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1Department of Biosystems Engineering and Precision Technology, Albert Kázmér Mosonmagyaróvár
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Introduction: Accurate prediction of soil moisture content (SMC) is crucial for

agricultural systems as it affects hydrological cycles, crop growth, and resource

management. Considering the challenges with prediction accuracy and

determining the effect of soil texture, depth, and meteorological data on SMC

variation and prediction capability of the used models, this research has

been conducted.

Methods: Three machine learning (ML) models—random forest regression (RFR),

eXtreme gradient boosting (XGBoost), and long short-term memory (LSTM)—

were developed to predict SMC in three soil types (loam, sandy loam, and silt

loam) at five depths of 5, 20, 40, 60, and 80 cm. The dataset was collected during

the maize season in 2023, encompassing meteorological parameters collected

using Internet of Things (IoT)-based sensors and SMC data calculated using the

gravimetric method.

Results: The results showed variations in SMC in all studied soil types and depths,

with silt loam exhibiting the highest variation in SMC. RFR demonstrated high

accuracy at different depths and soil types, particularly in loam soil, at a depth of

80 with a root mean square error (RMSE) value of 0.89 and a mean absolute error

(MAE) value of 0.74, and in silt loam at 40 cm depth with an RMSE value of 0.498

and an MAE of 0.416. LSTM performed effectively at shallower and moderate

depths (60 and 20 cm) with RMSE values of 0.391 and 0.804 and MAE values of

0.335 and 0.793, respectively. In sandy loam soil at 5 cm depth, XGBoost

displayed minimal errors and robust performance at the same depths with

higher accuracy, achieving an RMSE of 0.025 and an MAE of 0.159. Analysis of

training and validation loss revealed that the LSTMmodel stabilized and improved

with more epochs, showing a more consistent decrease in MSE, while RFR and

XGBoost exhibited higher performance with increased model complexity, shown

in low MSE and RMSE values. Comparisons between measured and predicted

SMC% values demonstrated the models’ effectiveness in capturing soil moisture

dynamics. Furthermore, feature importance analysis revealed that solar radiation

and precipitation were the most influential predictors across all models, offering

critical insights into dominant environmental drivers of soil moisture variability.
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Discussion: By providing precise SMC predictions across different spatial and

temporal scales, this study underscores the value of ML models for SMC

prediction, which could have implications for improving irrigation scheduling,

reducing water wastages, and enhancing sustainability.
KEYWORDS

machine learning, soil moisture content, RFR, LSTM, XGBoost, spatio-
temporal prediction
1 Introduction

Current farming practices have already exceeded the Earth’s

carrying capacity (1). Therefore, the primary challenge is to

enhance productivity and sustainably feed the world without

depleting natural resources, particularly water, which is vital for

crop production. Hence, it is imperative to implement more

sustainable water management practices (2). With the increased

demand for agricultural water resources, real-time monitoring of

soil moisture is essential for developing a realistic irrigation

schedule, leading to better water management (3, 4), and

enhancing crop production (5). Soil moisture content (SMC) is a

critical factor influencing farm yields and hydrological cycles,

providing essential information on available water for vegetation

growth requirements (6). Thus, understanding the spatial and

temporal variation of SMC is crucial for various applications such

as predicting floods, droughts (7), and forest fires, as well as for

environmental and agricultural research (8, 9). Accurately

predicting SMC is essential for the rational use and management

of water resources (10, 11). However, the complex interplay of

factors affecting soil water content makes prediction challenging,

especially in spatiotemporal dynamics (12–14). Currently, direct

methods for determining soil moisture that measure SMC directly

from the soil samples include oven drying methods (both

gravimetric and volumetric), while all automated systems for

estimating soil moisture are classified as indirect methods (15).

The gravimetric method is widely regarded as the most reliable and

robust technique for estimating soil moisture. It quantifies soil

moisture as the mass of water in a sample divided by the mass of dry

soil, typically expressed in [kg/kg]. However, for comparative

studies in earth sciences, it is often represented as a percentage

(15). The gravimetric method has been utilized to validate data

collected using indirect techniques (16, 17).

Existing prediction models face challenges related to accuracy,

generalization, and processing multiple features, necessitating

improvements in performance. Conventional prediction

techniques frequently employ neural networks, linear regression,

and empirical formulas (18, 19). Recently, advancements in sensor

measuring technologies have enabled researchers to collect

extensive, continuous, and reasonably accurate data at in situ

monitoring sites (20, 21). Artificial intelligence-based models
02
leveraging artificial neural networks (ANNs) represent a

significant leap forward in machine learning (ML), enabling

better extraction of hidden patterns within big data (22).

Integrating artificial intelligence with prediction models enhances

model performance and accuracy (23). However, current ANN

models for SMC prediction tend to focus mainly on single data

feature extraction, overlooking spatial and temporal factors, which

limits the accuracy of predictions. Furthermore, existing soil

moisture content (SMC%) prediction models often only forecast

the average surface layer (0–20 cm) or a single depth, rendering

them ineffective for practical agricultural irrigation decisions.

Various AI-based techniques, including random forest

regression (RFR), support vector machine (SVM), extreme

gradient boosting regression (XGBR), and CatBoost gradient

boosting regression (CBR), have been utilized to overcome these

limitations and more accurately forecast SMC (24–26). In their

study, Ren et al. (27) utilized XGBoost to estimate soil moisture,

demonstrating superior performance compared to other techniques

with a correlation coefficient of 0.69 and an accuracy of 88%. The

primary predictors were air relative humidity, maximum air

temperature, and total precipitation. Consideration of soil

characteristics, particularly during the 2022 drought, led to

increased prediction accuracy. Additionally, Alibabaei et al. (28)

discussed the use of deep learning algorithms, specifically long

short-term memory (LSTM) and bidirectional LSTM (BLSTM), to

model daily reference evapotranspiration and SMC for agricultural

decision support systems. Their models achieved R² values between

0.96 and 0.98 and mean square error values between 0.014 and

0.056, with LSTM yielding the most favorable results. Furthermore,

an analysis was conducted to assess how the loss function impacted

the performance of the proposed models, revealing that the model

employing mean square error as its loss function outperformed

other models.

Considering the challenges of enhancing soil moisture

prediction accuracy, and the lack of soil-specific and depth-

specific modeling (29, 30), and to evaluate the efficiency of the

dataset collected by Internet of Things (IoT)-based sensors in the

models’ training, this research aims to study how the soil type,

depth, and meteorological data affect SMC variations; to develop

and refine AI-based ML models including RFR, eXtreme gradient

boosting (XGBoost), and LSTM, which consider effective models in
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SMC prediction due to its ability to capture linear and non-linear

relations between studied factors (29, 31); to predict SMC in various

soil types and depths by combining meteorological variables with

SMC data; and to evaluate models’ performance using several

performance metrics. The results will provide significant insights

into the models’ applicability for SMC prediction to enhance water

use efficiency and enhance sustainability in agriculture by

improving decision-making in irrigation management and

enhancing sustainability.
2 Materials and methods

2.1 Experimental site and sensor setup

The research was conducted between June and October 2023

during the maize vegetation season at the 23-ha field, an agricultural

site equipped with IoT sensors for data collection at Széchenyi

István University in Mosonmagyaróvár, Hungary (32, 33). The area

had an average annual precipitation of 580 mm in 2023, and an

average annual temperature of 11.2°C, and during the maize
Frontiers in Soil Science 03
vegetation season, the precipitation amount was approximately

400 mm with temperatures ranging between 18.5°C and 21.3°C.

The soil types identified according to the USDA soil classification

taxonomy (34) utilizing the soil texture triangle include loam, silt

loam, and sandy loam (35) (Figure 1). The terrain has a slight slope

of 5% with elevation varying between 133 and 138 m (23), soil pH

ranged between 7.12 and 7.8, and other soil properties are shown in

Table 1. Data collection from the field by sensors was carried out at

10- to 15-min intervals using LoRaWAN and Narrowband Internet

of Things (NB-IoT).
2.2 Gravimetric technique for soil moisture
content measurements

A total of 405 soil samples were collected from depths of 5, 20,

40, 60, and 80 cm on three soil types: loam, silt loam, and sandy

loam, with 135 samples each. Sampling locations were determined

according to the USDA’s recommended procedures (36), ensuring

representative and systematic coverage across the three soil textures,

loam, sandy loam, and silt loam (Figure 2A). Each sampling point

shown in the figure represents measurements taken at all five

specified depths. The samples were collected using an auger on 10

different dates every 2 weeks (June 1–15, July 2–15, August 4–21,

September 5–20, and October 3–18). They were collected from the

field in the same sensor’s locations from a 1-m² circle around the

sensor. The samples were saved in plastic bags to maintain their

moisture content before being moved to the laboratory. After that,

they were placed in pre-weighed containers and weighed using a

digital scale to record their initial weights. The samples were then

transported to the laboratory and oven-dried at 105°C for 24 h (37,

38). After drying, the samples were weighed again to obtain their

post-drying weights. Finally, the empty weights of the soil moisture

containers were measured. SMC based on dry weight was calculated

using Equation 1:

q =
Mw
Md

� 100 (1)

where:
• q = soil moisture content (%)

• Mw = mass of water (g) = (wet weight – dry weight)

• Md = mass of dry soil (g)
FIGURE 1

Soil texture classes (silt, clay, and sand) for each studied soil.
TABLE 1 Soil property averages and range values in all studied soil types and depths with mean SMC values and standard deviation.

Soil
type

Number of
samples

pH
Sand
range

Silt range
Clay
range

Mean SMC%
range

SD of SMC%
range

Bulk density
average

Loam 135 7.61 40.99–49.01 40.91–45.97 10.10–14.50 12.61–16.19 3.10–4.94 1.54

Sandy
loam

135 7.71 53.8–59.99 32.04–36.27 8.02–9.92 12.43–14.98 2.15–5.27 1.57

Silt loam 135 7.45 12.36–15.31 63.70–70.19 17.40–21 14.99–18.27 2.62–7.87 1.52
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2.3 Data preparation and processing

The dataset was carefully prepared to address incorrect,

missing, or hard-to-interpret values that could lead to overfitting

or inaccurate, or deceptive results from the algorithm. Data

preparation, including data transformation and statistical testing,

was carried out using Python (version 3.10.12) (39) to ensure that

there were no missing or zero values and to verify that the data types

entering the model were accurate and consistent; in addition, basic

statistical analyses including variation analysis and means

calculations were conducted using Python. Additionally, dates

and soil types were defined in the model to replace numerical

values with appropriate date formats and soil type names. Following

the data preparation, three ML algorithms—RFR, LSTM, and

XGBoost—were employed to predict SMC in all soil types and

depths. The dataset, which contained over 6,500 records collected

from SMC measurements and meteorological data, was split into

two parts: 80% for model training and 20% for testing. Each

algorithm utilizes six inputs (SMC%, precipitation, humidity,

temperature, solar radiation, and wind speed).
2.4 AI-based models

2.4.1 Random forest regression
The RFR is an approach based on classification trees. Belgiu and

Drăgut ̧ (40) described the primary phases of the RFR algorithm

as follows:
Frontiers in Soil Science 04
1. Randomly selecting a subset of the original training set

with replacement.

2. Using the subset to build the regression tree model.

3. Averaging the results of all trees to produce the

final prediction.
The key hyperparameters used were as follows:
- n_estimators: defines the number of trees.

- random_state = 42: ensures reproducibility.

- max_leaf_nodes: limits the number of terminal nodes or

leaves in each tree, which can reduce overfitting.
In general, the samples were divided, with approximately two-

thirds of the dataset (in-bag data) for training samples and the

remaining part for validation samples [out-of-bag (OOB) data]

(Figure 3) (41). The RFR model was implemented using Python

with the Pandas, NumPy, Matplotlib, and Scikit-learn libraries.
2.4.2 Long short-term memory architectures
LSTM networks are a type of recurrent neural network (RNN)

architecture designed to address the vanishing gradient problem

and effectively capture long-range dependencies in sequential data.

In the RNN model, the output from the previous step is utilized as

input for the next step. This model is well-suited for predicting SMC

as it can model time-series data, such as meteorological variables,

and their impact on soil moisture trends.
FIGURE 2

(A) Sensor station’s locations at the field with soil types, GPS coordinates, and spatial distribution of sensor stations and corresponding sample
locations within each identified soil type. (B) IoT sensor stations based in the field (wind sensor, precipitation sensor, solar radiation sensor, humidity
sensor, and temperature sensor).
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The LSTM model used in this study comprises two layers

(Figure 4) : The fi rs t LSTM layer has 50 uni ts and

return_sequences=True, allowing the output to be passed to the

second LSTM layer. The second LSTM layer also has 50 units. The

hyperparameters utilized were epochs (number of training cycles)

and batch_size. The optimizer used was Adam, with a

mean_squared_error loss function. The output was generated by

a dense layer with a single unit. The input data were normalized

using the MinMaxScaler, ensuring all values were scaled between 0

and 1. The data were reshaped into a 3D array (samples, time steps,

and features) before being input into the LSTM layers. The LSTM

model was constructed and trained using Python with Pandas,

NumPy, Matplotlib, and Scikit-learn libraries, in addition to

TensorFlow for the LSTM layers.

2.4.3 XGBoost
The XGBoost technique, developed by Chen and Guestrin (42),

is a powerful method for supervised learning that can handle

regression and classification issues effectively. The XGBR

algorithm is widely used in data mining due to its quick

execution speed achieved by parallelization, out-of-core

computation, and cache optimization. Data scientists appreciate
Frontiers in Soil Science 05
its adaptability to different environments and excellent performance

in small-scale data analysis. In a recent study, XGBoost was used to

predict SMC using meteorological and soil moisture input features.

The model’s hyperparameters were fine-tuned using a grid search to

identify the best configuration, including n_estimators,

learning_rate, and max_depth. The optimal configuration was

selected using fivefold cross-validation to ensure the model’s

ability to generalize well in studied soil types and depths. The

flowchart for the XGBoost model is summarized in Figure 5. The

XGBoost model was developed and trained using Python, along

with libraries such as Pandas, NumPy, Matplotlib, and the

XGBoost library.
2.5 Performance evaluation measures

Four indicators were calculated to quantify the performance of

the different models.

Mean square error (MSE): The MSE is the average of the

squared differences between projected and observed. In other

words, the MSE represents the variance of the mistake (43). It is

calculated using Equation 2:
FIGURE 3

Random forest regression (RFR) model architecture.
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MSE = 1
n= on

t=1(yt − ŷ t)2 (2)

where yt is the ground truth, and ŷ represents the mean of the

predicted values.
Frontiers in Soil Science 06
Root mean square error (RMSE): It captures the typical difference

between predicted and observed values (43). It is calculated by taking

the square root of the MSE. Unlike MSE, RMSE is measured in the

same units as the original data, making it easier to interpret. Since
FIGURE 4

Diagram of LSTM layers.
FIGURE 5

Flowchart of the XGBoost model.
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RMSE considers squared differences, it emphasizes larger deviations

from predictions. This makes RMSE valuable when minimizing

significant discrepancies is critical (Equation 3).

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n= on
t=1(yt − ŷ t)2

q
(3)

Mean absolute error (MAE) (43): It calculates the average of the

absolute differences between predictions and actual observations

(Equation 4):

MAE = 1
n= on

t=1 yt − ŷ tj j (4)

R-squared (R²): It is an indicator of statistical significance that

compares the variation explained by the model to the total variance.

Higher R2 indicates less difference between real and projected

values. It is calculated using Equation 5:

R2 = 1 −o
n
t=1(yt − ŷ t)2

on
t=1(yt − y)2

(5)

where yi is the predicted value, yt is the ground truth, and ŷ

represents the mean of the predicted values.
2.6 Feature importance analysis

Feature importance analysis was conducted for each ML model to

evaluate and compare the contribution of studied meteorological
Frontiers in Soil Science 07
variables to SMC prediction. For RFR, the Gini-based significance

approach from scikit-learn was used to calculate the average reduction

in error supplied by each feature across the forest (44, 45). In the LSTM

model (an RNN model implemented in TensorFlow/Keras), feature

importance is not inherently provided; thus, a model-agnostic

permutation importance approach was applied and calculated by

assessing the increase in MSE after shuffling each predictor variable

in the validation dataset. Finally, with XGBoost, the built-in gain-based

feature importance measure was utilized to calculate the cumulative

improvement in the model’s accuracy when splitting by each feature

(46). All analyses were conducted in Python and all feature importance

results were computed separately for each soil type, depth, and model.
3 Results and discussion

3.1 Statistical analysis results for the three
soil types

After analyzing 405 SMC% measurements in three types of soil

and five depths over the maize vegetation season, the results shown in

Figure 6 demonstrate that silt loam soil has the highest mean SMC,

ranging from 14.99% to 18.27% due to its balanced sand, silt, and clay

particle texture, which maximizes water retention (47), with the

highest SMC (27.23%) recorded at 60 cm depth and the highest
FIGURE 6

Soil moisture content variation in three soil types at five different depths.
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variability in the deeper layers (60 and 80 cm). The mean moisture

content of loam soil varied from 12.61% to 16.19% at the five depths,

with larger variability shown at deeper layers (60 and 80 cm), and

maximum SMC value was at 20 cm depth with 22.1%. Sandy loam

soil had a lower mean moisture content than loam soil due to its

higher sand content, which decreased water retention, and the mean

SMC ranged between 12.43% and 14.98%, with the highest SMC

(20.77%) recorded at 80 cm depth. The lowmoisture content of sandy

loam resulted in little variation among the five depths due to the high

sand content, which reduces the water holding capacity and effect on

soil water movement and dynamics through the soil layers (48). The

highest SMC values and variability in deeper soil layers across all soil

types are attributed to higher water retention capacity at depth

compared with surface layers in the studied area (49). This

variation in SMC% highlights the need to consider soil types and

depth whenmonitoring soil moisture dynamics, as these factors had a

significant impact on SMC variation (50). These results could be used

in optimizing irrigation management, which will reduce water waste

and enhance sustainability.
3.2 Validation and predictive performance
in studied soil types and depths

The performance of the three models (RFR, XGBoost, and

LSTM) in predicting SMC in the studied soil types and depths

resulted in several findings (Table 2).

Among the three models, the RFR model consistently

demonstrated the most robust and generalizable performance in

all studied soil types and depths. For instance, in loam soil, at depths

of 80 and 20 cm, the model achieved the lowest RMSE values of 0.89

and 0.98 and MAE values of 0.74 and 0.89, respectively. Figure 7

highlighted the model’s ability to highly accurately predict SMC at

different layers in loam soil. In sandy loam soil, RFR performed best

at depths of 20, 40, and 5 cm with RMSE values of 0.43, 0.51, and

0.54, respectively, and MAE values of 0.39, 0.49, and 0.51,

respectively. Additionally, the model performed accurately in silt

loam soil at 40- and 60-cm depths with RMSE values of 0.49 and

0.52, and MAE values of 0.42 and 0.41, respectively. These results

align with the results of Cheng et al. (10) and Draper et al. (51) and

suggest that RFR accurately captures the variation in SMC in all

studied soil types and depths (52).

On the other hand, the LSTM models also showed promising

results, particularly at shallow to moderate depths (20, 40, and 60

cm) and at all soil types where the meteorological factors have more

impact on SMC variation at these layers, while it performed less

consistently compared with RFR. For instance, in loam soil, at

depths of 60 and 20 cm, the model achieved the lowest RMSE values

of 0.39 and 0.80 and MAE values of 0.34 and 0.79, respectively.

Figure 7 highlighted the model’s ability to accurately predict SMC at

different layers in loam soil. In sandy loam soil, LSTM had the best

performance at depths of 20 and 5 cm with RMSE values of 0.31 and

0.42, respectively, and MAE values of 0.22 and 0.38, respectively. In

addition, in silt loam soil, the lowest errors were at 20- and 5-cm

depths with RMSE values of 0.27 and 0.34, and MAE values of 0.21
Frontiers in Soil Science 08
and 0.36, respectively (Figure 7), aligning with the results of

Filipović et al. (3) and Park et al. (53). These findings indicate

that the LSTM model demonstrates promising performance in

predicting SMC, and the ability to accurately predict SMC,

especially at shallower to moderate depths where the impact of

environmental factors is higher than deeper layers (28).

The XGBoost models that offered a high performance in

capturing complex and nonlinear relations performed well in

different soil types and depths especially the shallower depths.

The model showed a high accuracy at 40- and 60-cm depths in

loam soil with the lowest RMSE values of 0.422 and 0.638, and MAE

values of 0.354 and 0.507, respectively (Figure 7). In sandy loam, the

best errors were at depths of 40 and 5 cm where XGBoost had

RMSE values of 0.099 and 0.159, and MAE values of 0.072 and

0.132, respectively, which considers higher performance in shallow

depths compared with the results by Ren et al. (27), where the

highest RMSE was 11.11 and MAE was 4.87. Similarly, in silt loam

soil, it performed well at 5 and 20 cm with RMSE values of 0.249

and 0.256, and MAE values of 0.199 and 0.206, respectively. The

acceptable threshold for RMSE value is 10% (54). During the

experiment period, the models predicted SMC with RMSE values

ranging from 0.24% to 0.9%. These low MSE and RMSE values,

along with a high R² value, suggest that these models can effectively

predict SMC as an alternative to classic empirical equations (55).

The variation in the measured parameters between deeper

layers and upper layers is caused by different influencing factors.

Shallower depths (5–20 cm) are directly affected by weather

conditions such as precipitation and humidity, making it easier

for the model to predict SMC accurately with high-quality data. On

the other hand, deeper layers (40–80 cm) are influenced by factors

like surface water dynamics, soil structure, and other soil properties,

making it more complex for the model to accurately predict SMC in

these layers (56, 57) and emphasizing the need to consider more

features in model training for deeper soil layers.

The RFR exhibited consistent prediction accuracy with high R²

values. In loam soil, RFR achieved R² values ranging from 0.820 to

0.971, with the highest R² at 80 cm depth. Similarly, in sandy loam

soil, RFR performed well, with R² values ranging from 0.941 to

0.973, peaking at 20 cm depth. Moreover, in silt loam soil, the model

had R² values ranging from 0.956 to 0.994, with the highest R² at 60

cm depth (Figure 8). These results align with the findings of Cheng

et al. (10) and Zhao et al. (58) and demonstrate that the RFR model

offered the best generalization in the studied soil types and depths,

especially the deeper layers where the impact of meteorological

factors is less, and SMC is affected by other factors such as soil

properties and components (11). On the other hand, the LSTM

model showed promising accuracy results, especially at shallower

depths where the model achieved R² values in loam soil ranging

from 0.852 to 0.987, with the highest R² found at 60 cm depth. In

sandy loam soil, LSTM performed well with R² values ranging from

0.964 to 0.996, peaking at 80 cm depth. Similarly, in silt loam soil, R²

values varied from 0.982 to 0.980 (Figure 8), with the best R² found

at 60 cm depth; similar results were achieved in other research

studies (28, 59). These findings indicate that LSTM models can

accurately represent the temporal dynamics of SMC in various soil
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https://doi.org/10.3389/fsoil.2025.1612908
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Alahmad et al. 10.3389/fsoil.2025.1612908

Frontiers in Soil Science 09
types and depths, particularly at shallow to intermediate depths,

compared to other models (60). However, LSTM performance

decreased as depth increased in all soil types.

In loam soil, XGBoost had R² values ranging from 0.835 to 0.983,

with the highest R² at 40 cm depth, while in sandy loam soil, R² values

ranged from 0.951 to 0.999, with the highest value at 40 cm depth.

Similarly, in silt loam soil, R² values varied from 0.953 to 0.997, with

the best R² found at 60 cm depth (Figure 8). These findings indicate

that XGBoost models may accurately capture the complicated

interactions between SMC and environmental variables in a variety

of soil types and depths. However, XGBoost’s performance decreased

at deeper depths in loam and silt loam soils (27, 61). The results

showed that the RFR model had the most consistent performance in

all soil types and depths in comparison with XGBoost that performed

best at shallower depths (5 to 40 cm) and LTSM in shallow to

moderate layers (5, 20, 40, and 60 cm). In addition, RFR offered the

best generalization capacity. These findings highlighted the need for

further improvements for the models to increase accuracy in the deep

oil layers where factors other than meteorological data have a

significant impact on soil moisture dynamics.
3.3 The training and validation loss
behaviors of models in studied soil types
and depths

The learning curves of the LSTMmodel indicated a decrease in loss

values (MSE) with increasing epochs, particularly between 600 and 800,
TABLE 2 Performance metrics evaluation results of the three used
models across studied soil types and depths.

Soil
type

Depth
(cm)

Model MSE RMSE MAE R2

Loam 5 RFR 1.614 1.27 0.953 0.82

Loam 20 RFR 0.957 0.978 0.827 0.819

Loam 40 RFR 1.141 1.068 0.99 0.871

Loam 60 RFR 2.247 1.499 1.238 0.898

Loam 80 RFR 0.792 0.89 0.74 0.971

Loam 5 LSTM 1.322 1.15 0.811 0.852

Loam 20 LSTM 0.646 0.804 0.793 0.878

Loam 40 LSTM 1.149 1.072 0.615 0.87

Loam 60 LSTM 0.153 0.391 0.335 0.993

Loam 80 LSTM 0.343 0.585 0.496 0.987

Loam 5 XGBoost 1.472 1.213 0.843 0.835

Loam 20 XGBoost 1.768 1.33 1.023 0.865

Loam 40 XGBoost 0.178 0.422 0.354 0.98

Loam 60 XGBoost 0.407 0.638 0.507 0.982

Loam 80 XGBoost 0.45 0.671 0.482 0.983

Sandy
loam

5 RFR 0.29 0.539 0.508 0.941

Sandy
loam

20 RFR 0.189 0.434 0.39 0.967

Sandy
loam

40 RFR 0.26 0.51 0.493 0.965

Sandy
loam

60 RFR 0.658 0.811 0.716 0.957

Sandy
loam

80 RFR 0.731 0.855 0.702 0.973

Sandy
loam

5 LSTM 0.176 0.42 0.384 0.964

Sandy
loam

20 LSTM 0.095 0.308 0.223 0.984

Sandy
loam

40 LSTM 1.01 1.005 0.791 0.863

Sandy
loam

60 LSTM 0.559 0.748 0.458 0.964

Sandy
loam

80 LSTM 0.111 0.333 0.251 0.996

Sandy
loam

5 XGBoost 0.025 0.159 0.132 0.951

Sandy
loam

20 XGBoost 0.057 0.239 0.207 0.944

Sandy
loam

40 XGBoost 0.01 0.099 0.072 0.998

Sandy
loam

60 XGBoost 0.346 0.588 0.477 0.985

(Continued)
TABLE 2 Continued

Soil
type

Depth
(cm)

Model MSE RMSE MAE R2

Sandy
loam

80 XGBoost 0.023 0.151 0.105 0.999

Silt loam 5 RFR 0.396 0.629 0.555 0.956

Silt loam 20 RFR 0.932 0.965 0.596 0.922

Silt loam 40 RFR 0.248 0.498 0.416 0.984

Silt Loam 60 RFR 0.272 0.521 0.411 0.994

Silt loam 80 RFR 1.145 1.07 0.801 0.982

Silt loam 5 LSTM 0.159 0.399 0.363 0.982

Silt loam 20 LSTM 0.073 0.271 0.21 0.975

Silt loam 40 LSTM 0.64 0.8 0.651 0.96

Silt loam 60 LSTM 0.901 0.949 0.682 0.98

Silt loam 80 LSTM 1.702 1.305 1.079 0.973

Silt loam 5 XGBoost 0.062 0.249 0.199 0.953

Silt loam 20 XGBoost 0.066 0.256 0.206 0.978

Silt loam 40 XGBoost 0.137 0.37 0.312 0.988

Silt loam 60 XGBoost 0.141 0.375 0.322 0.997

Silt loam 80 XGBoost 1.599 1.264 0.953 0.975
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suggesting improved model generalization. However, there were slight

variations in loss curves, indicating potential moderate overfitting at

specific depths and soil types, such as 60 and 80 cm in loam soil

(Figure 9) and 20, 40, and 80 cm in silt loam soil (Figure 10) (62). On

the other hand, when the number of trees increased to 200, both the

RFR and XGBoost models demonstrated decreasing loss values,

showing improved model performance with increased complexity

(63). However, deviations from this trend were observed, particularly

in XGBoost models for sandy loam soil at 5 and 40 cm depth

(Figure 11) and silt loam soil at 20 and 40 cm depth (Figure 10),

where loss values slightly increased with the number of trees, indicating

potential instability or poor performance under certain conditions.

Overall, while all models showed improved performance with a higher

number of epochs for LSTM (62) and greater model complexity for
Frontiers in Soil Science 10
RFR and XGBoost (63), the LSTMmodel consistently outperforms and

stabilizes in all studied soil types and depths.
3.4 Comparison of measured and
predicted SMC% values

The comparison between measured and predicted SMC%

values at different depths in all soil types provides insight into the

models’ predictive performance. The results show the model’s

ability to accurately represent underlying patterns and variability

in SMC at various depths and soil types. The close agreement

between measured and predicted values indicates that the modeling

approaches accurately predict SMC% (see Figure 12), and the mean
FIGURE 7

Predictive performance and validation results (MSE, RMSE, and MAE) for all soil types.
FIGURE 8

Accuracy performance evaluation of the RFR, LSTM, and XGBoost in all soil types.
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measured and predicted values are provided in Appendix A.

Compared with previous research by Alibabaei et al. (28) and Ren

et al. (27), which developed different models to predict SMC, this

research combines multiple soil layers’ SMC prediction with three

AI-based ML models in three soil types, with the use of gravimetric

data for more accurate validation and learning; the use of in situ IoT

sensors data and high temporal resolution allows for more robust

performance of the model than the use of only satellite images for

model training. Thus, the soil-specific and depth-specific modeling

achieved in this research is vital for precision irrigation

management and drought monitoring. Variations between

measured and predicted values, especially at certain depths or soil

types, suggest many potentials for model development especially for
Frontiers in Soil Science 11
deep soil layers (52, 55). Enhancing models’ generalizability and

applicability could be done by considering extending the inputs

with more variables such as different locations instead of only one

location in this research, irrigations, evapotranspiration, vegetation

indices from more vegetation seasons, and utilizing more soil

properties such as soil texture and organic matter content.
3.5 Feature importance analysis results

The feature importance analysis revealed both common patterns

and significant differences in how the three models prioritize the

environmental variables. Overall, the studied meteorological data
FIGURE 9

The loss value vs. the number of trees and epochs for RFR, XGBoost, and LSTM at various depths in loam soil.
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have contributed to SMC prediction, but solar radiation consistently

showed as the most effective predictor, particularly for SMC in deeper

soil layers (40 to 80 cm), achieving average values ranging from 0.4 to

0.85 across three soil types and five depths with highest values of

impact on silt loam with three models (0.8 with RFR, 0.79 with

XGBoost, and 0.7 in LSTM) (Figure 13). This result demonstrates

that evaporative demand caused by solar energy input is a

dominating component driving soil moisture variability at depth,

which is consistent with previous research indicating that solar

radiation and temperature strongly influence soil water evaporation

and drying (64, 65). On the other hand, precipitation had an

important role in SMC prediction, especially at surface layer 5 cm

in the three soil types with average values of 0.14 in RFR, 0.4 in

XGBoost, and 0.25 in LSTM. These results emphasize the role of

precipitation in increasing the SMC in surface layers (66). Humidity,

temperature, and wind speed had varied importance among models,
Frontiers in Soil Science 12
soil types, and depths. While analysis results showed the relatively

high importance of humidity and wind speed in loam and silt loam

soils, particularly at surface layers 5 and 20 cm with RFR and LSTM

models, temperature had high importance value in sandy loam soil

with the XGBoost model achieving values of 0.17 and 0.44 at 5- and

20-cm depths, respectively.

These variations represent each algorithm’s learning method.

LSTMs, which are designed to capture temporal patterns and lag

effects, may prioritize characteristics such as temperature that

represent long-term environmental influences. RFR and XGBoost,

on the other hand, use threshold-based decision rules and prioritize

features that bring quick advances in predictive accuracy, such as

recent precipitation or current wind speeds. Despite these model-

specific variations, solar radiation and precipitation were the two

most important variables impacting SMC across depths, soil types,

and models. These findings are consistent with hydrological SMC
FIGURE 10

The loss value vs. the number of trees and epochs for RFR, XGBoost, and LSTM at various depths in silt loam soil.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1612908
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Alahmad et al. 10.3389/fsoil.2025.1612908
principles, in which precipitation determines water input and solar

radiation with temperature causing evapotranspiration and

moisture loss (67). Overall, the feature importance results showed

that the ML models effectively captured the key hydrological factors

that influenced soil moisture dynamics. In particular, the ability to

quantify and rank the impact of different predictors provides a solid

base for optimizing irrigation systems. By identifying the key

variables impacting SMC at certain depths and soil types, this

study allows for data-driven decisions that support site-specific

irrigation scheduling, reduce water use waste, and improve resource
Frontiers in Soil Science 13
use efficiency. Additionally, feature importance analysis not only

enhances model interpretability but also directly contributes to the

objectives of sustainable water management and precision crop

production. However, it is important to acknowledge that the

influence of environmental predictors varies notably across soil

types and depths. This highlights the need to develop soil-specific

and depth-specific models that account for these variations by

selecting key drivers tailored to each scenario. Additionally, the

current study was limited to data from a single location and one

growing season, which may affect the generalizability of the results
frontiersin.or
FIGURE 11

The loss value vs. number of trees and epochs for RFR, XGBoost, and LSTM at various depths in sandy loam soil.
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to other regions or climatic conditions. Incorporating multi-season

and multi-location datasets in future research would improve the

robustness and transferability of the models. Furthermore,

integrating intrinsic soil properties such as the percentages of

sand, silt, and clay, along with other relevant variables like

vegetation indices and organic matter into the predictive

framework, could enhance model accuracy and adaptability.

Expanding the comparison to include additional ML algorithms

and larger datasets will also be essential to strengthen performance

and ensure scalability for broader precision irrigation applications.
Frontiers in Soil Science 14
4 Conclusions

The research introduced soil-specific and depth-specific

modeling for SMC prediction at three different soil types and five

depths (5, 20, 40, 60, and 80 cm) using three ML models (RFR,

XGBoost, and LSTM). The results showed that SMC varied in the

studied soil types, with sandy loam soil exhibiting less variance and

silt loam and loam soils showing higher variability across depths.

This emphasizes the importance of considering both soil type and

depth when monitoring SMC.
FIGURE 12

Measured and predicted soil moisture content results by the three ML models (RFR, XGBoost, and LSTM).
FIGURE 13

Average feature importance value results by the three ML models (RFR, XGBoost, and LSTM) per soil type across all depths.
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RFR performed the best in all studied soil types and depths,

particularly in capturing soil moisture variability in deeper soil layers

(60 and 80 cm). LSTM performed well at shallower to moderate

depths (5 to 60 cm) with less accuracy in deeper soil layers. On the

other hand, XGBoost achieved high accuracy in predicting SMC in

shallower depths, particularly in sandy loam soil due to its ability to

model complex interactions between meteorological inputs and soil

moisture dynamics. The differences between measured and predicted

values provide opportunities for model modification and validation,

especially for deeper layers and the need to enhance the

generalizability and applicability of models by considering

increasing inputs for model training with more variables such as

different locations, irrigations, evapotranspiration, vegetation indices,

and soil properties, as well as highlighting the fact that each soil type

and depth could be modeled with different algorithms. The feature

importance analysis results further demonstrated the dominant role of

solar radiation and precipitation, emphasizing their significant

influence on soil moisture dynamics.

These findings highlight the practical importance of these models

in agricultural and environmental management. By accurately

predicting SMC, these models could enhance water-use efficiency,

optimize irrigation schedule, and improve understanding of soil

moisture dynamics for ecosystem management. The study also

demonstrates the potential for expanding these models to predict

SMC in different regions, offering valuable insights for decision-

makers in agriculture, hydrology, and enhancing the sustainability

that aligned with Sustainable Development Goal 6 (SDG6)

(sustainable management of water). While the models demonstrated

strong predictive performance, their application is currently limited to

a single site and one growing season. Future research should focus on

expanding datasets across multiple locations and seasons, integrating

additional soil properties and vegetation indices, and testing a wider

range of algorithms to enhance accuracy, adaptability, and scalability

for broader precision irrigation applications.
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2. Kulmány IM, Bede-Fazekas Á, Beslin A, Giczi Z, Milics G, Kovács B, et al. Calibration
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