows the grouping of pixels into a window defined by

the number of rows x columns of the block (e.g., 5 x 5 pixels = 25

pixels total in a block). For example, if the original resolution of the

covariates is 1 km² and the block size is set to 5, each block will have

a dimension of 5 km x 5 km. Then, considering each block size

value, the entire set of covariates is clipped using the respective

block size mask.

Figure 5 shows the schematic mask used to clip the set of

covariates from the values used for escalating block size values from

lower to upper bounds of 5, 10, 20, 30, 40, 50, 100, and 150 for

Florida and Rio. As noted earlier, all covariates for both study areas

had been harmonized to 1 km spatial resolution. Applying a block

size value of 5 resulted in 5 km x 5 km blocks (total size of 25 km2);

likewise, increased block size values generated larger blocks across

the study areas aggregating the input data.

The Gower’s dissimilarity index of the autoRA algorithms was

calculated based on Gower (22) as described in Equations 1–3

(STEP 3.1 in Figure 1). Each block size value mask cropped a

covariate raster, and the Gower’s dissimilarity index is calculated

(Xblock) and it was compared to Gower’s dissimilarity index of the

covariate raster in the total area (Xtotal). Suppose the Xblockvalues

had a Gower’s dissimilarity index value close to the (Xtotal), it means

that the dissimilarity is low with a value close to 0, and vice versa, it

is high with a value close to 1.

This process is repeated for each covariate present in the data

set. The dissimilarity values obtained for each covariable are then

summed for each set of covariates grouped according to the size of

the block size. The lower the sum of Gower’s dissimilarity indices

for a given block size, the lower the diversity between the block

investigated and the AOI. On the other hand, as the differences

between the Gower indices calculated for each block and the AOI

increase, the values tend to approach 1, indicating a high Gower’s

dissimilarity index between the covariables in the specific pixel

aggregation and the covariates of the entire area suggesting that the

block captures significant variability that is not represented by the

average value of the AOI.

Gower  Dissimilarityblock, total = 1 −  o
p
k=1dkdk

op
k=1dk

(1)

Where prepresents the total number of variables considered

(e.g., geology, pedology, DEM, precipitation, temperature), and dk
is an indicator that takes the value 1 if the variable kis valid for the

comparison (i.e., relevant and has data available) and 0 otherwise.

The term dkis the normalized difference for variable k, which

quantifies the dissimilarity between the block and the total area

for that specific variable. The numerator sums the contributions of

valid variables (dkdk), while the denominator ensures that only

valid variables are included in the normalization. The final value is
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subtracted from 1 so that the index represents dissimilarity, where

higher values indicate greater dissimilarity between the block and

the total area.

For numerical variables, such as temperature, precipitation, or

elevation, dk is calculated as the normalized difference between the

block’s value (xblock,k) and the total area’s value (xtotal,k). Here,

(xblock,k) represents the average or representative value of a variable

kwithin the block, and (.) represents the average or representative

value of the same variable across the total area. These values, xblock,k
and xtotal,k are derived by calculating the average of the variable

within the block or across the total area respectively. The

normalized difference is computed by Equation 2, where Rangek
is the difference between the maximum and minimum values of kin

the dataset.

dk =  
xblock,k  −  xtotal,k
�� ��

Rangek
(2)

Equation 3 defines the values of dkin case of categorical

variables, such as the maps of geology and pedology.

dk =
0,   if   xblock,k   = xtotal,k

1,   if   xblock,k   ≠ xtotal,k

(
(3)

Another argument the autoRA algorithm has is the target area,

which represents the size of the RA that the user would like to

delineate. The pixel Gower values with the highest dissimilarity

values (closest to 1) are grouped together to represent the user-

desired ratio. This step of the autoRA algorithm describes STEP 3.2

(Figure 1). The target area argument allows the user to enter a list of

percentage values. We selected the area ratios of 10%, 20%, 30%,

40% and 50% for the sensitivity analysis to demonstrate the

behavior of target area on soil predictions (SRA).

The search process iterates through various block size values

used to calculate the Gower dissimilarity index. For instance, it

might start with a larger grouping like 100 × 100 pixels. At this

coarser resolution, the smoothed dissimilarity values reveal broad

spatial patterns. In contrast, using a smaller block size such as 5 × 5

pixels produces a more detailed, fine-resolution map of

Gower dissimilarity.

The autoRA algorithm systematically explores different area

sizes by cycling through all values provided in the block size

parameter. For example, if the target area is set to 10%, the

algorithm applies the same pixel grouping defined by the block

size. It then increases the target area to 20% and repeats the process,

continuing this pattern until all specified block size and target area

values have been used. As a result, the algorithm generates multiple

RA formats by combining each target area value with each block

size. This approach allows autoRA to capture a range of spatial

patterns at different resolutions and area sizes.
2.2.6 Prediction and accuracy of modeling the
exhaustive and reference area dataset

According to Path 1, the autoRA algorithm used 500 points

extracting dimensionless values from the STS for each x and y

coordinate, allowing the building of the benchmark model EPM
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that covered the full extension of the AOI. The same number of

points (N: 500) were also selected in Path 2 to model soil property

SRA for each RA (STEP 3.3 in Figure 1). We used the conditioned

Latin hypercube sampling method (16) with the maps of pedology,

geology, temperature, precipitation, and the digital elevation model

as inputs to place the 500 site locations for each of the two study

areas (Florida and Rio de Janeiro). Random Forest machine

learning was used for training prediction models at the 500 sites

with covariates as inputs and SRA as output. Separate RF models

were created for each of the study areas. Finally, these models were

upscaled to the entire Florida and Rio de Janeiro study region,

creating RAM rasters.

We used autoRA to validate the EPM and RAM rasters created

in STEP 2.3 of Path 1 and STEP 3.4 of Path 2, respectively. The same

independent validation dataset (N: 100) identified in STEP 2.1 B of

Path 1 was used to assess EPM and RAM via external validation.

The metrics used to evaluate accuracy were the Root of Mean

Squared Error (RMSE) and Bias, and the Adjusted Coefficient of

Determination (R2) was used to quantify the model fit.

The RMSE (Equation 4) measures the average magnitude of the

errors between predicted and observed values; hence, values close to

0 indicate better model accuracy. Bias (Equation 5) quantifies the

systematic error in the prediction over an external validation

dataset, representing the average difference between the predicted

and observed values. A Bias value close to zero indicates the absence

of a systematic trend during the adjustment of the prediction model.

The R2 (Equation 6) means the proportion of variance in the

training dataset that the model explains. Values close to 1

indicate that the adjusted model has a high explanatory capacity.

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − byi)2 r

(4)

Bias =  
1
no

n

i=1
(byi − yi) (5)

Adjusted R2 = 1 −  o
n
i=1(yi  − byi)

on
i=1(yi  − �y)

(6)

Where yIare the values of the target variable simulated surface

extracted for each of the 100 points intended for the composition of

the dataset for external validation; ŷIare the simulated surface values

predicted for the 100 external validation points from the prediction

models for each combination of tested arguments such as block size

and target area size; �yis the average of the 100 observed simulated

surface values for the external validation group; nis the number of

observations present in the validation set.

The Euclidean Distance (ED) was calculated to synthesize the

metrics presented in Equations 4–6. To calculate the Euclidean

distance of the RMSE, Bias, and Adjusted R² metrics, it was essential

to first scale them. Normalization ensures that all metrics contribute

equally to the distance calculation, regardless of their original units

or ranges. The escalation considered the maximum and minimum

values present among all combinations of target area and block size

used. Equations 7–9 were used to normalize the RMSE, Bias, and R2,

respectively.
Frontiers in Soil Science 09
RMSEnormalized =  
RMSE −minimum(RMSE)

maximum(RMSE) −minimum(RMSE)
(7)

Biasnormalized =  
Bias −minimum(Bias)

maximum(Bias) −minimum(Bias)
(8)

R2normalized =  
R2 −minimum(R2)

maximum(R2) −minimum(R2)
(9)

The ED was calculated to assess how close the normalized

values are to the ideal standard ones: RMSE = 0, Bias = 0, and R2 =

1. From the normalized RMSE, Bias, and R2 values, the distances

were calculated using Equation 10. A lower ED value indicates that

the metrics are closer to the ideal values, suggesting a more accurate

and less skewed model. In contrast, higher distance values signal a

more significant discrepancy between the standard values.

Euclidian Distance

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0 − RMSE)2 + (0 − Bias)2 + (1 − R2)2

p
(10)
2.3 Cost simulations

We conducted a cost simulation to assess the practical efficiency

of the autoRA algorithm. This simulation considered standard

parameters influencing sampling logistics costs and planning

during fieldwork. Specifically, the daily road mileage required to

reach each sampling coordinate, the salaries of the necessary

personnel, and the number of days needed to complete the

sampling project were a product of the calculus between the road

length required to reach all the points and the maximum distance

threshold to be driven by day. We applied the EPM sampling cost

simulation utilizing the whole length of the road network made

available for the State of Florida (45) and the State of Rio de Janeiro

(32). The road network for both study areas is shown in Figure 6.

For the RAMs created from the dataset within each delineated

RA from each combination of target area and block size, the shape

of the roads was clipped using the respective RA extension as a

mask to retain the roads inside it. The fuel cost was estimated at US

$0.50 per kilometer traveled, with a maximum daily travel limit of

150 km. A Field Technician was considered to receive a salary of US

$200 per day each.
3 Results and discussion

3.1 Gower’s dissimilarity index by block size

Results of the effect of varying block sizes on Gower

dissimilarity index values were evaluated for Florida (USA) and

Rio de Janeiro (Brazil). Different block sizes in the autoRA generate

clipping masks from the covariate maps, influencing the

aggregation of pixel values and the resulting Gower ’s

Dissimilarity values. As the block size value increases, spatial

variability has a progressive aggregation and smoothing effect.
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This results in more generalized representations of Gower’s

dissimilarity values. Smaller block sizes (e.g., 5, 10) retain detailed

spatial variability, whereas larger block sizes (e.g., 100, 150) smooth

out these variations, emphasizing broader spatial patterns.

Consequently, higher block sizes obscure local-scale variability,

presenting a more homogeneous view of dissimilarity across the

study areas (Figure 7).

The Gower’s Dissimilarity Index values across both regions

range from 0.42 to > 0.63, with maps and a unified legend scale for

direct comparison, as shown in Figure 7. In Florida, the highest

Gower values (0.56–0.63) are primarily concentrated in the

northwest region, mainly when smaller block sizes (5–30) are

used. These areas become less distinct with larger block sizes (≥

50) due to spatial smoothing.

In Rio de Janeiro, the city’s western region records the highest

Gower’s Dissimilarity Index values, ranging between 0.56 and 0.63.
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This elevated dissimilarity coincides with Rio de Janeiro’s

prominent mountainous landscape, notably including Agulhas

Negras Peak, which soars to 2,800 meters and is located within

the protected Itatiaia National Park. The western and mountainous

areas on Rio de Janeiro were reported as the most dissimilar by Elias

et al. (46) when they classified the state of Rio de Janeiro with

dissimilar areas using a threshold of 0.34 of the Gower’s

Dissimilarity Index.
3.2 Reference areas’ spatial distribution by
block size and target values

Results from the implementation of STEP 3.2 delineating a

variety of RAs within lower and upper bounds of block size and

target area are shown in Figure 8. These findings offer a
FIGURE 7

Gower’s dissimilarities index map for block sizes and two study areas (Florida and Rio de Janeiro). A range of 5 classes is applied.
FIGURE 6

Main access roads for the states of Florida and Rio de Janeiro.
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comprehensive perspective on how spatial resolution (block size)

and coverage (target area) interact to influence RA delineation and

sampling efficiency. For smaller target areas such as 5, 10, 20, and

30%, the delineation of the RA benefits from higher-resolution

Gower’s Dissimilarity Index values, as evident in the first row of

Figure 8 (Florida) and Figure 9 (Rio de Janeiro). In these scenarios,

finer block sizes highlight subtle physiographic gradients, producing

more intricately defined RA boundaries and enabling a more

detailed, granular representation of environmental heterogeneity.

As the target area increases to 40% and 50%, the delineated RAs

encompass a broader range of physiographic information, effectively

approaching the modal conditions of the entire region. The autoRA

algorithm’s ability to scale from finer resolutions (yielding more

detailed boundaries and subtle distinctions) to broader coverage

(capturing widespread physiographic features) sets it apart from

existing methods like CLAPAS and conditioned Latin Hypercube

Sampling (cLHS). Unlike CLAPAS, which requires manual input of
Frontiers in Soil Science 11
candidate RAs and lacks full automation, autoRA systematically

evaluates environmental variability through Gower’s dissimilarity

index, enabling a more holistic and flexible approach to RA

delineation (14). Additionally, while cLHS ensures broad initial

coverage, it does not dynamically adjust to the spatial heterogeneity

of the landscape, potentially leading to redundant sampling or missed

environmental gradients (2, 16).

As the RA encapsulates the more diverse soil-forming factor

represented by the environmental variables used as input on the

autoRA algorithm, the 500 training points within each RA are

exhibited in Figures 8, 9 and are expected to perform the prediction

of the STS by the RAM as well as the EPM. By doing so, autoRA

enhances the scalability and efficiency of DSM workflows, particularly

in diverse and challenging landscapes like those in Florida and Rio de

Janeiro. This adaptability is essential for DSM practitioners seeking to

optimize sampling designs in regions where traditional exhaustive

sampling is neither feasible nor cost-effective (47, 48).
FIGURE 8

Delimitation of the reference areas (STEP 3.2) and placement of the training points within each reference area for Florida. Combinations of block
size (rows) and target area (column) are shown. A range of 5 classes is applied.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1557566
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Rodrigues et al. 10.3389/fsoil.2025.1557566
3.3 Reference area selection based on
metrics and cost

Finding the optimized RA parameters was fundamental to

ensuring the accuracy and efficiency of our RAM predictive

models after testing several combinations of target areas and

block sizes. This section presents a detailed analysis of various RA

configurations based on key performance metrics – R², RMSE, and

Bias – and incorporates the Euclidean Distance (ED) metric

alongside cost simulations to guide the selection process. These

configuration results are compared to EPMs, which served as our

benchmark by sampling the entire study areas. It’s important to

remember that all the R2, RMSE, and Bias in Figure 10 are presented

in a scale format (varying from 0 to 1) so they can be compared with

the benchmark metric values.

In Figure 10, larger target area sizes consistently exhibit higher

R² values, demonstrating enhanced explanatory and model fit

compared to smaller target area values. For instance, the RAM

50% target area size achieves the highest R², closely approaching the

EPM benchmark model’s performance. The RMSE assesses the

average magnitude of prediction errors, with lower values signifying

more accurate predictions. Figure 10 shows a clear trend where

larger target areas yield lower RMSE values, indicating improved

prediction precision. The RAM 50% target area size records the

lowest RMSE, suggesting that increasing the target area size

significantly reduces prediction errors. The Bias measures

systematic errors in predictions, reflecting whether the model

overestimates or underestimates the observed values. A Bias value

close to zero is desirable, as it indicates systematic minimal
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misprediction. The analysis reveals that larger target areas tend to

have Bias values nearer to zero, highlighting their capability to

provide more balanced and unbiased predictions. For example, the

40% and 50% target area sizes exhibit the smallest Bias values,

underscoring their reliability for predicting accurately outside the

RA-delineated boundaries.

The ED results (Figure 10) calculated for each RAM

demonstrated a decreasing trend as the target area size increased.

However, costs also rose because a larger target area encompassed

more roads and required more time to drive to all recommended

sampling points. The ED results using the RA approach were

notably similar for Florida and Rio de Janeiro. The smallest ED

values for RAM were 0.38 and 0.15, respectively, achieved with a

target area of 50% and a block size of 10. The EPM benchmark

model showed slightly lower ED values of 0.35 for Florida and 0.17

for Rio de Janeiro. The slightly higher metric of the ED compared to

the Rio’s could be addressed by the randomization process of

sampling the 500-training dataset for the EPM.

By limiting the sampling to 50% of the total study area for

Florida and Rio de Janeiro, the RAM approach resulted in a total

cost reduction of approximately $110,000 compared to the EPM

approach. The traditional EPM strategy incurred costs of $258,491

for Rio de Janeiro and $289,690 for Florida. In this way, when the

RAM provided by autoRA with a target area of 50% and a block size

of 10 represents a cost reduction of approximately 57% for Rio de

Janeiro and 62% for Florida, highlighting the financial efficiency of

the RA approach supported by the autoRA automation.

Consequently, the following results and discussion on the paper

will focus on the block size of 10 and the target area of 50%, as these
FIGURE 9

Delimitation of the reference areas (STEP 3.2) and placement of the training points within each reference area for Rio de Janeiro. Block size (rows)
and target area (column) are combined. A range of 5 classes is applied.
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parameters yield the lowest ED values. Figure 11 presents the

final outlined RAs for Florida and Rio de Janeiro. The access

roads and sampling points within the RA are also overlayed

in Figure 11.
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3.3.1 Florida reference area and predicted
simulated theoretical surface analysis

Figure 12 displays the masked covariate maps for

Florida ’s delineated RAM, generated using the autoRA
FIGURE 11

The Reference Area block size = 10 and target area 50% chosen for Florida and Rio, and the soil sampling placement of the training dataset (N: 500).
FIGURE 10

Metrics R2, RMSE, Bias, ED, and simulated cost for each combination of the target area and block size for the autoRA’s configuration for Florida and
Rio de Janeiro.
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algorithm with a target area of 50% and a block size of 10.

These maps illustrate how the autoRA algorithm retrieves the

variability of key SCORPAN factors – parent material (Geol), soil

type (Pedo), elevation (DEM), precipitation, and temperature –

across the state.

Regions dominated by sandy Entisols in well-drained uplands

and coastal dunes, such as those captured in the Geol and Pedo

maps, contrast sharply with the organic-rich Histosols in the poorly

drained Everglades wetland soils in southern Florida. Similarly, the

DEM map highlights low-relief areas associated with wetland

hydrology and flatwood systems. In contrast, the precipitation

and temperature maps emphasize climatic gradients that

influence soil development across the state. These masked

covariate maps demonstrate the algorithm’s ability to prioritize

areas with diverse SCORPAN factor interactions while preserving

spatial coherence.

Temperature variability in the RAM aligns closely with the

EPM, with near-identical frequency distributions across the

temperature range, ensuring that climatic gradients influencing

soil formation are adequately captured (Figure 13). The

precipitation distribution also reflects strong alignment, indicating

that both drier and wetter regions are well-represented, which is

crucial for capturing hydrologically driven soil patterns. Elevation
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variability is similarly preserved, with the RAM accurately reflecting

the low-lying and upland areas characteristic of Florida’s

topography, though minor underrepresentation is noted in the

higher elevations. Figure 14 demonstrates the maps for the STS

predicted for Florida using the RAM with the lowest ED metric

from the combination target area of 50% and block size 10 and

compares its spatial SPS distribution with the SPS map predicted by

the sampling strategy of the EPM that worked as the

benchmark map.

Figure 14 demonstrates the percentage frequency of pixel values

retrieved in the masked covariate maps, comparing the RAM-

encapsulated pixels selected with the lowest ED (target area 50%

and block size 10) to the EPM pixel for the whole study area of

Florida. The results show that RAM effectively represents the

variability of all covariates, ensuring that the selected RA

encompasses the diversity observed in the entire dataset. For

pedology, RAM preserves the distribution of dominant classes,

such as Entisols and Spodosols, while also including less frequent

classes, like Histosols, reflecting comprehensive soil variability.

Similarly, geological variability is well-represented, with central

lithological units such as Holocene sediments and residuum

included, although minor deviations are observed for specific

formations like the Hawthorn Group.
FIGURE 12

Covariables cropped for Florida’s reference area, with a block size of 10 and a target area of 50% delineated by the autoRA.
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3.3.2 Rio de Janeiro reference area and predicted
simulated theoretical surface analysis

The delineation of RA with the target area of 50% and block size

10 provided the lowest ED metric for Rio de Janeiro and its

respective masked covariate maps are shown in Figure 15. The

masked maps of pedology, geology, elevation, precipitation, and

temperature illustrate how the RA prioritizes regions with distinct

soil-forming factors.

The temperature and precipitation gradients are driven by the

state’s varied elevation and climatic patterns (49). Parent material,

including crystalline rocks in the Serra do Mar and sedimentary

deposits in the coastal plains, further drives the variability in soil

mineralogy and texture, as highlighted in the geology map (50)

(Figure 15, Geol). The pedology map (Figure 15, Pedo) underscores

the diversity of soil types, from highly weathered Oxisols in upland

regions to Quartzipsamments in the coastal plains, capturing the

stark transitions driven by relief and parent material. Additionally,

the elevation map reflects the role of topography in shaping soil

formation, where steep slopes favor shallow soils like Entisols, while

flatter areas support deeper, weathered soils (51, 52).

The frequency distributions of pixel values for the RA-masked

covariates and the EPM in Rio de Janeiro are shown in Figure 16. It

reveals that the pixels inside the RA chosen for Rio de Janeiro

(RAM, target area 50% and block size 10) encapsulated the same

variability in pixels in the whole extension of the Study Area (EPM).

For pedology, the RAM represented all 21 soil classes, including

dominant types such as Oxisols and Ultisols, as well as less

prevalent ones like Entisols. This ensures that the RAM dataset

encompasses the full range of soil variability, preserving critical

transitions between highly weathered upland soils and poorly

developed sandy soils in the coastal plains.

Similarly, the geology covariate, which includes nine lithological

classes, is well-represented in RAM by capturing the central
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geological units, such as crystalline rocks and sedimentary

deposits, strongly influencing soil mineralogy and texture across

the landscape. The RAM effectively captures the full range of

variability observed in the EPM for climatic variables, such as

temperature and precipitation. Temperature gradients from 20°C

to 24°C and precipitation values between 1,116 mm and 1,250 mm

are consistently represented, ensuring that the climatic influences

on soil formation, such as leaching and organic matter

accumulation, are adequately accounted for (Figure 16).

The elevation covariate (Figure 16, DEM), which spans from sea

level to 2,049 meters, is similarly preserved in RAM. The frequency

distribution indicates a proportional representation of low-lying

areas, mid-elevations, and higher terrains, reflecting the dynamic

role of relief in shaping soil properties. Steep slopes associated with

shallow, eroded soils (e.g., Entisols) and flatter regions where deep

weathering occurs (e.g., Oxisols) are included in the RAM dataset,

ensuring that topographically driven variability is maintained.

Figure 17 demonstrates that the RAM delineated by autoRA

with a target area covering 50% of the total Study Area can

effectively map the SPS for Rio de Janeiro. It produces results

nearly identical to those of the EPM, significantly saving time and

resources. Visual comparisons highlight the similarity between the

two approaches, underscoring RAM’s potential for efficient and

accurate environmental mapping and offering a cost-effective

alternative to EPM without compromising quality.
3.4 Evaluating autoRA: contrasts and
synergies with established sampling
approaches in digital soil mapping

The autoRA represents a novel strategy within the broader field

of DSM, which has seen numerous methodologies proposed
FIGURE 13

Comparison for the predicted Simulated Theoretical Surface (STS) maps via Exhaustive Prediction Model (EPM) using the whole area sampling
strategy and Reference Area Model (RAM) using autoRA best Euclidean Distance metric for Florida.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1557566
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Rodrigues et al. 10.3389/fsoil.2025.1557566
to optimize sampling designs, balance cost efficiency, and

maintain robust predictive performance. To better understand

how autoRA aligns with or diverges from the current sampling

approaches, this section contrasts autoRA’s methodology with four

main lines of work: (i) conditioned Latin hypercube sampling

(cLHS), (ii) Homosoils, (iii) sampling designs optimizing variance

between population and sample sets (53), and (iv) divergence-

based approaches for determining sample size (2, 54). Although

each approach seeks to effectively capture environmental

heterogeneity, it differs substantially in its theoretical

underpinnings, implementation, and adaptability to varying soil-

landscape contexts.
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3.4.1 Contrasts with conditioned Latin hypercube
sampling

Conditioned Latin hypercube sampling (cLHS) has long been

recognized as a robust technique for generating a stratified random

sample across relevant covariates (16). By projecting environmental

variables into a multidimensional feature space, cLHS endeavors to

sample each stratum equally, thereby ensuring coverage of the

covariate distribution (55). However, cLHS presupposes a priori

fixed number of samples, which can be problematic in large or

heterogeneous regions. Once the number of samples is decided,

cLHS does not inherently recalibrate or refine its sampling plan

based on new information about soil variability (2). This limitation
FIGURE 14

Frequency of pixel information for Exhaustive Prediction Model (EPM) and Reference Area Model (RAM). Pedology map: A, Alfisols; E, Entisols; H,
Histosols; I, Inceptisols; M, Mollisols; S, Spodosols; U, Ultisols Geology map: All, Alluvium; AlBG, Alum Bluff Group; AF, Anastasia Formation; APF,
Avon Park Formation; BD, Beach ridge and dune; ChF, Chattahoochee Formation; CF, Citronelle Formation; CyF, Cypresshead Formation; HG1,
Hawthorn Group, Arcadia Formation; HG2, Hawthorn Group, Arcadia Formation, Tampa Member; HG3, Hawthorn Group, Coosawhatchie
Formation; HG4, Hawthorn Group, Coosawhatchie Formation, Charlton Member; HG5, Hawthorn Group, Peace River Formation; HG6, Hawthorn
Group, Peace River Formation, Bone Valley Member; HG7, Hawthorn Group, Statenville Formation; HG8, Hawthorn Group, Torreya Formation; HG9,
Hawthorn Group, Undifferentiated; HS, Holocene sediments; IF, Intracoastal Formation; JBF, Jackson Bluff Formation; KLF, Key Largo Limestone; ML,
Miami Limestone; MicF, Miccosukee Formation; OL Ocala Limestone; RES, Residuum on Eocene sediments; RMS, Residuum on Miocene sediments;
ROS, Residuum on Oligocene sediments; RCS, Reworked Cypresshead sediments; SSP, Shelly sediments of Plio-Pleistocene age; StMF, St Marks
Formation; SL, Suwannee Limestone; SLMLU, Suwannee Limestone-Marianna Limestone undifferentiated; TF, Tamiami Formation; TRS, Trail Ridge
sands; US, Undifferentiated sediments.
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FIGURE 15

Covariables cropped for Rio de Janeiro’s reference area, with a block size of 10 and a target area of 50% delineated by the autoRA.
FIGURE 16

Comparison for the predicted Simulated Theoretical Surface (STS) maps via Exhaustive Prediction Model (EPM) using the whole area sampling
strategy and Reference Area Model (RAM) using autoRA for Rio de Janeiro.
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may lead to the oversampling of relatively uniform areas or failure

to capture underrepresented yet pedologically significant zones if

the initial stratification proves suboptimal.

In contrast, autoRA continuously gauges spatial heterogeneity via

Gower’s Dissimilarity Index. By systematically delineating RAs and

testing them against performance metrics such as R², RMSE, and Bias,

combining them with a sensitivity analysis of different target areas and

block sizes, autoRA iteratively refines its sampling scope before the

fieldwork itself. Hence, while cLHS frontloads the sampling design

process, autoRA incorporates feedback loops that dynamically adjust
Frontiers in Soil Science 18
reference-area boundaries and sampling densities. This responsive

mechanism is particularly beneficial in regions where heterogeneity is

high, there is difficult to access the sampling locations, or is not evenly

distributed, such as mountainous areas or wetlands (54). Additionally,

cLHS and autoRA are not mutually exclusive; in principle, autoRA’s

final delineated RAM could incorporate a cLHS-type scheme for

spatial allocation of actual sample sites, if desired. Nonetheless,

autoRA’s core advantage is its real-time adaptability, which mitigates

reliance on static sampling targets and helps manage logistical

constraints (e.g., limited field operability and safety concerns).
FIGURE 17

Frequency of pixel information for Exhaustive Prediction Model (EPM) and Reference Area Model (RAM). Pedology map: CH, Typic Dystrudept; LVA,
Red-Yellow Oxisol; EC, Carbic Spodosol; D, Dunes; GT, Thionic Gleysol, e.g., Typic Sulfaquept; GM, Melanic Gleysol, GH, Haplic Gleysol, e.g., Typic
Endoaquept; LA, Yellow Oxisol; AVM, Red-Yellow Ultisol; OT, Thionic Organosol, e.g., Typic Sulfosaprist; AA, Yellow Ultisol; LV, Red Oxisol; CA,
Argiluvic Chernozem, e.g., Typic Haplustoll; OH, Haplic Organosol, e.g., Typic Haplosaprist; AV, Red Ultisol; S, Saline soils; PH, Hydromorphic
Planosol, e.g., Typic Albaqualf; NL, Lithic Entisol; NF, Fluvent, SM, Mangrove soils; PH, Haplic Planosol, e.g., Typic Albaqualf. Geology map: RQ,
Quartz-feldspathic rocks; RSC, Clastic sedimentary rocks; RMU, Mafic, and ultramafic rocks; SI, Unconsolidated sediments; RQT, Quartzose rocks;
RQM, Micaeous quartz-feldspathic rocks; RCC, Carbonatic and calcium-silicate rocks; SIAre, Sandy unconsolidated sediments; SIArg, Clayey
unconsolidated sediments.
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3.4.2 Contrasts with homosoils
Homosoils, as presented by Nenkam et al. (56, 57), similarly

uses Gower’s dissimilarity index to cluster pedologically similar

areas and direct sampling toward zones of maximum dissimilarity.

In doing so, Homosoils aims to avoid oversampling landscapes that

exhibit relative uniformity while focusing resources on capturing

critical variability. This conceptual foundation parallels autoRA’s

objective of capturing diverse soil formation factors by prioritizing

environmental heterogeneity.

However, Homosoils typically pre-specifies a sampling density

or cluster count without explicitly integrating metrics of predictive

accuracy – such as R², RMSE, or Bias – into its final selection

process. In contrast, autoRA explicitly uses a Random Forest model

on a simulated theoretical surface (STS), running multiple

sensitivity analyses (block sizes, target areas) and computing an

Euclidean Distance (ED) aggregate of prediction metrics. AutoRA

chooses the “optimal” RA arrangement only after running these

iterations. Consequently, autoRA identifies the region(s) of highest

dissimilarity and verifies that sampling these regions demonstrably

leads to predictive gains, thereby establishing a direct link between

sampling design and model performance. This systematic feedback

mechanism differentiates autoRA from Homosoils, offering a more

robust criterion for deciding the optimal coverage while leveraging

the core principle that areas of high Gower’s Dissimilarity Index

merit more careful sampling.

3.4.3 Contrasts with variance-based sampling
designs

Stumpf et al. (53) addressed the challenge of defining an optimal

sample size by comparing the variance of the covariate population

to that of the sample set. Their methodology incrementally

increased sample size, using box plots and density plots of

relevant covariates to identify a threshold at which additional

sampling yielded diminishing returns in capturing population

variance (58). This approach offers a transparent and intuitive

means of sampling: once the sample’s variance profile sufficiently

approximates that of the population, the design is considered

“good enough.”

While straightforward and conceptually appealing, variance-

based sampling primarily hinges on matching statistical moments

of the covariate distribution, which may not always capture deeper

or more complex pedological relationships (2). For instance,

variance equivalence does not necessarily account for underlying

spatial patterns or the combined effect of covariates, which might be

crucial in regions where soil properties are influenced by intricate

interactions of climate, relief, and parent material (1). In contrast,

autoRA’s reliance on Gower’s Dissimilarity Index (59) and

comprehensive metrics (R², RMSE, Bias) ensures that the final RA

delineation does more than match a univariate or bivariate variance

profile; it also demonstrates robust predictive fidelity for the soil

attributes of interest by offering a derivate Simulated Theoretical

Surface that is mapped, and the accuracy is evaluated before the

fieldwork starts. Another distinguishing factor lies in autoRA’s

reliance on sensitivity analysis across multiple parameter settings

rather than a single stepwise approach to sample size increments.
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This approach simultaneously refines both the size and shape of the

RA, reducing the risk of focusing solely on variable variance while

missing other dimensions of soil heterogeneity (53).

3.4.4 Contrasts with divergence-based
approaches for determining sample size

Divergence-based approaches have gained attention for their

potential in determining optimal sample size by comparing

differences in probability distributions. Malone et al. (2)

employed the Kullback-Leibler Divergence (DKL) statistic to

evaluate how closely a sample’s empirical distribution function

(EDF) approximates that of the larger population. By finding the

point of “diminishing returns” in the DKL curve, one can infer an

optimal sample size that balances coverage with practical

resource limitations.

Building on this concept, Saurette et al. (54) introduced the Jensen-

Shannon Divergence (DJS) and the related Jensen-Shannon Distance

(DistJS) as more robust, symmetric metrics for appraising how well a

given sample distribution matches the population distribution. These

divergence metrics require binning the data into histograms or

probability distribution functions (PDFs) and comparing how closely

the sample’s PDF aligns with the entire domain. In principle, DKL,

DJS, or DistJS can reveal the “breakpoint” beyond which additional

sampling yields marginal improvements in distribution matching.

Divergence-based methods thus offer a mathematically elegant

solution to determining an “optimal” sample size that captures the

principal features of the covariate space.

Yet, like variance-based techniques, divergence-based

approaches often treat each covariate or histogram dimension

independently (2, 54). While they are more holistic than a single

variance measure, they still may not fully capture spatial

autocorrelation patterns or complex covariate interactions that

strongly influence soil genesis and variability. In contrast, autoRA

applies a Random Forest framework to evaluate how well the

delineated RAM can predict an STS, encapsulating multiple

covariates simultaneously in a respective smaller region. The final

selection of target area and block size is thus informed by direct

modeling performance, not solely distribution matching.

Consequently, autoRA can integrate the strengths of divergence-

based analyses – identifying representativeness thresholds – while

going further by ensuring that this representativeness translates into

tangible predictive accuracy. Indeed, future versions of autoRA

could incorporate DJS or DistJS as complementary indices alongside

Gower’s dissimilarity, providing an even more refined synergy

between statistical distribution matching and predictive modeling.

3.4.5 Synthesis and outlook
Taken together, these comparisons underscore the

distinctiveness and adaptability of autoRA. Conditioned Latin

hypercube sampling (cLHS) ensures an even distribution of

samples across covariate space but does not dynamically adjust to

local heterogeneity or feedback from model performance.

Homosoils likewise leverage Gower’s Dissimilarity Index to detect

uniform vs. highly variable areas but does not explicitly integrate

predictive metrics into the sampling density decision neither shows
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the smaller area capable to be sampled and represent the interest

study area. Variance-based sample size selection (53) provides a

straightforward mechanism for aligning sample distributions with

population variance but can overlook complex multidimensional

relationships and also does not consider the hypothesis of searching

and minimizing the investigation area based on the Reference Area

approach. Divergence-based approaches (2, 54) offer

mathematically rigorous methods for defining optimal sample

sizes by comparing distribution functions, yet they may

underserve spatial context or joint covariate interactions and also

does not consider the hypothesis of minimizing the sampling area

to produce a model for extrapolation.

By contrast, autoRA weaves together the strengths of spatial

dissimilarity assessment (via Gower’s Dissimilarity Index), iterative

modeling (via Random Forest) and Simulation Theoretical Surface,

and sensitivity analyses (varying target areas and block sizes) into a

single workflow. This ensures that representativeness, cost-

effectiveness, and predictive reliability are simultaneously

prioritized. Moreover, autoRA’s capacity to include other

divergence metrics or sampling heuristics signals a pathway for

future enhancements, making it a flexible platform for integrating

new advances in DSM. As a result, autoRA stands out not merely as

another sampling design tool but as a dynamic framework that

combines data-driven delineation of RAs with tangible model

performance evaluation – critical for robust and scalable soil

mapping in the face of limited ground-truth data.
4 Conclusions

The autoRA algorithm demonstrated a robust, data-driven

approach for delineating RAs representing critical soil-forming

factors, enabling more efficient and accurate digital soil mapping

workflows. By employing Gower’s Dissimilarity Index to capture

environmental heterogeneity, autoRA systematically identified

configurations of target area size and spatial resolution (block

size) that balanced predictive performance and cost. The optimal

RAMwith a 50% target area and a block size of 10, autoRA achieved

ED values (0.15 in Rio de Janeiro and 0.38 in Florida) closely

approximating the benchmarks obtained using exhaustive sampling

(0.17 and 0.35, respectively) while reducing total costs by

approximately US$110,000. This translates to cost reductions of

about 61% in Rio de Janeiro and 63% in Florida compared to the

traditional reference approach.

Beyond this optimal setting, several other combinations offered

even more significant cost savings, albeit with marginal trade-offs in

accuracy. For instance, at a 30% target area and a 10x10 km² block

size, the model in Rio de Janeiro produced an ED of around 0.33. In

contrast, for the same target area value, the resolution of 5x5 km2

for Florida produced an ED close to 0.40 – slightly higher than the

optimal scenario – yet costs were cut by about 80%. Similarly, other

parameter settings at smaller target areas (e.g., 20%) and moderate

block sizes (e.g., 10 or 20 pixels) delivered substantial cost-efficiency

while maintaining acceptable ED values. These findings highlight

autoRA’s versatility, allowing practitioners to tailor the balance
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between accuracy and cost according to specific project constraints,

logistical limitations, and data requirements.

By reducing subjective expert input and introducing a

reproducible, quantitative framework for RA delineation, autoRA

enables more strategic investments in soil sampling. Its capacity to

preserve predictive quality while substantially lowering expenses

makes it a valuable tool, particularly in regions where field sampling

is logistically challenging or financially constrained. Ultimately, this

approach strengthens DSM workflows, fosters broader coverage in

data-scarce landscapes, and supports more informed decision-

making in soil resource management.
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