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Food waste is a critical global challenge that threatens environmental

sustainability. Vegetable residue, a key component, is often disposed through

harmful methods such as landfilling and incineration which significantly increase

resource loss and degrade the ecological system. Sustainable and eco-friendly

valorization techniques are solutions needed to address this challenge. This

review explores the valorization of vegetable residue within a circular agriculture

framework, emphasizing its potential to enhance soil health, reduce reliance on

synthetic fertilizers, and support climate resilience. Vegetable residues, rich in

organic matter, can be valorized through composting, vermicomposting,

anaerobic digestion, biochar production, direct application, or integrated

system (biochar + compost) to produce nutrient-rich soil amendments and

renewable energy. These approaches enhance soil fertility, microbial activity,

water retention, and carbon sequestration. However, challenges persist,

including heavy metal contamination, technical constraints, and adoption

barriers. Recent advances, such as microbial inoculants, enzyme-based

pretreatment, integrated residue management systems, and emerging AI and

low-energy technologies offer promising solutions to address these limitations.

This review systematically synthesizes current practices, emerging innovations,

and policy frameworks to advance sustainable residue utilization and

agricultural transformation.
KEYWORDS

vegetable residue, soi l health, circular agriculture, cl imate resil ience,
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GRAPHICAL ABSTRACT
1 Introduction

The rapid global population expansion, projected to reach 9.1billion

by 2050 (a 34% increase), coupled with growth in industrialized

agriculture, has resulted in a large amount of food residue generation,

particularly vegetable residue, posing serious environmental problems

(1). Food security, soil deterioration, and environmental pollution are

pressing challenges that require the agricultural sector to shift to

sustainable practices (2). Ecosystem health and long-term agricultural

production are seriously threatened by conventional farming techniques

that rely primarily on synthetic fertilizers and intensive land use, which

greatly increase soil erosion, nutrient depletion, and water

contamination (3). Circular agriculture, which prioritizes resource

efficiency, residue recycling, and nutrient recovery, has become a

practical strategy for maintaining agricultural sustainability (4).

Globally, around 1.3 billion tons of edible food are wasted annually,

ending up in landfills and contributing to greenhouse gas emissions,
Abbreviations: AD, Anaerobic Digestion; ABC, Agricultura de Baixo Carbono;

CEC, Cation Exchange Capacity; C: N, Carbon,to,Nitrogen ratio; EPA,

Environmental Protection Agency; SOM, Soil Organic Matter; VFAs, Volatile

Fatty Acids; MSR, Municipal Solid Residue; PW, Press Water; RMSE, Root Mean

Square Error; IPCC, Intergovernmental Panel on Climate Change; CEA,

Controlled Environment Agriculture; R&D, Research and Development; SMEs,

Small and Medium,sized Enterprises; AI, Artificial Intelligence; EU, European

Union; CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats;

IRMS, Integrated Residue Management Systems.
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environmental degradation, and an estimated $990 billion in economic

losses across developed and developing nations (5, 6). Vegetable

residues, which contributes 40–50% of edible food waste (7), offer a

sustainable alternative to synthetic fertilizers due to their high organic

matter content and essential nutrients like nitrogen (N), potassium (K),

and phosphorus (P) (7, 8). By converting these residues into soil

supplements, we can enhance nutrient cycling and improve soil quality,

addressing both waste management challenges and advancing the

principles of circular agriculture (9).

Composting, anaerobic digestion, vermicomposting, biochar

formation, direct application, and integrated system (biochar +

compost) are methods used in agriculture to use vegetable residue. By

transforming the residue into stable, nutrient-rich forms, these activities

can enhance microbial activity, water retention, and soil fertility.

Compost made from vegetable residue, for example, has been shown

to boost cation exchange capacity, boost soil organic carbon levels, and

sustain beneficial microbial populations (10). The pyrolysis of organic

residue can also produce biochar, which can improve the soil structure

and the availability of nutrients while serving as a long-lasting carbon

sink (11). Vegetable residues contribute 58% of U.S. landfill methane (7,

12). Composting these residues reduces methane emissions by 38–84%

while improving soil CEC by 20–40% (12, 13).

This review targets smallholder and peri-urban agricultural

systems, excluding large-scale municipal facilities due to their

fundamentally different infrastructural requirements and operational

scales. We focus on practical, scalable solutions that can be

implemented in resource-constrained settings while maximizing

environmental and agronomic benefits.
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2 Scientific approaches for utilizing
vegetable residue

2.1 Direct application

The direct application of vegetable residue to soil enhances

fertility by promoting microbial-mediated nutrient cycling, where

decomposers like Bacillus (Table 1) and Trichoderma break down

cellulose, while nitrogen-fixing (Nitrosomonas) and phosphate-

solubilizing bacteria (Pseudomonas; Table 1) convert organic

matter into plant-available nutrients (14). Residue composition

influences nutrient release low C:N ratios (e.g., leafy greens)

mineralize nitrogen rapidly, whereas high C:N materials (e.g.,

woody stems) may temporarily immobilize nitrogen, requiring

pre-composting (15). Lignin-degrading fungi contribute to humus

format ion, improving soi l s tabi l i ty , whi le microbia l

exopolysaccharides enhance aggregation, reducing reliance on

synthetic fertilizers and suppressing pathogens (16). Challenges

like nutrient immobilization or allelopathic effects (e.g., onion/

garlic peels) can be mitigated through controlled decomposition,

aligning with circular agriculture by closing nutrient loops (17).
2.2 Composting

Composting is a vital practice in sustainable agriculture,

enhancing soil fertility by improving organic matter content,

nutrient availability, and microbial activity, which collectively

boost soil structure, water retention, and plant productivity

(Figure 1) (14, 18–20). The decomposition process is driven by

dynamic microbial communities, including bacteria (Bacillus

subtilis; Table 1), fungi, and actinomycetes, whose activity is

optimized at a carbon-to-nitrogen (C:N) ratio of ~30:1, ensuring

efficient breakdown while minimizing odor and nutrient

imbalances (21). Key operational factors such as aeration

(maintaining aerobic conditions), moisture (50–60%; Figure 2),

and residue composition (Table 2) critically influence composting

efficiency (22). Beyond agronomic benefits, composting mitigates

environmental impacts by diverting organic waste from landfills,

reducing greenhouse gas emissions (23, 24).

Composting performance is critically influenced by feedstock

composition, particularly the carbon-to-nitrogen (C:N) ratio and

moisture content, which govern microbial metabolic activity and

heat generation. High-moisture, nitrogen-rich vegetable residues
Frontiers in Soil Science 03
often induce anaerobic conditions due to excessive water retention,

slowing decomposition and promoting foul odors (14). Conversely,

lignocellulosic bulking agents such as maize straw (C:N ~60–80:1,

moisture <15%) or dry leaves (C:N ~40–60:1, moisture 10-20%)

provide structural porosity, enhance oxygen diffusion, and balance

excess nitrogen (25). Research demonstrates that blending these

feedstocks in ratios achieving an initial C:N of 25–30:1 significantly

accelerates microbial colonization, with thermophilic bacteria like

Bacillus spp., Thermus spp. proliferating rapidly, driving

composting temperatures to 55–65°C within 48 hours (26). A

study by Finore et al. found that a 3:1 ratio of vegetable residue

to maize straw reduced composting time by 40% compared to

unmixed vegetable residue, while maintaining >55°C for 5 (+) days,

ensuring pathogen inactivation (EPA Class A standards) (27).

Moisture optimization (50–60%) through bulking agents prevents

leachate formation and enhances lignin degradation by

thermophilic fungi like Aspergillus fumigatus (28). Strategic

blending thus offers a scalable solution to improve composting

kinetics, reduce greenhouse gas emissions, and yield stable,

nutrient-rich compost (29).
2.3 Vermicomposting

Vermicomposting enhances soil fertility and agricultural

productivity by promoting nutrient cycling, microbial

biodiversity, and humic substance formation through earthworm-

mediated decomposition of organic matter (10, 30–32).

Vermicompost increases the bioavailability of essential nutrients

(N, P, K; Table 1) and improves soil structure by accelerating

organic matter breakdown into plant-accessible forms (33).

According to studies conducted by Blouin et al., application of

vermicompost increases plant biomass significantly, with average

increases of 26% in commercial yield and 78% in microbial biomass

(34). Its humic compounds and microbial communities

(Pseudomonas putida; Table 1) further enhance soil ecosystem

functioning, microbial biomass, and long-term fertility (35–38).
2.4 Anaerobic digestion

Anaerobic digestion (AD) of vegetable residue is a four-stage

biochemical process (hydrolysis, acidogenesis, acetogenesis, and

methanogenesis; illustrated in Figure 2) mediated by specialized
TABLE 1 Key microorganisms in vegetable residue decomposition and their roles.

Microorganism Decomposition role Process involved Optimal condition Reference

Bacillus subtilis Cellulose degradation Composting and
Direct application

pH6.5–7.5, 30°C–37°C (14)

Trichoderma spp Lignin breakdown Biochar Aerobic, mesophilic range. (53)

Pseudomonas spp Phosphate solubilization Direct application Moist, neutral pH (68)

Methanobacterium spp Methane production Anaerobic digestion Anaerobic,35–40°C (39)

Pseudomonas putida Phosphate solubilization Vermicomposting 25–30°C, moist substrate (32)
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microbial communities to produce biogas (CH4 and CO2) (39, 40).

Hydrolysis, the rate-limiting step, breaks down recalcitrant cellulose

and hemicellulose via extracellular enzymes from Clostridium and

Bacteroides spp., with enzymatic pretreatments often required to

enhance efficiency (32, 41, 42). Acidogenic bacteria (e.g.,

Clostridium, Enterobacter) ferment monomers into volatile fatty
Frontiers in Soil Science 04
acids (VFAs), while acetogens (e.g., Syntrophobacter) further convert

VFAs to acetate, H2, and CO2, critical substrates for methanogenesis

(43–46). Methanogenic archaea (e.g., Methanobacterium spp.;

Table 1) then produce methane, with process efficiency dependent

on substrate composition, microbial dynamics, and operational

conditions (pH, temperature, retention time) (47–50). AD offers
FIGURE 2

Biochemical processes of anaerobic digestion.
FIGURE 1

Benefits of compost, highlighting its role in improving soil quality and plant growth.
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sustainable organic residue management and renewable energy

generation, though optimization is needed for consistent biogas

quality and integration into energy systems (25, 51, 52).
2.5 Biochar production

The thermochemical conversion of vegetable residue into biochar

via pyrolysis a process involving oxygen-limited heating (100–500+ °C)

yields a carbon-rich material with applications in carbon sequestration,

soil enhancement, and contaminant adsorption (53, 54). Biochar

properties (e.g., porosity, functional groups, stability) depend on

pyrolysis conditions (temperature, heating rate, residence time), with

higher temperatures favoring carbonization and lower temperatures

retaining oxygenated groups for nutrient interactions (55, 56). Its use in

soils improves water retention, nutrient availability, and microbial

activity (Trichoderma spp.; Table 1) while mitigating greenhouse
Frontiers in Soil Science 05
gases through carbon stabilization and reduced N2O emissions (37,

53). Additionally, biochar effectively adsorbs heavy metals (e.g., Pb, Cd,

As) and organic pollutants in wastewater, aligning with circular

agriculture by diverting residue from landfills (75, 76).
3 Benefits of returning vegetable
residue to soil

3.1 Soil fertility improvement

The return of vegetable residues to the soil enhances soil fertility

through improved nutrient availability and increased microbial

activity, as demonstrated by studies showing that crop residue

incorporation, such as tomato biomass, boosts soil organic carbon

(SOC) and stimulates beneficial soil biological processes essential

for nutrient cycling and crop productivity (Figure 3) (69). Although
TABLE 2 Comparative analysis of vegetable residue utilization techniques.

Technique Composting Vermicomposting Anaerobic
digestion

Biochar
production

Direct
application

Integrated
system
(Biochar +
Compost)

Complexity Moderate (requires
monitoring of C:N
ratio, moisture,
and aeration).

Moderate, i.e., requires
controlled conditions
(temperature, moisture,
and species).

High, i.e., requires
controlled conditions
(pH, temperature,
and
microbial
communities).

Moderate, i.e., requires
temperature control and
specialized
pyrolysis equipment.

Low, i.e., requires
simple incorporation
into the soil.

Energy Balance Neutral, i.e., requires
no external energy
input but
employs aeration.

Neutral, i.e., no significant
amount of energy
inputs required.

Positive, i.e.,
produces biogas.

Variable, i.e., depending
on the pyrolysis system,
can be positive
or negative.

Neutral-positive, i.e.,
minimal input
of energy.

Synergistic
benefits

Cost Low–moderate cost
for equipment
and labor.

Low–moderate, i.e.,
requires worm beds and
maintenance
infrastructure.

High, i.e., capital
intensive for reactors
and handling of gas.

High, i.e., requires high
cost of pyrolysis units
and feedstock
preparation.

Very Low, i.e., no, or
minimal cost
of processing.

Varies

Policy needs Residue
diversion laws

Standard quality Carbon credits Extension programs Feed-in tariffs R&D
incentives.

Suitable for Most farm sizes Peri-urban and
organic farms

Carbon farming Small farms Commercial farms Large-scale
operations

Risk Low pathogen risk if
properly managed.

Low–moderate, i.e., quality
of feedstock, sensitivity of
temperature and risk of
pests if not
properly managed.

Moderate, i.e., odor,
instability in
procedure and
toxic byproducts.

Low. (Polluted feedstock
can cause heavy metal
contamination.

Moderate, i.e.,
pathogen survival,
phytotoxicity and
nutrient leaching.

Moderate
(depends on
system design)

Nutrient
Recovery

High, i.e., enhances
soil fertility, release of
NPK and
microbial activity.

Very high, i.e., improves
microbial activity,
produces vermicast rich in
nutrients and improves
humus content.

Moderate to high,
i.e., recovers adequate
nutrients but with
possible NH3 loss.

Moderate, i.e., locks up
nutrients in stable
states, improves CEC
and immobilizes
nitrogen temporarily

High, i.e., availability
of rapid nutrients; risk
of Immobilization of
Nitrogen with high C:
N ratio.

High
(synergistic
nutrient
retention).

GHG
reduction

Moderate, i.e., reduces
landfill methane but
may emit CO2 and
N2o
during decomposition.

Moderate–high, i.e.,
reduces methane from
landfills if well managed.

High, i.e., reduction
of methane emissions
from landfills and
displaces fossil fuels.

Very High, i.e., reduces
N2O emissions and
long-term carbon
sequestration.

Low–moderate, i.e., no
processing emissions,
but may release
methane and N2O if
raw material
decomposes.

High
(combined
carbon
sequestration
and emission
reduction)

Reference (57, 58) (17, 59, 60) (61) (62, 63) (64, 65) (66, 67)
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residue incorporation can raise nitrous oxide (N2O) emissions by

approximately 29.7%, it also reduces nitrate leaching by 14.4%,

depending on soil conditions, while compost amendments (10–20

Mg ha−1) increase cation exchange capacity (CEC) by 20–40%,

significantly reducing nutrient leaching losses (30–50%) without

depleting plant-available nutrients (16). Moreover, residue return

enhances microbial biomass carbon and enzymatic activity, leading

to higher crop yields (70), with organic amendments like compost

and manure increasing dehydrogenase, cellulase, and urease

activities by up to 7.5, 6.8, and 17.9 times, respectively, compared

to untreated soils, highlighting the vital role of organic matter in

sustaining soil health and agricultural productivity (71, 72).
3.2 Organic matter enrichment

Incorporating organic matter into soil systems is essential for

improving microbial activity, soil structure, and water retention all of

which promote resilient ecosystems and sustainable farming methods

(25). OM serves as a nucleus for soil aggregate formation, reducing bulk

density by up to 12% and increasing porosity by 15–30%, thereby

facilitating gas exchange and root proliferation (73). The stabilization of

carbon varies by treatment, with lignin-rich biochar retaining 90% of

carbon over centennial timescales, compared to 40–60% for compost

(74). These improvements correlate strongly with aggregate stability (r²

= 0.78, p < 0.001) and microbial enzymatic activity, underscoring the

role of organic matter in soil structure and fertility (Figure 3) (75). In

the soil ecosystem, the addition of organic matter also promotes

microbial activity and multiplication. Microbial communities thrive

in residue-amended soils, accelerating nutrient mineralization and

promoting disease-suppressive properties (55, 76).
3.3 Climate change mitigation

Methane (CH4) has a global warming potential around 25 times

that of carbon dioxide (CO2) over a 100-year period, so reducing
Frontiers in Soil Science 06
methane emissions from landfills is essential (47). Composting

diverts organic waste from landfills, cutting methane (CH4)

emissions by 38–84% (77). Anaerobic digestion of residues

further mitigates 0.25–0.50 kg CH4 per kg volatile solids (57).

When converted to biochar, vegetable residues reduce N2O

emissions by 30–80% in nitrogen-rich soils by inhibiting

microbial nitrification. Integrated biochar-compost systems

sequester 2.8–4.2 Mg CO2-eq/ha/yr, with additional energy

recovery through 120–150 m³ CH4/ton of residue (78). Biochar-

amended soils show a 78% increase in SOC, offering long-term

carbon storage. These practices align with natural climate solutions,

potentially delivering 37% of cost-effective CO2 mitigation needed

by 2030 (see Figure 4 for conceptual framework) (79).
3.4 Residue management solution

The scale of vegetable residue generation presents both a

challenge and an opportunity for sustainable residue

management. Post-processing residues including peels, seeds, and

pomace contribute 20–30% of total agro-industrial waste, with

improper disposal leading to significant environmental

consequences (80–82). When landfilled, these residues decompose

anaerobically, emitting 50–100 m³ of methane (CH4) per ton, a

greenhouse gas with 28–36 times the global warming potential of

CO2 (49, 83).

Anaerobic digestion of vegetable residues yields 0.25–0.45 kWh

of biogas per kg, offering a renewable alternative to fossil fuels (78,

84, 85). Beyond energy recovery, agricultural residues such as

potato peels have demonstrated 80–95% adsorption efficiency for

heavy metals (Pb2+, Cu2+) in wastewater treatment, presenting a

low-cost biosorption solution (73, 86–90). Heavy metal

contamination, particularly in urban-grown crops, affects 12–40%

of compostable residues, often exceeding regulatory thresholds (EU

86/278/EEC for Cd/Pb) (91). To ensure safe reuse, preprocessing

steps such as biochar stabilization may be required (92).

Additionally, integrating AI-driven waste classification and
FIGURE 3

Process of vegetable residue decomposition and its impact on soil fertility and plant growth. Illustrates the breakdown of vegetable residue into
nutrients (NPK) enhancing soil properties and promoting plant development.
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blockchain-based traceability systems could optimize residue

sorting and supply chain transparency (93). A systems-level

approach, combining technological innovation with policy

incentives, could reduce landfill dependence by 30–50%, while

aligning with SDG 12.3’s target to halve food waste by 2030 (see

Table 3 for challenges and mitigations) (51, 94–96).
4 Challenges and research gaps

4.1 Technical constraints

The processing and management of residue materials face

significant technical challenges, particularly due to high moisture

content and compositional variability, which hinder efficient pre-

treatment, drying, and standardization (97–99). For instance, press

water (PW) from wood fuel preparation contains 60–80% moisture,
Frontiers in Soil Science 07
requiring energy-intensive mechanical pressing and thermal drying, yet

residual moisture persists even under vacuum-drying conditions (≤5%

remaining at 60°C and 0.1 bar) due to strong cellulose-water interactions

(100, 101). Similarly, municipal solid residue (MSR) exhibits moisture

levels of 30–50%, complicating drying processes, while its heterogeneous

organic–inorganic composition (e.g., 40–60% organic matter, 20–40%

inert materials) impedes standardization. Industrial residues further

exacerbate variability, with pH fluctuations (4.5–8.5) and elemental

disparities (e.g., C/N ratios of 15–50) destabilizing co-digestion efficiency

with sewage sludge by up to 30%. These constraints demand adaptive

solutions, including advanced dewatering technologies (e.g., superheated

steam drying, reducing energy use by 25%) and AI-driven

compositional analysis, to enhance process flexibility while

maintaining output quality (102–104). Addressing these gaps is

critical to improving resource recovery, reducing energy burdens

(current drying consumes 15–30% of total processing energy), and

achieving sustainable residue management (100, 105–107).
TABLE 3 Challenges and mitigation strategies in vegetable residue valorization.

Challenge Description Research need Policy recommendation

Pathogen survival Risk during raw application Microbial risk assessment tools Mandatory pretreatment
guidelines

Heavy metal
contamination

Risk in urban compost and
MSW inputs

Real-time sensors for metal detection Set regulatory limits in
compost certification

High moisture
content

Reduces energy efficiency in drying or
pyrolysis

Develop low-energy dewatering techniques Fund drying innovation for SMEs

Public awareness
and adoption

Limited farmer
knowledge

Impact assessment studies on
soil performance

Lunch agro-reuse
campaigns
FIGURE 4

Conceptual framework of circular agriculture through valorization of vegetable residue.
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4.2 Economic challenges

High capital costs and uncertain returns deter investment in

residue processing technologies. Small-scale pyrolysis units require

$20,000–$50,000 upfront with payback periods exceeding five years,

compared to synthetic fertilizers’ immediate affordability (49).

Market immaturity also plays a role where biofertilizers occupy

just 1.2% of the $190 billion synthetic fertilizer market due to

farmer uncertainty and delayed nutrient release (53). Successful

models, however, demonstrate viable pathways. Brazil’s “ABC

Program” subsidizes 60% of anaerobic digester costs for farms,

while the Netherlands’ “Waste-to-Farm” initiative reduces

feedstock expenses by 25% through supermarket-grower

partnerships (96, 97). Scaling such approaches requires targeted

subsidies, circular business models, and awareness campaigns to

demonstrate long-term agronomic and economic benefits (108).
4.3 Social and behavioral factors

Limited knowledge, cultural preferences for chemical fertilizers,

and the perception that it will be labor-intensive are the main

reasons why farmers are reluctant to embrace residue valorization

(44). Despite the long-term benefits to soil health, surveys show that

many small-scale farmers consider composting to be more time-

consuming than synthetic fertilizers (17). Furthermore, while

contributing to air pollution, conventional methods like as open-

field burning continue to be used because they are convenient (99).

To modify attitudes, behavioral change initiatives and examples of

successful case studies must be presented (109).
4.4 Policy and regulatory gaps

The valorization of vegetable residues faces significant policy

fragmentation, particularly in compost safety standards and

enforcement. For instance, the European Union’s stringent

thresholds (EC No. 2003/2003) for heavy metals, 150 mg/kg for lead,

restrict cross-border trade of organic amendments, unlike more lenient

regulations in developing nations like India’s 300 mg/kg limit (110).

This disparity undermines global market integration for compost

products. Additionally, certification systems for residue-derived

fertilizers remain underdeveloped, with only 12% of low-income

countries implementing quality control programs (91). Without

enforced pretreatment protocols examples like thermophilic

composting for pathogen reduction, untreated residues risk

contaminating soils and food systems (88). Urban-rural policy

disparities further intensify adoption challenges; while municipal

biogas projects in China receive subsidies of approximately thirty

million Chinese yuan, smallholder farmers lack equivalent financial

support (111). Risks are further increased by lax enforcement since

untreated leftovers could contaminate food systems (112). To address

these gaps, harmonized international standards like Codex

Alimentarius guidelines and incentive-based mechanisms such as

California’s “carbon credit for compost” program ($50/ton for
Frontiers in Soil Science 08
carbon sequestration) are essential to align stakeholder interests

Legislators must create uniform standards and use certification

programs to reward adherence (113).
4.5 Logistical issues

Collection and transportation are made more difficult by the

decentralized character of vegetable residue generation, especially in

rural locations (100). Rapid processing is required due to

perishability, although storage facilities are frequently insufficient

(114). Large-scale composting in urban settings is limited by space,

and biomass aggregation is a problem for remote farms (97). These

difficulties might be lessened by community-based composting

centers and mobile pyrolysis units (115).
4.6 Pathogen and contaminant risks

By accumulating dangerous germs and heavy metals, vegetable

residue presents serious hazards of contamination and pathogens. The

necessity for better water management techniques to reduce these

dangers is highlighted by studies showing that pathogens like

Salmonella Typhimurium and Listeria monocytogenes can survive in

hydroponic systems and contaminate lettuce throughout its growing

cycle (116). Furthermore, raw vegetables may become infected by

irrigation water tainted with these infections; river waters have higher

concentrations of Salmonella than other sources (117). Additionally,

the use of compost made from municipal solid residue in urban

agriculture raises worries regarding the buildup of heavy metals in

crops. greater concentrations of these metals are seen at greater

compost ratios, which calls for strict monitoring to guarantee food

safety (110). The significance of putting into practice efficient

mitigation techniques to deal with both chemical and microbiological

contaminants in vegetable production systems is generally highlighted

by these findings (109, 118).
5 Innovations and future directions

5.1 Emerging AI and low-energy
technologies

Current studies in machine vision-based deep learning systems like

MoistNet and low-energy biodrying provide scalable answers to the

main problems of vegetable residue valuation in resource-constrained

environments (106). High moisture content, a paucity of shredders,

and restricted access to pyrolysis units are obstacles to traditional

composting and biochar production, especially for smallholders (119).

In contrast, MoistNet allows for real-time, non-invasive moisture

assessment through RGB or hyperspectral imaging, allowing for

dynamic feedstock classification for optimal processing (120). High-

moisture residues are diverted to passive solar biodrying, which reduces

preprocessing energy demands by up to 40%, while low-moisture

residues less than 15% can be directly pyrolyzed in flame-cap kilns
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(121, 122). This approach minimizes reliance on mechanical shredders

and centralized pyrolysis infrastructure, as automated moisture

prediction (RMSE <2%) ensures consistent biochar yields even with

heterogeneous feedstocks (122, 123). Integrating MoistNet with edge-

computing devices such as Raspberry Pi, facilitates decentralized

residue management, enabling smallholders to adopt precision

agriculture techniques without capital-intensive equipment (124).

Field trials have shown a 30–50% improvement in biochar

consistency when MoistNet-guided protocols are applied,

highlighting its potential for sustainable biomass valorization (125).
5.2 Biotechnological advancements

Biotechnological advancements, particularly in the fields of

microbial inoculants and enzymatic pretreatment, are transforming

the management of vegetable residue by enhancing decomposition

efficiency and resource recovery. Engineered microbial inoculants,

comprising tailored strains of bacteria and fungi, accelerate the

breakdown of recalcitrant components like cellulose and lignin,

reducing composting time and improving nutrient retention in the

end products (126, 127).

These inoculants also suppress pathogens and enhance biogas

production in anaerobic digestion systems, making them versatile

tools for residue valorization. Complementing this, enzymatic

pretreatment employs specific enzymes such as cellulase and

ligninase to degrade complex plant structures, thereby increasing

the digestibility of vegetable residue for downstream processes like

biofuel production and composting (128).

Beyond traditional biotechnologies, emerging tools are

revolutionizing residue valorization. AI-assisted residue sorting

like hyperspectral imaging could optimize feedstock composition

for microbial consortia by precisely segregating lignocellulosic

fractions (129). Concurrently, CRISPR-modified Trichoderma

strains demonstrate enhanced ligninolytic activity (up to 40%

faster degradation than wild-type strains), addressing a key

bottleneck in biochar production. These innovations synergize

with existing microbial approaches to accelerate decomposition

while reducing preprocessing energy costs (130).

The synergy between these technologies, where enzymatic

pretreatment simplifies residue substrates and microbial inoculants

further decompose them, offers a sustainable solution for converting

low-value organic residue into high-value products like biofuels,

compost, and animal feed (131). Despite challenges such as cost-

effectiveness and regulatory hurdles, ongoing research in genetic

engineering and synthetic biology promises to optimize these

technologies, paving the way for their integration into circular

economy frameworks (132).
5.3 Integrated residue management
systems

Integrated Residue Management Systems (IRMS) offer a

sustainable solution for managing vegetable residue by combining
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composting, anaerobic digestion, and biochar production to

maximize resource recovery and minimize environmental impact.

Vegetable residue, rich in organic matter, can be composted to

produce nutrient-rich soil amendments that enhance soil health

and support agricultural productivity (133, 134). Anaerobic

digestion processes this residue to generate biogas, a renewable

energy source, while also producing digestate that can be used as

fertilizer. Additionally, converting vegetable residue into biochar

through pyrolysis not only sequesters carbon but also creates a

stable soil conditioner that improves water retention and nutrient

availability (85).

By integrating these technologies, IRMS ensures efficient

utilization of vegetable residue, reduces greenhouse gas emissions,

and supports circular economy principles. Studies highlight that

such systems can significantly enhance residue valorization and

contribute to climate change mitigation (115).
5.4 Circular agriculture integration in
vegetable residue valorization

The integration of design principles and closed-loop systems in

vegetable valorization emphasizes sustainable techniques that

improve resource efficiency and reduce residue (128). Advanced

extraction techniques, such as subcritical and supercritical fluid

technologies, allow the recovery of bioactive chemicals from

vegetable residue, contributing to a circular agriculture by

transforming residue into beneficial products for the food and

pharmaceutical industries (135). In addition, bioponic systems

use organic residue streams as nutrient sources, promoting local

nutrient cycling and enhancing plant development while lowering

dependency on conventional fertilizers (134). Composting in

controlled environment agriculture (CEA) reinforces this closed-

loop method by turning biowaste into nutrients for crop

production, thus reducing environmental concerns (128).

The EU Waste Framework Directive, as well as subsidies for

residue-to-resource initiatives, play critical roles in supporting

sustainable practices in the bio-based economy. These policies

stimulate the valorization of agricultural residues and food waste,

facilitating the transition to a circular agriculture by including

composting and biowaste management into urban farm systems (96,

134). However, scalability issues persist, notably with decentralized

composting hubs and the certification of biochar for carbon credits,

which require solid regulatory frameworks and stakeholder

participation to enable effective implementation (136, 137).

Integrating these approaches not only improves resource recovery

but also tackles environmental problems, therefore contributing to a

carbon-negative cycle in agricultural systems (138).

Metrics for analyzing circular agriculture performance in

vegetable valorization include parameters such as resource

efficiency, carbon footprint reduction, and economic feasibility.

Nutrient recovery rates can be used to quantify resource

efficiency. According to studies, only 9.6% of materials processed

in the EU were secondary materials, emphasizing the need for

enhanced recycling processes (139). Carbon footprint reductions
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are evident in food-residue reduction initiatives, where turning

surplus food into processed products resulted in net revenue and

variable CO2 savings, highlighting the potential for sustainable

practices (140). Circular production models, such as those used in

olive oil manufacturing, have been shown to save costs and improve

sustainability by reducing the use of virgin materials and residue

(141). Furthermore, urban regeneration programs that prioritize

recycling can significantly decrease greenhouse gas emissions,

adding to the economic and environmental benefits of circular

agriculture principles (142).
6 Conclusion

The valorization of vegetable residues through soil replenishment

offers a scientifically validated pathway to address global challenges in

residue management and agricultural sustainability. This review

demonstrates that composting, vermicomposting, anaerobic

digestion, and biochar production effectively transform residues

into resources, enhancing soil fertility (e.g., SOC increase by 15–

30%, CEC improvement by 20–40%), mitigating greenhouse gas

emissions (e.g., 30–80% reduction in landfill methane), and

reducing reliance on synthetic fertilizers. The biochemical richness

of vegetable residues cellulose, hemicellulose, and essential nutrients

supports microbial diversity and nutrient cycling, underpinning

circular agriculture principles.

Despite these benefits, challenges persist, including pathogen

risks (e.g., Salmonella survival in untreated residues), heavy metal

contamination (e.g., Pb/Cd accumulation), and economic barriers

(e.g., high pyrolysis unit costs). Emerging innovations AI-driven

moisture sensors (MoistNet, RMSE <2%), CRISPR-enhanced

microbial consortia (40% faster lignin degradation), and

integrated systems (compost-biochar synergies) show promise in

overcoming these limitations. Policy frameworks must prioritize

standardized compost safety regulations (e.g., harmonizing EU/

India heavy metal thresholds) and incentivize adoption through

subsidies (e.g., Brazil’s ABC Program).

Future research should focus on field-scale validation of

integrated technologies under diverse pedoclimatic condition,

lifecycle assessments to quantify net carbon sequestration and

energy efficiency and socioeconomic models to accelerate farmer

uptake. By bridging these gaps, vegetable residue valorization can

transition from a niche practice to a cornerstone of sustainable

agriculture, aligning with SDGs 2 (Zero Hunger) by improving soil

productivity and 13 (Climate Action) through carbon sequestration.
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The imperative is clear: interdisciplinary collaboration and policy

action are essential to scale these solutions and secure resilient food

systems for a growing population.
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Towards circular economy practices in food waste management: a retrospective
overview and a research agenda. BFJ. (2022) 124:478–500. doi: 10.1108/BFJ-01-2022-
0072

97. Li CH, Lee TT, Lau SSY. Enhancement of municipal solid waste management in
hong kong through innovative solutions: A review. Sustainability. (2023) 15:3310.
doi: 10.3390/su15043310

98. Watabe S, Lohman HAC, Li Y, Morgan VL, Rowles LS, Stephen T, et al.
Advancing the economic and environmental sustainability of the NEWgenerator
nonsewered sanitation system. ACS Environ Au. (2023) 3:209–22. doi: 10.1021/
acsenvironau.3c00001

99. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
Gasification of refuse-derived fuel from municipal solid waste for energy production: a
review. Environ Chem Lett. (2021) 19:2127–40. doi: 10.1007/s10311-020-01177-5

100. Sailer G, Empl F, Kuptz D, Silberhorn M, Ludewig D, Lesche S, et al.
Characteristics and anaerobic co-digestion of press water from wood fuel
preparation and digested sewage sludge. Fermentation. (2022) 8:37. doi: 10.3390/
fermentation8010037
frontiersin.org

https://doi.org/10.3390/su15032527
https://doi.org/10.1186/s42834-023-00176-9
https://doi.org/10.5194/soil-9-261-2023
https://doi.org/10.1007/s10973-023-12199-w
https://doi.org/10.1021/acs.est.9b05377
https://doi.org/10.3390/agronomy12112804
https://doi.org/10.1007/s13593-022-00819-y
https://doi.org/10.3390/agronomy11061175
https://doi.org/10.3390/su13052612
https://doi.org/10.3390/agronomy9050254
https://doi.org/10.3390/su14116684
https://doi.org/10.3389/fchem.2022.1078170
https://doi.org/10.1007/s42729-022-00873-1
https://doi.org/10.1007/s10311-022-01424-x
https://doi.org/10.3303/CET2186225
https://doi.org/10.3390/su15010625
https://doi.org/10.3390/agriculture10040113
https://doi.org/10.3390/agronomy13041054
https://doi.org/10.3390/agronomy13041054
https://doi.org/10.3390/su14137840
https://doi.org/10.3389/fpls.2022.880181
https://doi.org/10.3389/fmicb.2023.1173986
https://doi.org/10.1111/sum.12921
https://doi.org/10.1186/s43014-023-00205-5
https://doi.org/10.3390/su15054430
https://doi.org/10.1038/s41598-023-34174-z
https://doi.org/10.3390/en12010026
https://doi.org/10.1073/pnas.1710465114
https://doi.org/10.1073/pnas.1710465114
https://doi.org/10.2495/EID200041
https://doi.org/10.3389/fpls.2022.938480
https://doi.org/10.1016/j.jece.2023.110049
https://doi.org/10.3389/fbioe.2021.802543
https://doi.org/10.1007/s13399-019-00482-6
https://doi.org/10.1038/s41598-022-17461-z
https://doi.org/10.3390/foods12030681
https://doi.org/10.1371/journal.pone.0267719
https://doi.org/10.3390/horticulturae8111034
https://doi.org/10.3390/catal15030243
https://doi.org/10.1007/s11356-011-0444-1
https://doi.org/10.1016/j.jhazmat.2013.12.018
https://doi.org/10.3390/su151310482
https://doi.org/10.1155/2017/2370927
https://doi.org/10.1186/s40793-022-00420-6
https://doi.org/10.1186/s40793-022-00420-6
https://doi.org/10.1108/BFJ-01-2022-0072
https://doi.org/10.1108/BFJ-01-2022-0072
https://doi.org/10.3390/su15043310
https://doi.org/10.1021/acsenvironau.3c00001
https://doi.org/10.1021/acsenvironau.3c00001
https://doi.org/10.1007/s10311-020-01177-5
https://doi.org/10.3390/fermentation8010037
https://doi.org/10.3390/fermentation8010037
https://doi.org/10.3389/fsoil.2025.1624486
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Quansah et al. 10.3389/fsoil.2025.1624486
101. Sapci-Ayas Z. Investigation of direct applicability of modified agricultural waste
for contaminant removal from real textile wastewater. Water. (2021) 13:1354.
doi: 10.3390/w13101354

102. Agrawal K, Goktas P, Holtkemper M, Beecks C, Kumar N. AI-driven
transformation in food manufacturing: a pathway to sustainable efficiency and
quality assurance. Front Nutr. (2025) 12:1553942. doi: 10.3389/fnut.2025.1553942

103. Firoozi AA, Firoozi AA, Oyejobi DO, Avudaiappan S, Flores ES. Emerging
trends in sustainable building materials: Technological innovations, enhanced
performance, and future directions. Results Eng. (2024) 24:103521. doi: 10.1016/
j.rineng.2024.103521

104. Skwarek P, Karwowska M. Fruit and vegetable processing by-products as
functional meat product ingredients -a chance to improve the nutritional value.
LWT. (2023) 189:115442. doi: 10.1016/j.lwt.2023.115442

105. Altgen M, Fröba M, Gurr J, Krause A, Ohlmeyer M, Sazama U, et al. Limits in
reaching the anhydrous state of wood and cellulose. Cellulose. (2023) 30:6247–57.
doi: 10.1007/s10570-023-05293-7
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