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Improving plant-available
water estimation using
model averaging of national
soil water models
Brendan P. Malone1*, Ross D. Searle2, Siyuan Tian3,
Thomas F. Bishop4 and Yi Yu1,3,4

1CSIRO Agriculture and Food, Black Mountain, ACT, Australia, 2CSIRO Agriculture and Food, St Lucia,
QLD, Australia, 3Fenner School of Environment and Society, Australian National University, Canberra,
ACT, Australia, 4Sydney Institute of Agriculture, School of Life and Environmental Sciences, The
University of Sydney, Sydney, NSW, Australia
Introduction:Multiple operational soil water balance (SWB) models provide real-

time estimates of soil moisture across Australia, yet differences in model

structure and outputs introduce uncertainty for end users. Model averaging

offers a potential pathway to improve predictions, but previous studies have

largely applied static weighting schemes. This study investigates a temporally

dynamic implementation of the Granger–Ramanathan (GRA) model averaging

approach to improve in situ and spatial estimates of plant-available water (PAW)

in southeastern and southern Australia.

Methods: Two hypotheses were tested: (1) that GRA model averaging improves

point-scale PAW predictions compared to individual models, and (2) that spatially

scaling GRA coefficients produces more accurate PAW maps than equal-weight

averaging. Soil moisture sensor networks from three study regions were used to

evaluate GRA performance at the probe scale. Spatial implementations of GRA

were developed using temporally varying coefficients, with and without

environmental covariates, and compared against static models and

simple averaging.

Results: At the point scale, GRA consistently outperformed individual SWB

models and equal weighting, achieving higher concordance with sensor

observations (e.g., mean concordance of 0.87 at Boorowa, 0.73 at Muttama,

and 0.90 at Eyre Peninsula, compared to 0.29–0.53 for individual models and

0.05–0.60 for equal weighting). Spatial GRA with dynamic coefficients improved

mapping performance relative to static approaches, but incorporating

environmental covariates did not consistently enhance accuracy and in some

cases reduced model generalizability.

Discussion: Dynamic GRA model averaging provides a practical framework for

integrating multiple national-scale SWB models to improve real-time PAW

prediction, particularly at well-instrumented locations. However, scaling these
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fsoil.2025.1629686/full
https://www.frontiersin.org/articles/10.3389/fsoil.2025.1629686/full
https://www.frontiersin.org/articles/10.3389/fsoil.2025.1629686/full
https://www.frontiersin.org/articles/10.3389/fsoil.2025.1629686/full
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fsoil.2025.1629686&domain=pdf&date_stamp=2025-08-26
mailto:brendan.malone@csiro.au
https://doi.org/10.3389/fsoil.2025.1629686
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/soil-science#editorial-board
https://www.frontiersin.org/journals/soil-science#editorial-board
https://doi.org/10.3389/fsoil.2025.1629686
https://www.frontiersin.org/journals/soil-science


Malone et al. 10.3389/fsoil.2025.1629686

Frontiers in Soil Science
benefits to landscape mapping remains challenging when sensor networks are

sparse or unevenly distributed. The approach has potential applications in

agricultural decision-making and environmental monitoring, but further

refinement is needed to optimise spatial implementations.
KEYWORDS

model averaging method, soil moisture, soil moisture sensing, Granger-Ramanathan
averaging, digital soil mapping, spatio-temporal modelling
1 Introduction

Understanding soil water content is essential for informed farm

management and operational decision-making. While many

farmers develop a sense of soil moisture conditions through

experience, this knowledge is increasingly supplemented by in situ

sensor networks and publicly available modelled estimates, such as

those from the Australian Bureau of Meteorology’s Landscape

Water Balance model (AWRA-L) system (1). These model

outputs, when combined with improved weather forecasts, are

contributing to more data-driven decision-making.

Soil water balance models simulate fluxes and storage based on

well-understood hydrological principles (2), incorporating inputs like

precipitation and evapotranspiration, along with loss terms such as

runoff and drainage. They vary in complexity and are embedded in

larger systems like SWAT (3), APSIM (4), and DSSAT (5). In

Australia, several national-scale models now deliver real-time soil

moisture estimates, including AWRA-L, the Soil Moisture Processing

System (SMIPS) by Stenson et al. (6), the Satellite-Guided Root-zone

moisture Analysis and Forecasting System (S-GRAFS) from 7, and

one developed by Wimalathunge and Bishop (8) which we will call

the USYD model. Many of these frameworks increasingly integrate

remote sensing and data assimilation approaches.

While the proliferation of soil water models provides valuable

information, it also introduces complexity. Models differ in

structure, assumptions, output units, soil depth support and

layering, and spatial resolution. These differences result in varying

outputs and biases, creating uncertainty for users trying to

determine which model to trust (9). Building a new mechanistic

model tailored to specific needs is one option—but risks adding

further duplication to an already crowded space.

An alternative to relying on a single soil water model is model

averaging—combining outputs from multiple models to reduce

individual biases and improve prediction accuracy. This empirical

strategy is widely used across hydrology, meteorology, and

environmental modelling (9–11) and is increasingly applied in

soil science (e.g., 12, 13).

Model averaging methods typically assume a linear

combination of predictions from different models. Equal

weighting (EW) is the simplest method but is generally naïve

because it disregards differences in model skill. A variance-
02
weighted approach, as proposed by Bates and Granger (14),

assigns lower weights to predictions with higher uncertainty—a

strategy that was implemented by Heuvelink and Bierkens (15) in

combining legacy soil maps with interpolated point predictions.

Other methods include Bayesian Model Averaging (16), Akaike

Information Criterion (AIC)-based averaging (17), and Mallows

model averaging (18), though these approaches are more

computationally intensive.

A particularly pragmatic and robust alternative is Granger–

Ramanathan (GRA) averaging (19). Unlike conventional averaging,

GRA relaxes the constraint that weights must sum to one by

incorporating an intercept term. The weights and intercept are

estimated via ordinary least squares (OLS) regression, allowing this

method to better account for covariance in model errors and reduce

prediction bias (9).

Recent studies in soil science have demonstrated the value of

model averaging for improving the prediction of soil attributes. For

example, O’Rourke et al. (13) combined vis-NIR and XRF spectral

models using formal model averaging procedures to estimate a

range of agronomic soil properties. They found that ensemble

predictions generally outperformed or matched individual

models, and that GRA provided a simple yet effective alternative

to more complex weighting schemes. Similarly, Malone et al. (12)

applied GRA model averaging to integrate spatial predictions of soil

hydraulic properties such as available water capacity, showing that

ensemble methods could yield more accurate maps than any

individual input product. However, both studies relied on static

model weights, and the literature remains sparse on how model

averaging might adapt over time or support dynamic soil moisture

prediction. Questions remain about how best to extend model

averaging approaches spatially—especially when in situ data are

sparse or unevenly distributed. The present study builds on these

earlier efforts by evaluating a temporally dynamic implementation

of GRA, applied at both point and landscape scales using multiple

national-scale soil water models. In doing so, we address a key gap

in the operationalization of ensemble modelling for real-time soil

moisture estimation and mapping.

In this study, we evaluate the use of GRA model averaging to

combine outputs from four national-scale soil water models. Using

soil moisture sensor data from three sites in southeastern and

southern Australia, we test two hypotheses:
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1. GRA improves point-based estimates of plant available

water (PAW) compared to individual models, and

2. Spatially scaling GRA coefficients leads to more accurate

PAW maps than equal-weight averaging.
While all three sites were used to test hypothesis 1, only the

CSIRO Boorowa Agricultural Research Station (BARS) was used to

evaluate hypothesis 2, given its smaller spatial footprint. This allows

us to explore the practical feasibility of extending point-based

model averaging to mapped soil moisture products, a key

requirement for supporting land management decisions.
2 Materials and methods

2.1 Study sites and soil moisture sensor
networks

This study was conducted across three regions in southeastern and

southern Australia with established soil moisture sensor networks and

available calibration knowledge: (1) CSIRO Boorowa Agricultural

Research Station (NSW), (2) a sub-catchment of Muttama Creek

(NSW), and (3) South Australia’s Eyre Peninsula (Figure 1).

2.1.1 CSIRO Boorowa Agricultural Research
Station

The 220 ha Boorowa Agricultural Research Station (BARS) is

located 3 km south of Boorowa, NSW [34.4386°S, 148.7231°E]. The
tiers in Soil Science 03
region has a temperate climate, receiving approximately 619 mm of

annual rainfall, and features soils derived from Silurian volcanic

materials. These soils are primarily classified as Yellow and Red

Chromosols or Kurosols (20), depending on the presence of subsoil

acidity. According to the World Reference Base for Soil Resources

(21), these correspond to Luvisols, Lixisols, or Acrisols, respectively.

Thirty-three capacitance probes are installed across BARS

(Figure 2), each 160 cm long (buried at 20 cm) and measuring at

eight depths (30–170 cm) daily since September 2019. Probes

measure relative permittivity, which is converted to volumetric

soil moisture (q) using factory calibration adjusted for

temperature, followed by a 2-point site-specific rescaling (22).

This scaling uses estimated drained upper limit (DUL) and lower

limit (LL) values derived via pedotransfer functions (23), informed

by soil texture, bulk density, carbon, and cation exchange capacity.

Rescaled soil moisture (Equation 1) is calculated as:

qS =
DULMM − LLMM  
DULobs − LLobs

 �(qF − DULobs) +  DULMM (1)

Here, qS is the rescaled soil moisture, qF is the factory-calibrated

moisture. DULMM and LLMM correspond to the measured or modelled

DUL and LL respectively, while DULobs and LLobs correspond to the

observed sensor upper and lower readings. The observed sensor limits

are estimated using the 95th and 5th percentiles. PAW is computed as.

qS − LLMM While the 2-point scaling has assumptions—especially

regarding DUL and LL correspondence—ongoing sensor data can

refine these calibrations over time. Where feasible, measured DUL and

LL improve reliability, though require more extensive fieldwork (24).
FIGURE 1

Locations of soil moisture sensor networks used in the study: (1) CSIRO Boorowa, (2) Muttama Creek Catchment, (3) Eyre Peninsula.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1629686
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Malone et al. 10.3389/fsoil.2025.1629686
2.1.2 Muttama Creek Catchment
The Muttama Creek Catchment (MCC) spans 1,025 km² in the

Murrumbidgee catchment of NSW, receiving 585–815 mm of

annual rainfall. Land use is dominated by mixed cropping and

grazing systems. Eight Sentek drill-and-drop probes (Figure 2), each

with sensors at depths from 30 to 100 cm, were installed using a

stratified sampling approach based on soil clay content (25),

elevation, land use, and site access.

Sensor outputs were converted back to sensed frequency (SF)

using the default Sentek calibration (26):

SF = a*qV
b + c (2)

where a = 0.232, b = 0.41, and c = −0.02. 2-point scaling was

then applied to SF using site-specific DUL and LL values estimated

via Padarian (23) pedotransfer functions, as described above.

2.1.3 Eyre Peninsula
The Eyre Peninsula (EP) in South Australia covers ~170,000

km², with annual rainfall ranging from 250 mm (north) to 500 mm

(south) and is characterized by diverse dryland cropping and

grazing systems. Soils vary widely across the region, including

calcareous soils, deep loams, sands, and red-brown earths.

A network of 43 capacitance probes (Figure 2) has been in place

since 2016 and is publicly accessible through the National Soil

Moisture Data Federation system (27). 2-point scaling was applied

to raw probe data at each site using DUL and LL values, either

measured directly or estimated via pedotransfer relationships based

on co-located soil attribute data (e.g., texture, bulk density).
2.2 Description of soil water models

Four national-scale soil water balance models were assessed

(Table 1), each differing in spatial resolution, depth support, model

mechanics, and assimilation of satellite data.

2.2.1 USYD model
Described by Wimalathunge and Bishop (8), the USYD model

is a daily timestep, multi-layer unsaturated flow model with 90 m

resolution, supporting application at continental scale using inputs

from the Soil and Landscape Grid of Australia (28). The model

simulates infiltration through five soil layers (0–100 cm) using DUL

and LL values derived via Padarian (23) pedotransfer functions.

Water moves freely between layers; excess beyond 100 cm is lost as

deep drainage. Surface runoff occurs only when both top layers (0–

15 cm) are saturated. Output is volumetric soil moisture in mm.

2.2.2 SMIPS model
SMIPS (6) is a 2-layer (0–10 cm, 10–90 cm) model operating at

1 km resolution. It produces daily PAW and percent full estimates.

The upper layer is adjusted using SMOS satellite data (29) via a

calibrated weighting scheme informed by comparisons with

national soil moisture sensor networks (27). Vertical water flow
Frontiers in Soil Science 04
between layers is governed by spatially varying parameters tied to

soil texture.

2.2.3 AWRA-L model
AWRA-L (1) is a 0.05° (~5 km) resolution model operational

since 2015. It simulates water fluxes through soil, groundwater, and

surface stores using semi-distributed hydrological response units.

Root-zone moisture is defined as the sum of two layers (0–10 cm

and 10–100 cm) and expressed as percent saturation. Soil properties

are drawn from ASRIS (30), with drainage and moisture dynamics

calculated from daily water balance equations.

2.2.4 S-GRAFS model
S-GRAFS (7) combines a first-order Antecedent Precipitation

Index (API) model with SMAP satellite soil moisture using four-

dimensional variational data assimilation (4DVAR). Driven by

GPM precipitation, it generates 1 km soil moisture estimates at

both surface (5 cm) and root-zone (~1 m) depth. Root-zone

moisture is derived using an exponential filter (SWI) and

expressed as a percentage of saturation.
2.3 Post-processing of model outputs and
sensor data

Despite similar conceptual underpinnings—partitioning

rainfall into storage, runoff, evapotranspiration, and drainage—

these models vary in implementation, including depth support,

resolution, and units. SMIPS supports 0–90 cm; USYD and AWRA-

L use 0–100 cm; S-GRAFS provides ‘root-zone’ estimates, assumed

to correspond to 0–90 or 0–100 cm for harmonization. Output units

vary between volumetric (mm of PAW) and percent saturation.

To enable comparison with sensor observations, all model

outputs were standardized to a 0–90 cm depth and converted to

PAW (mm). Sensor data at BARS and Muttama were similarly

adjusted using DUL and LL estimates (23), with values aggregated

across depths to 90 cm. PAWwas calculated by subtracting LL from

total water.

Model harmonization steps included:
• For SMIPS, outputs were already in PAW.

• For the USYD model, total water outputs were adjusted to

PAW using predicted lower limit (LL) values (31), then

scaled to 0–90 cm by multiplying by 0.9. This proportional

adjustment assumes near-uniform water distribution across

the profile and was adopted as a practical harmonization

step to enable comparison across models with differing

depth support. We acknowledge this is a simplification,

and more refined scaling methods may be explored in

future work.

• For AWRA-L and S-GRAFS, outputs in percent saturation

were first converted to volumetric values using 2-point

scaling (Equation 1) based on estimated DUL and LL.

These were then scaled to 0–90 cm by multiplying by 0.9,
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TABLE 1 Key attributes, inputs and outputs of the four considered models.

Data Inputs
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Rainfall Evapotranspiration
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sensing
data
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Other

an SILO 5km data/
Local rain
gauge data

MODIS ET 500m/
downscaled ET 20m using
Sentinel data

NA

SLGA and local soil
texture to calculate
water
holding capacity.

Plant available water
(mm): Topsoil (0-
30cm), Rootzone (0-
100cm, or each depth
support. Runoff and
deep drainage (mm)

al Precipitation and potential evapotranspiration
data from the Bureau of Meteorology’s
AWRA model

SMOS for
moderating
model
predictions of
0-10cm layer.

SLGA soil texture
for moderation of
internal soil water
flow
(hydraulic
conductivity).

Plant available soil
water (mm) and
relative fullness of soil
water (%). Runoff
(mm)and deep
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ce
il

Gridded
Australian Water
Availability
Project (AWAP)
climate data

Potential ET calculated
according to
Penman (1948)

NA
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for moderation of
internal soil water
flow
(hydraulic
conductivity).

Runoff, actual
evapotranspiration, soil
moisture (0-1) for the
three soil layers and
deep drainage to the
groundwater store

e
s

Satellite rainfall
observations from
GPM (Global
Precipitation
Measurement)
IMERG-
late product.

NA

SMAP
Enhanced L2
Radiometer
Half-Orbit 9
km EASE-
Grid
Soil Moisture

Worldclim air
temperature
(https://
www.worldclim.org/
). SLGA soil
hydraulic
properties.

Surface water wetness
(0-5cm), Root-zone
soil water index
(0-100cm)
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3
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Model Reference
Spatial

resolution
Depth
support

Time
step

Model parame-
ter calibration

USYD
unsaturated
soil water
flow model

Wimalathunge
and Bishop (8)

90m

0-5cm, 5-
15cm, 15-
30cm, 30-
60cm,
60-100cm

Daily
Infiltration rates and ET fractions c
be calibrated for soil moisture
probe networks.

CSIRO
SMIPS

Stenson
et al. (6)

1km
0-10cm,
10-90cm

Daily
Monte Carlo simulation and nation
collection of soil moisture sensor
probe data (27).

BOM
AWRA-L
(version 5)

Frost et al (1) ~5km
0-10cm,
10-100cm,
100-600cm

Daily

Parameters (21) are optimised to
maximise a composite objective
function combining the performan
according to streamflow, ET and so
moisture at a set of 295 unimpaired
catchments across Australia.

ANU
S-GRAFS

Tian et al. (7) 1km
0-5cm,
0-100cm

Daily
Parameters for surface soil moistur
are calibrated to SMAP observation
using Markov chain Monte Carlo
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with the same caveats acknowledged for the USYD model

regarding uniform moisture distribution. Finally, the

adjusted values were converted to PAW
Calibration windows from 2018–2022 ensured inclusion of both

dry (pre-March 2020) and wet (post-2020) periods. Model outputs

were spatially intersected with soil probe locations for direct

comparison, ensuring harmonized resolution, depth, and units

prior to model averaging analysis.
2.4 Model averaging methodology

2.4.1 Probe-level model averaging
With all model outputs and sensor data harmonized to a

common 0–90 cm depth and in units of plant available water

(PAW, mm), we first conducted a probe-level comparison across

each region for the 2021 calendar year. This involved evaluating

how each individual model corresponded with soil moisture sensor

data prior to applying two model averaging approaches:
• Equal Weighting (EW): A simple unweighted mean of the

four models, assigning each a weight of 0.25.
tiers in Soil Science 06
• Granger–Ramanathan Averaging (GRA): A more sophisticated

method that fits a linear regression between the sensor data (qS)

and the model outputs XUSYD,XAWRA,  XSMIPS,  XSGRAFS,

allowing each model’s contribution to vary according to its

covariance with observed values. The fitted model takes

the form:

The fitted model (Equation 3) takes the form:
qS =  W0 + (WUSYD  �  XUSYD   )

+   (WAWRA  �  XAWRA   ) +   (WSMIPS  �  XSMIPS   )

+   (WSGRAFS  �  XSGRAFS   ) (3)

Here, W0 represents the intercept or bias correction term, and

the other W.. variables are fitted OLS parameters, for each of the

model variables (outputs from each of the different water balance

models). Unlike EW or variance-weighted approaches (e.g. Bates-

Granger), GRA inherently adjusts for systematic biases and exploits

correlations in model errors, which is particularly relevant for

models that share error structure but differ in magnitude or offset.

2.4.2 Spatial model averaging approaches
While probe-level averaging evaluates model skill at specific

points, practical use cases demand spatially explicit maps. Given
FIGURE 2

Distribution of soil moisture probes across the three study areas. (1) CSIRO Boorowa, (2) Muttama Creek Catchment, (3) Eyre Peninsula.
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that the underlying models produce gridded outputs, spatial model

averaging enables generation of composite maps, but GRA poses

challenges due to the site-specific nature of its coefficients.

We explored four strategies for spatializing GRA parameters

using data from the BARS site:
Fron
1. Temporally Fixed GRA (TF): All probe data combined into

a single dataset; one set of GRA coefficients fitted across the

full 2021 time series.

2. Temporally Varying GRA (TC): A rolling 25-day window

used to fit new GRA coefficients each day, aiming to

capture temporal changes in soil wetting and drying

dynamics. The choice of a 25-day rolling window for

dynamic GRA was intended to approximate a near-

monthly scale while preserving enough data points for

robust regression fitting.

3. Temporally Fixed GRA with Covariates (TFC): Same as TF,

but with additional spatial covariates (topographic,

climatic, and gamma radiometric data) drawn from

TERN’s 30 m resolution covariate stack (32).

4. Temporally Varying GRA with Covariates (TCC): Same as

TC but incorporating the same spatial covariates, aiming to

improve spatial prediction accuracy by accounting for

environmental heterogeneity.
All spatial model outputs were harmonized to 90 m resolution

(matching the USYD model) using bilinear interpolation. For this

study, we focus on two key dates—1 April and 1 July 2021—selected

to reflect pre-planting and in-crop management phases of the

winter cropping cycle.
2.5 Evaluation metrics

Model and model-averaged predictions were assessed against

soil moisture probe observations using two metrics:
• Pearson Correlation (r): Captures the strength and shape of

the relationship (wetting and drying dynamics) between

model output and sensor data.

• Lin’s Concordance Correlation Coefficient (rc): Evaluates
both correlation and agreement, providing a measure of

prediction skill by quantifying deviation from the 1:1 line.
These metrics were applied to both probe-level and spatial

predictions (at BARS only), enabling comparison across individual

models, EW averaging, and the different GRA approaches.
3 Results and discussion

3.1 Probe-level evaluations

To assess model performance at point scale, we examined soil

moisture traces from the 2021 calendar year, comparing in situ
tiers in Soil Science 07
sensor data with outputs from individual soil water balance (SWB)

models and two model averaging approaches: equal weighting (EW)

and Granger–Ramanathan (GRA). Figure 3 presents representative

examples from each study area.

3.1.1 BARS
At the Boorowa Agricultural Research Station (BARS), all SWB

models demonstrated a reasonable ability to track observed soil

moisture dynamics (Figures 3A, B). Table 2 summarizes evaluation

metrics across the 33 probes. While correlation values were

generally high for all models, there was no consistent standout

across all locations. On a probe-by-probe basis, the best-performing

model varied.

However, concordance results revealed systematic bias in

several models—most notably USYD and AWRA-L—which

impacted overall agreement with observed data. Both model

averaging methods mitigated these discrepancies to some extent.

EW averaging improved general fit, but GRA model averaging was

clearly superior, achieving near-perfect alignment with sensor

traces in many instances.

3.1.2 Muttama Creek Catchment
Model performance at the Muttama Creek Catchment was

broadly like BARS, though average correlations were slightly

lower (Figures 3C, D). USYD tended to show the highest

concordance among individual models, but again, performance

varied across probes. The relatively more complex terrain at

Muttama may have contributed to this variability.

EW averaging provided comparable correlation to individual

models but underperformed in concordance, largely due to its

inability to correct for model-specific biases. In contrast, GRA

averaging substantially improved both metrics, again highlighting

its effectiveness in synthesizing diverse model outputs.

3.1.3 Eyre Peninsula
Despite its distinct soils and climate, model behavior at Eyre

Peninsula was consistent with that observed at the other sites

(Figures 3E, F). All individual models performed reasonably well,

although none emerged as consistently superior. As with BARS and

Muttama, model performance was probe dependent.

GRA averaging once again delivered the strongest and most

consistent performance across metrics (Table 2), reinforcing its

robustness and adaptability across varying landscapes. These findings

support model averaging—particularly GRA—as a practical strategy

for integrating diverse SWB model outputs at the probe scale.
3.2 Spatialization of GRA model averaging
summary of models and their parameters

Two sets of smoothed density plots were generated to visualize

the performance of the four spatial model configurations—TF, TFC,

TC, and TCC—across the 33 BARS soil moisture probe locations,

using Pearson correlation and Lin’s concordance correlation

coefficient (CCC) as evaluation metrics (Figure 4). For reference,
frontiersin.org
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the density plots also include results summarized in previous section

from the probe-level analysis using EW and GRA averaging, which

serve as useful benchmarks for comparison. Each plot overlays kernel

density curves for six model configurations, enabling direct visual

comparison of how correlation and concordance values are

distributed across all probes. Narrow, peaked curves near 1.0

indicate consistently strong performance, while broader or flatter

curves suggest greater variability among sites.
Frontiers in Soil Science 08
The correlation plots show clear distinctions between the EW

and GRA outcomes at the probe level. All four spatial models

display peaks around 0.9, suggesting they capture the temporal

patterns of soil moisture traces reasonably well. Among the spatial

approaches, the TC and TCC models—those incorporating

temporally varying GRA coefficients—demonstrate the strongest

performance, with TCC (which includes both temporal structure

and environmental covariates) yielding the highest overall scores.
FIGURE 3

Soil moisture traces from selected probes during the 2021 calendar year. (A, B) BARS probes #127 and #179; (C, D) Muttama probes #X1 and #X7;
(E, F) Eyre Peninsula probes #20610 and #40112. Black = probe data; Orange = SMIPS; Cyan = S-GRAFS; Brown = USYD; Purple = AWRA-L; Blue =
EW average; Red = GRA average.
TABLE 2 Summary of correlation and concordance between soil moisture sensor data and soil water balance (SWB) model outputs and model
averages across all sites.

Model BARS (r) BARS (rc) Muttama (r) Muttama (rc) Eyre Peninsula (r) Eyre Peninsula (rc)

SMIPS 0.68 (0.42–0.88) 0.50 (0.28–0.69) 0.61 (0.30–0.83) 0.07 (0.00–0.17) 0.74 (0.40–0.96) 0.34 (0.01–0.86)

S-GRAFS 0.72 (0.28–0.94) 0.51 (0.18–0.84) 0.50 (0.16–0.82) 0.03 (0.00–0.08) 0.79 (0.55–0.95) 0.53 (0.11–0.91)

USYD 0.68 (0.04–0.88) 0.37 (0.01–0.71) 0.54 (0.21–0.78) 0.19 (0.04–0.43) 0.77 (0.54–0.91) 0.36 (0.06–0.81)

AWRA-L 0.65 (0.35–0.84) 0.29 (0.07–0.29) 0.57 (0.28–0.81) 0.01 (0.00–0.04) 0.71 (0.46–0.89) 0.20 (0.01–0.70)

GRA 0.88 (0.67–0.97) 0.87 (0.62–0.97) 0.77 (0.63–0.91) 0.73 (0.57–0.90) 0.90 (0.72–0.98) 0.90 (0.69–0.98)

EW 0.77 (0.35–0.92) 0.60 (0.24–0.84) 0.62 (0.47–0.80) 0.05 (0.00–0.10) 0.83 (0.66–0.95) 0.50 (0.06–0.94)
Values represent the mean across probes, with the range (minimum – maximum) shown in parentheses.
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In the concordance plots, however, the TC and TCC curves are

noticeably flatter than the probe-level GRA model, indicating a loss

of site-specific precision when probe data are aggregated to fit global

GRA coefficients. Despite this, TCC still outperforms TC, visually

reinforcing the benefit of incorporating spatial covariates alongside

temporal structure. The TC model, while lacking covariate inputs,

still performs favorably, highlighting the value of temporal

adaptiveness alone.

The TF and TFC models, which use static coefficients, show

broader concordance distributions, pointing to less consistent

agreement with probe measurements. Although their correlation

densities remain relatively high—indicating they capture general

wetting and drying trends—their lower concordance values suggest

systematic biases or mismatches in magnitude.

Overall, these dual-density plots provide a nuanced view of

model performance. Incorporating temporal variation in

GRA coefficients consistently enhances predictions. When

environmental covariates are added, further improvements are

achieved, likely because these covariates help characterize the

local conditions at sensor locations. In contrast, incorporating

covariates alone (as in TFC) without temporal variation offers

limited benefit, indicating an interaction effect between spatial

and temporal factors in model performance. The parameter

coefficients for both TF and TFC GRA models are provided in

the Supplementary Material.
3.3 Spatialization of GRA model averaging

Spatial implementation of model averaging is relatively

straightforward for both EW and GRA approaches. For EW,

provided that all input maps have been harmonized in terms of

depth support, data units, and spatial resolution, model averaging is
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simply the arithmetic mean—i.e., each SWB model output receives

an equal weight of 0.25. Figure 5 shows individual SWB model

outputs for the selected dates of 1st April and 1st July 2021, while

Figure 6 presents the corresponding EW model averaging outputs.

Notably, S-GRAFS and AWRA-L produce relatively less spatial

variation compared to the USYD and SMIPS models, likely due to

differences in spatial resolution and input data (e.g. SMAP

satellite inputs in S-GRAFS). As expected, EW model averaging

generates maps that broadly reflect the central tendencies of the

contributing models.

Figure 7 presents the mapping outputs from the four GRA

spatial model configurations (TF, TFC, TC, and TCC) for the same

two dates. In the absence of covariates (TF and TC; Figures 7A, C),

the resulting spatial patterns are generally comparable to the EW

maps. The TC model, which uses temporally varying GRA

coefficients, displays greater spatial detail—likely reflecting its

more date-specific parameterization. While this may better reflect

true spatial soil moisture variability, definitive conclusions would

require independent validation data.

The inclusion of environmental covariates (TFC and TCC;

Figures 7B, D) has a much more pronounced effect. When model

coefficients trained at probe locations are extrapolated using

covariates, large regions of the mapping extent exhibit unusually

low PAW values. This pattern suggests that the environmental

characteristics at probe locations are not representative of the

broader landscape, leading to poor generalization. The issue is

most apparent in the TCC model, where the daily re-fitting of

GRA coefficients compounds the mismatch between local training

data and spatial covariate coverage.

These results highlight an important nuance: although

covariates improved model performance at the probe level (as

seen in earlier evaluations), they did not translate well to spatial

prediction. This likely reflects a combination of factors, including
FIGURE 4

Smoothed density plots of Pearson correlation (r) and Lin’s concordance correlation coefficient (rc) illustrating model performance across 33 BARS
soil moisture probe locations. The plots compare four spatial model configurations—Temporally Fixed (TF), Temporally Fixed with Covariates (TFC),
Temporally Varying (TC), and Temporally Varying with Covariates (TCC)—against probe-level model averaging results using Equal Weighting (EW)
and Granger–Ramanathan (GRA).
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the limited number of probe locations, the relatively small spatial

extent of BARS, and the risk of overfitting to locally

specific conditions.

While incorporating environmental covariates can help capture

spatial gradients, their effectiveness is limited when sensor networks
Frontiers in Soil Science 10
are sparse or spatially clustered. In such cases, alternative

spatialization strategies may offer greater robustness. One

promising direction is to aggregate the landscape into

hydrological response units, soil functional classes, or other

stratified land units. Within these strata, probe data can be used
FIGURE 5

Soil moisture mapping outputs from each of the SWB models for the BARS region on 1st April and 1st July 2021. (A–D) April maps for S-GRAFS,
AWRA-L, USYD, and SMIPS, respectively; (E–H) corresponding July maps. All maps are harmonized to PAW (mm) at 0–90 cm depth and 90 m
resolution.
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to define class-specific temporal patterns, enabling regionally

generalized model averaging. This more structured approach to

scaling may be better suited to operational mapping and warrants

further exploration—a concept we expand upon in the

subsequent discussion.
4 General discussion

This investigation aimed to evaluate the efficacy of relatively

simple model averaging approaches for combining national-scale

operational soil water balance (SWB) models into a unified

estimate. The motivation was to reduce decision-making

complexity for farm operators, who are otherwise left to reconcile

potentially conflicting outputs from individual models. As

demonstrated, the four SWB models assessed—SMIPS, AWRA-L,

S-GRAFS, and USYD—can produce markedly different estimates of

plant-available water (PAW) for the same location and day. These

discrepancies arise from differences in model structure, resolution,

inputs, and inherent biases.

Our probe-level evaluations across three diverse regions

revealed no single model consistently outperformed the others.

Instead, model performance varied unpredictably by location,

underscoring the challenge for users seeking reliable guidance

from any one model. In this context, model averaging emerges as

a practical strategy that can consolidate strengths and mitigate

weaknesses without necessitating the development of an entirely

new modelling framework.

Equal-weight (EW) model averaging, though simple, does not

account for model-specific biases or relative performance. At the

probe level, EW averaging sometimes performed worse—

particularly in terms of concordance—than the best individual

models, as it lacks a mechanism for bias correction. Nevertheless,

when applied spatially, EW averaging produced reasonable results

and may serve as a low-risk, computationally efficient default when

no clear model preference exists. Given the unpredictable model

performance across probe locations, EW averaging represents a

viable and easily implemented compromise.
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In contrast, Granger–Ramanathan (GRA) model averaging

offers a more robust and statistically grounded alternative. At the

probe scale, GRA outperformed individual models and EW

averaging, strongly supporting the first hypothesis of this

investigation. GRA’s key advantage lies in its ability to correct for

bias and exploit covariance among model errors, allowing it to

generate predictions that more closely match sensor observations.

Soil moisture sensor networks play a critical role in enabling

GRA model averaging by providing the observational data required

to calibrate model weights. However, a key challenge emerged in

translating probe-level GRA insights into spatially continuous

maps. The second hypothesis—that spatially scaled GRA

coefficients would produce superior PAW maps—was not

supported. This limitation is primarily due to the sparse and

clustered nature of most probe networks, which limits the

geographic representativeness of GRA parameters derived

from them.

We explored this issue through a case study at BARS farm,

applying several GRA spatialization strategies, including temporally

fixed and varying coefficients, with and without the inclusion of

environmental covariates. While temporally varying models (TC

and TCC) provided improved probe-level performance, the

inclusion of covariates introduced substantial spatial artefacts

when extrapolated across the mapping domain. This was most

evident in the TCC model, where exaggerated low values appeared

in regions far from sensor locations. These artefacts likely arise from

a mismatch between the environmental feature space of the probe

locations and that of the broader landscape, leading to poor

generalization of model parameters.

Although environmental covariates provide valuable context for

spatial prediction, their utility is limited when probe networks are

spatially clustered and fail to represent the full variability of the

covariate feature space. An alternative strategy is to stratify the

landscape into hydrological response units (HRUs) or soil

functional classes, which can reduce sensitivity to localized

calibration and improve the generalizability of model averaging

approaches. HRUs are typically delineated using combinations of

soil type, slope, land cover, and sometimes geology, and are widely
FIGURE 6

Soil moisture maps from equal-weight model averaging on (A) 1st April and (B) 1st July 2021, using harmonized SWB model outputs.
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employed in hydrological modelling frameworks such as SWAT (3).

In large-scale applications, such as across the contiguous United

States (CONUS), watershed-based units like the HUC8 subbasins

have been used effectively to support spatially contextualized model

training and reduce the risk of spurious predictions (33). These
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subbasins provide natural boundaries for defining the extent of

model domains and retrieving relevant soil observations. Similar

stratification approaches could be adopted in our study area using

data from the TERN 30 m or 90 m environmental covariate stacks

(32) to identify soil-hydrologically homogeneous regions based on
FIGURE 7

Soil moisture mapping outputs using GRA model averaging configurations: (A–D) show TF, TFC, TC, and TCC models for 1st April; (E–H) show the
same configurations for 1st July 2021. All maps are shown at 90 m resolution and scaled to PAW (mm, 0–90 cm).
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variables such as slope, soil texture, soil thickness, and climatic

regime. This concept is analogous to the work of McKenzie and

Ryan (34), who defined functional soil domains by clustering

landscapes based on pedogenic and environmental similarity.

Applying such logic specifically to hydrological behavior offers a

feasible and testable pathway to improve the spatial implementation

of model averaging beyond point-based calibration.

Future work should also explore technical aspects of model

harmonization. One of the challenges in multi-model integration is

the differing spatial resolutions, measurement units, and depth

support of the input models. While this study implemented a

harmonization strategy across all four SWB models, there is clear

scope for improving the scaling and alignment procedures—

particularly spatial scaling.

There is also room for optimization in the temporal dimension

of GRA model fitting. Our analysis used a rolling 25-day window at

daily resolution. While this approach improved performance

relative to year-long aggregates, shorter modelling windows may

propagate noise and parameter instability. Future investigations

should consider broader temporal intervals—weekly, monthly, or

tied to agronomic events such as planting or fertilization—to

balance flexibility with robustness and reduce cumulative

error propagation.

Finally, alternative model combination strategies such as triple or

quadruple collocation may provide promising avenues. These methods

allow for the estimation of model errors without requiring ground

observations and have been successfully applied in meteorological and

remote sensing contexts (35–37). Once error estimates are derived,

weighted merging similar to GRA can be applied. Importantly, current

applications of collocation techniques rely on ground truth data solely

for validation, but future work could investigate their integration into

the model averaging process itself. Such innovations could ultimately

support more generalizable and spatially robust soil moisture mapping

systems—potentially addressing the second hypothesis under a more

suitable methodological framework.
5 Conclusion

This study provides new insight into how model averaging—

particularly the Granger–Ramanathan (GRA) approach—can be

applied to improve both point-scale and spatial estimates of soil

moisture. The research makes three key contributions. First, it

demonstrates that GRA model averaging significantly improves

agreement between modelled and observed plant-available water

(PAW) at the probe level, outperforming both individual models

and equal-weighted ensembles across diverse environments.

Second, it introduces and evaluates a temporally dynamic

implementation of GRA, enabling model weights to adapt to

changing seasonal and soil moisture conditions—an innovation

not previously applied in soil moisture modelling. Third, the study

systematically tests spatial scaling strategies for GRA coefficients,

including the use of environmental covariates, and highlights both
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the opportunities and pitfalls of extrapolating fitted weights beyond

sensor network domains.

These findings have practical implications for real-time soil

water monitoring and decision-support systems. By leveraging data

from existing national-scale SWB models and in situ networks, the

proposed approach enables a more robust and flexible integration

framework without the need to develop entirely new mechanistic

models. However, the results also underscore the challenges of

spatial generalization in data-sparse landscapes. Incorporating

temporally dynamic weights improves prediction accuracy locally,

but spatial extrapolation remains sensitive to the representativeness

of training data and covariate selection.

Future work should focus on developing more stable

spatialization frameworks, such as stratifying landscapes by

hydrological or functional soil units, and further exploring hybrid

or error-based merging methods (e.g. triple collocation) that do not

rely exclusively on in situ observations. Advancing these strategies

will be critical for delivering scalable, operational soil moisture

products that support precision agriculture, drought monitoring,

and environmental management.
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