& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

Naser A. Anjum,
Aligarh Muslim University, India

Jinsung An,

Hanyang Universiy, Republic of Korea
Xiaoli Zhu,

Northwest University, China

Ganesh Khekare
ganesh.khekare@vit.ac.in

08 July 2025
02 September 2025
23 September 2025

Roy SD, Khekare G, Chhajed S and Victor AS
(2025) Integrating classification, regression,
and time series models to assess biochar
safety, optimize pollutant removal, and
predict environmental impacts.

Front. Soil Sci. 5:1661097.

doi: 10.3389/fs0il.2025.1661097

© 2025 Roy, Khekare, Chhajed and Victor. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Soil Science

Original Research
23 September 2025
10.3389/fs0il.2025.1661097

Integrating classification,
regression, and time series
models to assess biochar safety,
optimize pollutant removal, and
predict environmental impacts

Shreyashi Deb Roy, Ganesh Khekare*, Sejal Chhajed
and Adrine Sharon Victor

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil
Nadu, India

Biochar, which is a high-carbon biomass pyrolysis byproduct, has considerable
potential in environmental remediation, serving as a soil conditioner, a carbon
sequestration substrate, and a wastewater treatment agent. Nevertheless, for its
effective and safe application, thorough assessment techniques must be employed
to analyze and measure the presence of potential risks like organic pollutants,
metallic toxicants, and volatile organic compounds (VOCs). This research presents
an automated framework based on artificial intelligence (Al), designed to evaluate
the quality of biochar in real-time and enhance its environmental sustainability. The
proposed system leverages data from the publicly available database to create
biochar safety models for prediction. The system consists of three separate models:
a classification model to evaluate the safety of biochar according to its chemical
makeup, a regression model to estimate quantified levels of heavy metals, and a
time series model to predict VOC emissions under different environmental
conditions, facilitating evaluation of potential air quality effects. Performance
results show that the Random Forest Regression model achieved a low Mean
Squared Error (MSE) of 0.0046 and a strong R2 score of 0.9549, indicating high
reliability in predicting heavy metal content, while the Random Forest Classifier
achieved an external validation accuracy of 96.7%. The efficacy of the LSTM-based
time series model in real-time environmental monitoring was demonstrated by the
Mean Absolute Percentage Error (MAPE) accuracy of 87.14% in predicting VOC
emissions. The multi-model system permits ongoing, precise monitoring while
drastically minimizing human interaction and related errors. The Al models
developed show great efficacy in classifying biochar safety, estimating the
content of heavy metals, and estimating VOC emissions at future times. The
system improves evaluation accuracy, operational efficiency, and production
optimization while reducing disposal expenses and environmental hazards. This
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study provides a new contribution by integrating classification, regression, and time
series analysis in one automated quality assessment system for biochar. It presents a
scalable and smart solution that can be applied across environmental and industrial
applications, enabling the wider integration of Al technologies into sustainable
material management and environmental monitoring.

biochar, classification, LSTM, machine learning, random forest regression,

environmental safety

1 Introduction

Biochar is a byproduct with high carbon content resulting from
the pyrolysis of biomass in conditions of limited oxygen. It has
emerged as a significant material in environmental and agricultural
sectors because of its remarkable physicochemical characteristics,
including high surface area, porosity, and various functional groups.
These qualities facilitate a range of applications such as enhancing
soil quality, sequestering carbon, purifying water, and adsorbing
pollutants. Therefore, there is a growing worldwide focus on
utilizing biochar as a sustainable solution to tackle environmental
issues. Nonetheless, despite its benefits, the safety and long-term
environmental effects of biochar are not always guaranteed. Its
properties can vary widely, largely determined by variables
including the feedstock type, pyrolysis parameters, and any post-
treatment processes. This variability can change biochar’s chemical
makeup, leading to the potential presence of harmful constituents
like heavy metals and polycyclic aromatic hydrocarbons (PAHs).
Moreover, under specific environmental conditions, biochar can
release volatile organic compounds (VOCs), which may harm air
quality both indoors and outdoors. Thus, it is crucial to conduct a
thorough evaluation of biochar’s safety and effectiveness before
practical implementation.

Historically, assessing biochar has involved labour-intensive and
time-consuming laboratory analyses that often lack scalability. These
traditional methods may not accurately capture the intricate and
nonlinear relationships between biochar’s composition and its
environmental effects. Additionally, the absence of solid predictive
frameworks limits the ability to generalize findings across various
biochar types and application scenarios.

In response to these challenges, this study puts forward a multi-
model machine learning (ML) strategy to enhance the predictive
assessment of biochar’s safety and functional performance.

Specifically, the research develops:

1. A supervised classification model aimed at evaluating the
safety of biochar based on its chemical composition, serving
as an initial screening tool to identify potentially
hazardous materials.
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2. A Random Forest regression model to predict the
adsorption efficiency for specific pollutants, such as heavy
metals and synthetic dyes, aiding in the customization of
biochar for specific applications.

3. A time series model to forecast VOC emissions under
variable environmental conditions, offering insights into
the long-term air quality consequences of biochar usage.

This comprehensive framework takes advantage of machine
learning’s capability to extract meaningful insights from complex
datasets and identify underlying patterns, enabling a fast, scalable,
and reliable assessment of biochar properties. The study ultimately
seeks to assist manufacturers, environmental regulators, and
agricultural practitioners in making informed decisions regarding
the production and use of biochar. This research contributes to the
sustainable and responsible use of biochar by aligning its technological
capabilities with environmental safety and compliance with
regulatory standards.

2 Literature review

Biochar has become a sustainable and adaptable material with a
wide range of uses in environmental management in recent years.
Biochar, which is made by pyrolyzing biomass in low-oxygen
environments, is prized for its high carbon content, porous
structure, and capacity to improve soil fertility, sequester carbon,
and adsorb contaminants. Because of its many uses, more research is
being done in fields like water treatment, agriculture, and climate
change mitigation. However, the physicochemical characteristics of
biochar, which are impacted by variables like feedstock type, pyrolysis
conditions, and environmental interactions, are crucial to its efficacy
and safety. The need to thoroughly evaluate biochar’s performance
and environmental impact has grown as interest in it has spread
throughout the world. There have been many research studies
designed to systematically characterize biochar through its
structural, chemical, and functional qualities in different
environmental applications. The following review examines some
significant contributions that have helped develop aspects of
biochar’s capability and its limitations, as well as the developing use
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of machine learning methods for predictive modeling and field
applications of biochar.

As stated in (1), biochar is becoming highly popular sustainably
for crop output boosting, soil health improvement, and lessening
the effects of climate change. It has been demonstrated that a
carbon-rich substance made by pyrolysis of biomass, also called
biochar, enhances soil physical properties, including bulk density,
porosity, water retention, as well as its chemical properties such as
pH, cation exchange capacity (CEC), nutrient availability, etc. These
promote microbial activity, which helps to boost plant growth and
output. Studies have shown that the incorporation of biochar has
the potential to enhance crop productivity by up to 20%,
particularly in acidic and nutrient-poor soils. Biochar further
reduces greenhouse gas emissions and contributes to long-term
carbon sequestration by acting as a carbon sink. There exist issues
such as the requirement for larger field research to comprehend its
long-term effects and regional variances, especially in tropical areas
where very little research has been carried out. Overall, biochar
promises to be a tool for sustainable agriculture. However, an in-
depth study is required to increase its use to the maximum potential
in various agricultural settings.

According to (2), biochar has captured popularity because of its
high surface area, porosity, and functional groups that make it capable
of absorbing both organic and inorganic contaminants. Pyrolysis is
considered the most effective approach for biochar synthesis. Other
processes include hydrothermal carbonization, gasification,
torrefaction, and pyrolysis. Factors such as feedstock type, pyrolysis
temperature, and activation procedures affect how well biochar can
remove pollutants. Biochar has been effectively used as a catalyst in the
synthesis of biofuels and energy, as well as in the treatment of
wastewater and soil remediation. Moreover, biochar aids in carbon
sequestration by improving soil carbon storage and lowering
greenhouse gas emissions. But there are still unresolved issues, like
the requirement for larger field research to comprehend long-term
consequences, the optimization of biochar’s characteristics for specific
use cases, and handling any flaws, such as the emission of hazardous
substances. Future studies should focus on crafting novel activation
techniques, comprehending how microbes interact with biochar, and
enhancing the characteristics of biochar to maximize its effectiveness
in diverse environmental applications.

Reference (3) explores the use of machine learning algorithms
like Random Forest, k-Nearest Neighbors, and Support Vector
Regression to forecast how heavy metals will interact with biochar
surfaces, with a focus on sorption efficiency across various
feedstocks and pyrolysis parameters. Although the models show
good performance in estimating adsorption behavior, the study’s
scope is still constrained because it focuses on sorption potential
rather than offering accurate predictions of heavy metal
concentrations embedded in biochar. Furthermore, the model’s
applicability to field-scale or industrial applications is limited by
its dependence on static, laboratory-scale datasets. Environmental
variables that could affect the stability and emission properties of
biochar, like temperature swings or humidity levels, are not taken
into account. Furthermore, insights into post-application impacts,
such as possible emissions over time, are limited by the lack of
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temporal analysis. The interpretability of machine learning models
is further limited by their black-box nature, which raises questions
regarding their transparency and regulatory framework
acceptability. Incorporating quantitative predictions of hazardous
components, investigating environment-dependent behaviors, and
using time-aware models that enable the evaluation of changing
environmental risks related to biochar applications would be
beneficial for future research.

Reference (4) suggests that ML is a promising tool for advancing
biochar production by addressing the drawbacks of conventional
experimental and computational modelling techniques. ML enables
efficient prediction of biochar yield, properties, and pyrolysis
conditions, optimising production processes while reducing time
and labour, unlike other traditional processes. Numerous ML
algorithms have been devised to model biochar synthesis,
pollutant removal, and thermochemical processes, although most
studies rely on lab-scale data rather than industrial-scale
implementations. The black-box nature of ML remains a
challenge, which highlights the need for hybrid models that
integrate mechanism-based analysis to improve reliability and
interpretability. Future studies should focus on enhancing model
generalisation, expanding datasets, and validating ML predictions
with experimental data to support large-scale biochar applications.

Adding further insight (5), emphasizes both the potential benefits
and drawbacks of biochar application in environmental systems.
Concerns regarding its environmental impact have risen. Research
shows that biochar may release harmful components such as heavy
metals, PAHs, and free radicals based on feedstock selection and
pyrolysis conditions. In addition to this, biochar aging can change its
properties by affecting soil microbial activity, increasing pollutant
migration in water, and contributing to particulate emissions in the
atmosphere. While earlier reviews have mainly focused on the benefits
and improving strategies for biochar, recent research throws light on
the need for comprehensive risk assessment and mitigation strategies
across soil, water, and air to ensure sustainable biochar application
within the environmental system.

The findings in (6) shed light on the ML model application for
predicting the content and types of persistent free radicals (PFRs) in
biochar, a critical factor influencing its environmental applications.
This employs ML algorithms, such as XGBoost. RF, SVM, which
analyzes a dataset compiled from peer-reviewed literature. XGBoost
proved to be the most effective model by achieving high accuracy in
both regression and classification tasks (R* = 0.95, AUROC = 0.92).
Key factors such as metal/non-metal doping, pyrolysis temperature,
carbon content, and specific surface area, etc., were identified as
influencers of PFR content and type. This study emphasizes the dual
nature of PFRs, which can have both advantageous and
disadvantageous effects depending on their application, and
introduces a GUI to facilitate PFR prediction. This research gives
valuable insights into optimising biochar while minimising adverse
effects for environmental applications.

Biochar, produced through the pyrolysis of biomass, is
frequently employed for enhancing soil health and addressing
environmental challenges. However, it is crucial to examine its
heavy metal content and potential environmental risks before large-
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scale application. Different types of biochar may contain heavy
metals such as cadmium (Cd), lead (Pb), and arsenic (As), which
have the potential to leach into soil and water, resulting in ecological
hazards. A detailed analysis was performed in study (7) on the
concentrations of heavy metals in biochar obtained from different
sources, including plant biomass, municipal solid waste (MSW),
compost, and coal refuse. To assess contamination levels and the
mobility of these metals, pollution indices such as the geo-
accumulation index (GAI), ecological risk index (Eri_i), and
potential ecological risk index (PERI) were applied. The findings
reported that the concentrations of heavy metals differed depending
on the feedstock used. Biochar produced from coal refuse showed
the greatest pollution potential, especially regarding cadmium
contamination. This research highlights the vital need to examine
metal mobility to assess the appropriateness of biochar for
environmental and agricultural uses.

The study (8) sheds light on the properties of Biochar. Biochar is
recognized for its ability to improve soil quality and reduce heavy
metal contamination, but its effectiveness depends on production
methods and feedstock composition. Understanding its
physicochemical properties and interactions with soil is crucial for
effective environmental management. Production methods like slow
pyrolysis, fast pyrolysis, and gasification impact characteristics such as
surface area, porosity, and cation exchange capacity (CEC). Higher
pyrolysis temperatures generally enhance surface area and stability,
while lower temperatures promote functional groups that improve
nutrient retention and metal immobilization. Feedstock composition
also influences biochar’s chemical properties and adsorption capacity.
By enhancing nutrient availability and improving soil structure,
biochar offers significant potential for sustainable agriculture and
environmental restoration. Optimizing its production is essential for
maximizing benefits in carbon sequestration and pollutant
stabilization. Heavy metal contamination in agricultural soils
constitutes a significant threat to plant growth and food safety.
Biochar has been identified as a potential soil amendment for
mitigating heavy metal accumulation, though its efficiency varies
depending on soil properties, biochar type, and plant species.

In the study (9), a meta-analysis of 74 peer-reviewed studies,
encompassing 1,298 independent observations, was conducted to
assess the impact of different soil conditions, biochar types, and
contamination levels on plant uptake of cadmium (Cd), lead (Pb),
copper (Cu), and zinc (Zn). The results demonstrated that biochar
application substantially decreased the uptake of heavy metals by
plants, with cadmium decreasing by 38%, lead by 39%, copper by
25%, and zinc by 17%. The effect was more pronounced in coarse-
textured soils and those with high organic matter content. Among
the different biochar types, manure-derived biochar exhibited the
greatest ability to reduce heavy metal bioavailability. While the
meta-analysis provides strong evidence that biochar has the
potential to decrease the uptake of heavy metals in plants, the
results cannot be generalized because of the heterogeneity of
experimental designs (e.g., differences in soil attributes,
feedstocks, and production conditions of biochar, contamination
level, and plant species) among the 74 peer-reviewed
studies analyzed.
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Study (10) demonstrates that the use of traditional adsorption
models to predict metal sorption onto biochar is often hindered by
inaccuracies stemming from the complex mechanisms involved in
adsorption. In contrast, machine learning (ML) techniques present
a more dependable option by incorporating various factors, such as
the characteristics of biochar, environmental conditions, and
properties of heavy metals. In the study, Artificial Neural
Network (ANN) and Random Forest (RF) models were trained
on a dataset that included 353 adsorption experiments with six
heavy metals: Pb, Cd, Ni, As, Cu, and Zn, along with 44 different
biochar samples. The input parameters for the models were critical
biochar properties, including pH, cation exchange capacity (CEC),
surface area, and the concentration ratio of metals to biochar. The
analysis revealed that the RF model (R* = 0.973) was superior to the
ANN model (R* = 0.948) in predicting adsorption efficiency. CEC
and pH emerged as the most significant factors, whereas surface
area played a relatively minor role. Overall, these findings suggest
that machine learning models hold the potential to greatly minimize
the reliance on experimental adsorption tests by providing
precise predictions.

Study (11) concluded that the ability of biochar to remove heavy
metals is influenced by its physicochemical properties, which can
differ based on the methods of production. Conventional trial-and-
error techniques for optimizing biochar can be lengthy and
ineffective. To improve this process, a hybrid machine learning
model was created to forecast the adsorption capacity of biochar.
The model combines factors such as biomass composition, pyrolysis
conditions, and the characteristics of biochar to enhance the
efficiency of metal removal. In laboratory experiments, nine types
of biomass feedstocks were tested to confirm the model’s forecasts.
The model achieved a high accuracy rate for predicting adsorption
efficiency, with an R? value of 0.996. The experimental findings
corroborated the model’s predictions, showing similar adsorption
capacities. This study demonstrated the potential of machine
learning in improving biochar production processes for
environmental uses. Implementing improvements specific to
biochar production, but used on one heavy metal only, would
improve efficiency and accuracy.

In study (12), Machine learning has been utilized to predict the
adsorption capabilities of biochar; however, many current models
lack clarity, which complicates the understanding of how individual
factors influence outcomes. This research involved training four
machine learning models—Random Forest, XGBoost, Artificial
Neural Network (ANN), and Support Vector Machine (SVM)—
on a dataset that included 1,183 biochar samples and 1,518 cases of
heavy metal adsorption. To enhance the interpretability of the
models, an analysis of feature importance was conducted using
SHAP (SHapley Additive exPlanation) values and partial
dependence plots. XGBoost proved to be the most effective
model, achieving an accuracy rate of 99%. The analysis revealed
that key variables influencing adsorption included specific surface
area, pH, and adsorption time. Overall, this study increases the
transparency of machine learning applications, facilitating the
optimization of biochar characteristics for heavy metal removal.
Although high predictive accuracy was achieved, the complex
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nature of advanced machine learning algorithms remains a
considerable barrier to wider adoption, as the mechanistic
rationale connecting specific biochar properties to heavy metal
adsorption may be hidden.

Heavy metal contamination in agricultural soils, specifically
involving lead (Pb), cadmium (Cd), and chromium (Cr), presents
significant risks to the environment and food safety. A laboratory
study (13) assessed the impact of biochar, applied at various rates
(ranging from 0% to 10%), on loamy sand soil that was artificially
contaminated. After 30 days of incubation, maize (Zea mays) was
planted and allowed to grow for an additional 30 days. The results
showed that biochar enhanced soil conditions by increasing pH,
organic matter, and nutrient availability. There were notable
declines in the availability of Pb (28.68%) and Cd (85.14%),
indicating effective immobilization. However, the availability of Cr
increased, likely due to pH alterations that facilitated its conversion to
a more toxic form (Cr (VI)). Maize biomass significantly improved in
soils treated with 5% and 10% biochar, indicating better plant growth
and reduced stress from heavy metals. While this study underscores
the potential of biochar for stabilizing Pb and Cd, it cautions against its
use in soils contaminated with Cr without appropriate pH
management. Overall, the research reinforces biochar’s effectiveness
in improving soil health and enhancing crop productivity.

The study (14) found that current machine learning (ML)
models aimed at predicting heavy metal adsorption by biochar
often face challenges with generalizability due to suboptimal feature
selection. To enhance the accuracy of these models, the properties
of biochar were converted into molar-based ratios. Therefore, a new
feature, (H-O-2N)/C, was introduced to more effectively represent
the efficiency of adsorption. The Gradient Boosting Regression
(GBR) model achieved an impressive R?> value of 0.997,
surpassing other models in performance. This innovative
approach to feature engineering not only boosted prediction
accuracy but also improved interpretability. The model’s
generalizability to different environmental conditions and biochar
types was not explored, limiting the generalizability of the results.

The study (15) discussed how Cadmium (Cd) contamination in
agricultural soils is a major threat to the environment and public
health, disrupts plant growth, and accumulates in edible parts,
resulting in human exposure through food consumption.
Conventional remediation techniques are often expensive and not
very effective, while biochar has emerged as a viable and sustainable
alternative for lowering Cd mobility in soil and its uptake by plants.
Research has investigated how biochar enhances soil characteristics
and reduces Cd bioavailability by affecting soil pH, microbial
communities, and nutrient dynamics. Important mechanisms
identified include ion exchange, electrostatic interactions, and
microbial activation. Additionally, the research looked at how
biochar manages Cd transport within plants, focusing on its
uptake by roots and movement through the xylem. The results
indicated that biochar successfully immobilized Cd by raising soil
pH and boosting cation exchange capacity. This significantly
curtailed Cd absorption by plant roots, thereby reducing its
movement to edible plant parts. These findings highlight
biochar’s potential to mitigate Cd exposure through the food
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chain, reinforcing its importance in sustainable agriculture for
producing safer crops. In conclusion, the reviewed studies
highlight the potential of biochar for soil remediation and
stabilization of heavy metals. Employing machine learning
significantly enhances prediction accuracy, lessens experimental
requirements, and improves the optimization of biochar
properties for environmental applications. Although mechanisms
were fully articulated, it remains necessary to comprehensively
validate real-world evidence under multiple field conditions of use
to demonstrate the efficacy of biochar-based remediation strategies
and their further scalability.

This paper (16) involves a machine learning approach to predict
and improve the adsorption capacity of biochar for heavy metal
removal. Datasets from 476 instances were collected, and seven
classical ensemble models were created to predict adsorption
efficiency. Ensemble models include Random Forests, where the
final prediction is obtained by taking the average of all decision
trees, Gradient Boosting Machines correct errors made by previous
predictions to optimize performance, and AdaBoost, which
improves accuracy. The final stack model combines the inputs
from seven ensemble models to make final predictions. The results
showed increased predictive accuracy through ensemble learning,
but model stacking required a lot of computation, which could limit
its applicability to large data sets or real-time applications.

Study (17) analysed 1012 adsorption experiments and used six
machine learning models to predict the adsorption efficiency of lead
on biochar. Several input parameters are considered, such as
biochar type, pyrolysis temperature, production conditions, and
adsorption properties. Six machine learning models used include
Random Forest Regression, Gradient Boosting Regression (strong
predictive performance), Support Vector Regression for kernel-
based learning and to identify non-linear relationships, Kernel
Ridge Regression to handle multicollinearity and manage between
bias and variance, Extreme Gradient Boosting for prediction
accuracy, and Light Gradient Boosting Machine for faster training
of models. Performance was calculated using Mean Squared Error,
Root Mean Squared Error, Mean Absolute Error, and R? score.
Extreme Gradient Boosting and Light Gradient Boosting Machine
models performed best. For lead (Pb**) adsorption, it was
concluded that pyrolysis temperature and surface area were
crucial factors. Fluidized bed biochar shows more adsorption
capacity. Thus, this study helps to design better biochar materials.
In conclusion, while the models performed well with respect to
predicting lead adsorption, their application to other heavy metals
was not assessed, reducing the extent to which the findings can be
generalized across other contamination situations.

According to a study (18), biochar production reached almost
3,50,000 metric tons in 2023. Biochar is produced by pyrolysis (a
thermochemical process that decomposes biomass under high
temperatures and limited oxygen to generate biochar along with
other products). This paper analyses the amount of NO, emissions
produced to optimize the process and comply with environmental
regulations. The results would help in climate change control and
maintaining a sustainable environment. The study uses a Random
Forest Regressor to predict the target value (NO, emissions) using
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input parameters: mass flow, moisture content, temperature, valve
positions, ventilator adjustments, and oxygen flow control. The
input data is collected from sensors, and then the data is
normalized, and the model is trained. A five-fold cross-validation
(CV) was executed to identify the optimal set of hyperparameters.
The hyperparameter tuning focused on the mean squared error,
exploring combinations of several estimators and minimum sample
splits. The final model was then stored for subsequent deployment
to the IoT device. The Random Forest Regressor was optimized
under the constraint that predicted O, concentrations remained
within the range 0-10% and CO, concentrations within 0-20%. All
constraints can be set by the user to obtain an optimization based on
their needs. The transferability of the model to other biochar
systems remains uncertain, as differences in the setup and input
conditions may lead to a change in prediction accuracy. Additional
validation is required for larger-scale use. Immobilization means
reducing the impact of heavy metals. Biochar can help bind heavy
metals and make them less toxic. In study (19), machine learning
models are built to find what biochar amendments could be added
for soil remediation. Various input parameters like surface area, pH,
organic matter content, and concentration of heavy metals are taken
into consideration. The output is the immobilization efficiency,
which is the percentage reduction in HM bioavailability after
biochar application. Random Forest algorithms, Support Vector
Regression, and Artificial Neural Networks have been used. SHAP
(SHapley Additive exPlanation), Pearson Correlation Coefficient
(PCC), and Hierarchical Clustering were used for feature selection.
In conclusion, higher N content biochar enhances adsorption due to
functional groups that interact with heavy metals. Higher biochar
application rates lead to better HM immobilization through pH
increase, ion exchange, and formation of stable precipitates.
Functional groups in biochar, like carboxyl, hydroxyl, and
phenolic, play a key role in immobilization. In conclusion,
although the results were encouraging, there was a lack of long-
term field data to validate model performance and the accuracy of
immobilization predictions in real field conditions.

Biochar is widely recognised for its effective sorption properties
and is used as a catalyst in the production of biodiesel and syngas
cleaning. Biochar has a high surface area, pore size/volume, and
surface chemistry, and is cost-effective. In study (20), single and
multicomponent sorption experiments on two types of biochar:
bagasse and wheat straw, were performed. Physical and chemical
properties of the samples were examined using elemental analysis,
Fourier-transform infrared spectroscopy (FTIR), scanning electron
microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface
area analysis. The lab facility investigated the kinetics of both
pure and mixed gas adsorption on biochar. Biochar samples were
collected and processed at various pyrolysis temperatures, washed
with deionized water, oven-dried, and ready for the adsorption
kinetics test. Sorption mechanisms are influenced by elemental
composition, morphology, surface area, pore volume, and
functional groups. The paper uses environmental chemistry and
adsorption kinetics to analyze biochar efficiency. Sorption
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Isotherms like Langmuir Isotherm, Freundlich Isotherms,
adsorption kinetics, pore structure, surface area analysis, and
Fourier Transform for functional group analysis are used. Though
machine learning algorithms were not used much, mathematics and
chemistry were used to get valuable insights. The Bagasse biochar
had the greatest ability to adsorb both single and mixed gases, as it
had a larger specific surface area and pore volume. Biochar had the
highest tendency to adsorb acetone.

This paper (21) uses supervised machine learning techniques to
predict fuel properties of biochar. Data from 64 published articles
have been used to train the model. Support Vector Regression
scored better than Random Forest models by achieving higher R>
values. Interpretative tools like Kernel SHAP (SHapley Additive
exPlanation) have been used to predict biochar properties using
input parameters. The analysis found that both the process
temperature and carbon composition of the feedstock were
important features that influenced the fuel properties of
hydrochar and pyrochar. Nitrogen and hydrogen contents were
necessary for hydrochar and pyrochar, respectively. This study
helps in understanding properties like heavy metal adsorption by
biochar. However, this research is limited by the smaller size of the
dataset, potentially compromising the generalizability and
robustness of the machine learning predictions.

This study (22) focuses on predicting ammonia nitrogen
adsorption capacity using Machine learning. It uses 12 models for
evaluation, which include kernel-based methods, tree-based
models, deep learning models, Bayesian optimization, cross-
validation for model tuning, gradient boosting algorithms, and
achieved an R score of 0.9329 and an RMSE score of 0.5378. The
study found that biochar’s adsorption capacity depends on
experimental conditions and its chemical properties. Optimal
removal of ammonia was achieved in an initial concentration of
above 50 mg/L and pH between 6 and 9. A Python GUI
incorporating the CatBoost model, a gradient boosting algorithm,
was developed to enable users to predict efficiency in removing
ammonia based on properties of biochar and environmental
conditions. The stability and dependability of model predictions,
however, could be impacted by environmental variability,
particularly in situations that are not reflected in the training data.

Machine learning optimization to enhance biochar production
has been used in a study (23). Data collected includes biomass
feedback, pyrolysis conditions, and biochar properties. Machine
learning models like Random Forest, Multiple Linear Regression,
Decision Tree, Adaboost Regressor, and Bagging Regressor were
trained on pyrolysis tests and used to predict biochar yield. Training
features include feedstock type, temperature, heating rate, and
residence time. The output is to understand relationships between
production conditions and the characteristics of biochar,
identifying parameters needed for sustainable production and
usage of biochar. Although the study improved knowledge of the
relationships between processes and properties, it lacked external
validation to verify model performance across different production
settings or independent datasets.

frontiersin.org


https://doi.org/10.3389/fsoil.2025.1661097
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org

Roy et al.

The author in study (24) reviews how various ML algorithms
like SVM, decision trees, and ANNs can be used to predict
adsorption capacities, properties of biochar, and their impact on
the environment. It can also be used to optimize production
parameters and estimate CO, capture potential. ANNs can
predict biochar surface area, adsorption capacities. SVMs help to
categorize biochar by feedstock and performance. Decision trees
assist in finding feature importance. KNNs can be used for small
datasets and predict using previous data. The input parameters
include feedstock type, chemical composition, and pyrolysis
conditions (25). The authors also discuss the challenges in finding
proper datasets, cross-domain integration. The author also
highlights the need for Graphical User Interfaces to make
machine learning models accessible to users without much
technical knowledge. The research concludes, highlighting the
importance of machine learning in optimizing the use of biochar
in a sustainable manner without harming the environment.

A growing interest in using biochar for environmental
remediation is evident in the body of literature, especially in the
fields of pollutant adsorption, heavy metal immobilization, and soil
enhancement. The effectiveness of biochar in a variety of applications
has been demonstrated by numerous studies; however, issues with
performance variability resulting from feedstock types, pyrolysis
conditions, and changing physicochemical properties still exist.
Moreover, experimental methods are frequently time-consuming,
have limited scalability, and are susceptible to operational and
regional variability, even though they provide insights into
adsorption behavior and environmental impact. A related trend is
the use of machine learning (ML) to improve prediction accuracy,
lessen the need for experimental trials, and model the properties of
biochar under various circumstances. Numerous machine learning
models, ranging from Random Forest to Gradient Boosting and
Neural Networks, have been used to forecast the adsorption
capacity, heavy metal content, and environmental behavior of
biochar. The evaluation of several safety indicators, such as VOC
emissions, heavy metal leaching, and composition safety, is not always
unified into a single framework in these implementations, which
frequently concentrate on single-objective outputs like yield prediction
or adsorption potential. Furthermore, many studies are still limited by
dataset size, generalizability problems, or lack of interpretability, even
though some have used real-world datasets and experimentally
validated model predictions. A more integrated and automated
approach is required due to the difficulty of forecasting the
environmental impact of biochar, especially in dynamic conditions
and long-term applications. These gaps point to the need for a more
comprehensive strategy that can effectively and precisely assess a
variety of biochar risk factors. The shortcomings of existing
approaches might be addressed by a sophisticated, real-time
framework that combines time series modeling, regression, and
classification. This approach aligns well with the current trends in
automation, Al integration, and environmental monitoring, and it has
the potential to optimize the safe and sustainable deployment of
biochar in industrial, ecological, and agricultural settings while
streamlining the assessment process.

Frontiers in Soil Science

10.3389/fs0il.2025.1661097

3 Methodology

3.1 A classification model to check the
safety of biochar based on its compounds

This section outlines the methodology employed to build a
classification model for measuring the environmental safety of
biochar as per its chemical composition. The proposed biochar
safety assessment framework uses a machine learning paradigm
that takes advantage of improved feature engineering and
conservative thresholding to reduce false positive predictions. The
approach is illustrated in Figure 1, which provides a holistic
representation of the system architecture, including data
preprocessing, feature engineering, training models targeting
safety-driven optimization, and robust categorization for safety
classifications using conservative thresholds. The proposed
approach fills important gaps in existing methods for biochar
safety assessment that historically used safety limits based on
properties, and the paradigm is shifted to a machine learning
framework that incorporates domain knowledge via safety
boundary feature engineering with sophisticated ensemble
learning, achieving increased safety performance relevant
especially to applications with an emphasis on minimizing
false positives.

3.1.1 Dataset description and preprocessing
3.1.1.1 Training dataset characteristics

The main training dataset, Biochar Properties.csv, was sourced
from the U.S. government’s open data repository, Data.gov (30).
The dataset consists of 30 biochar samples with full
physicochemical characterization across 37 variables. The dataset
includes different feedstock origins, including agricultural residues
(wheat straw, barley plants), wood types (conifer wood, juniper,
grape wood), and animal manures (poultry litter). Production
methods vary within gasification, pyrolysis, flame-cap pyrolysis,
and temperatures ranging from 350°C to greater than 1250°C,
providing appropriate representations of conditions found in
biochar production on commercial scales.

3.1.1.2 External validation dataset

The validation dataset, BiocharDS_V1.0, as referenced in (31),
comes from the research work by Gao et al. (1) and is a global
compilation of 367 peer-reviewed studies from 37 different
countries. It contains 2,438 data points from 891 separate
experiments that address greenhouse gas emissions, soil
characteristics, and crop yield. This dataset offers strong cross-
feedstock and cross-geographic validation capabilities, allowing for
a thorough evaluation of the model’s generalizability in a range of
production and application scenarios.

3.1.1.3 Preprocessing steps
Data preprocessing was performed systematically to impute
missing values using median-based strategies implemented in
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FIGURE 1

Block diagram of the Random Forest algorithm showing decision tree construction through bootstrap sampling and final prediction with majority

voting.

scikit-learn’s SimpleImputer with strategy=“median”. The
training dataset had a total of 47 missing values. We observed
that we imputed median values, which are less sensitive to outliers
that were likely found in biochar property measurements. Feature
scaling was not performed because Random Forest is robust to
different feature scales, and we wanted to keep interpretability in
the original.

3.1.1.4 Feature selection and imputation

Twelve essential safety-related characteristics that were directly
connected to accepted biochar safety standards were identified at
the start of the feature selection process. These key characteristics
included exchangeable minerals (Ext.Ca, Ext.K, Ext.Mg, Ext.Na,
Ext.S in mg/kg), carbon fractions, including inorganic carbon
(Inorg.C), elemental composition parameters (C, H, N, and S
expressed as percentage dry basis), and critical physical properties
(ash content as percentage and pH). The selection criteria gave
priority to features that were directly related to safety standards for
biochar, available in both training and validation datasets, proven to
be significant in agricultural and environmental applications, and
measurable using conventional analytical techniques.

Frontiers in Soil Science

Missing values were handled by a SimpleImputer using a
median method, helping ensure data completeness (this was an
important procedure to make sure that we maintained the integrity
and robustness of the dataset for subsequent analysis). The original
feature vector x = [C, H, N, S, Ash, pH,...] is returned to a new
feature space as defined in Equations 1-3.

Safety boundary features:

f_sb(x) =[C - 50, 30 — Ash, [pH - 8], 2 = § (1)

Derived ratios:
f_dr(x) = [C/(N + €), C/(H + ¢), Ash/(C + ¢€)] 2)
Risk indicators:

f_ri(x) = [I(C = 70), I(Ash < 15), (7 < pH < 9), I(S < 1)]
(3)

where € = 1 x 10°® prevents division by zero.

3.1.1.5 Conservative threshold optimization
The decision function uses a conservative threshold, 7_c¢ > 0.5,
to minimise false positives, as defined in Equation 4:
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y =1Py =1|x) = 1) 4)

where P(y = 1|x) is the predicted probability of being safe.

3.1.1.6 Class weight optimization

To balance class imbalance and reduce false positives more
aggressively, a method of dynamic class weights is calculated as
defined in Equations 5 and 6:

wo = /(2 % np) 5)

wy=(mxo)/2xmn) (6)

where n is the total samples, n_0 and »n _1 are the number of
unsafe and safe samples, respectively, and o = 2.0 is penalizing a
false positive.

3.1.2 System architecture and implementation
3.1.2.1 Model architecture design

The Random Forest Classifier was chosen as the main algorithm
because of its strong performance in managing non-linear
relationships between safety outcomes and biochar properties, its
ability to interpret feature importance, its resilience to outliers that
are frequently found in biochar datasets and its capacity to offer
uncertainty analysis and interpretable results, both of which are more
pertinent for applications involving safety. Because of its ensemble
approach, which maintains interpretability through feature
importance rankings while offering prediction stability, the
algorithm is especially well-suited for safety-critical applications
where it is crucial to comprehend feature contributions.

The model architecture was optimised with certain
hyperparameters, such as 100 estimators to balance prediction
stability and computational efficiency, no maximum depth
restriction to prevent overfitting while capturing important
feature interactions, minimum samples per split of 2 and
minimum samples per leaf of 1 to ensure robust node creation,
and utilizing max_features=‘auto’, the default maximum features
setting to add randomness and enhance generalisation.

To address the urgent need for a decrease in false positives in
the safety evaluation of biochar, class weight optimisation was put
into place. Based on the sample distribution, dynamic class weights
were determined. A false positive penalty factor of 2.0 means that
misclassifying unsafe biochar as safe carries twice the penalty of the
reverse error. This method is in line with the practical reality that
misclassifying hazardous biochar as safe is more dangerous than
being unduly cautious. Both class imbalance and the asymmetric
cost of classification errors are taken into consideration in the class
weight formulation.

3.1.2.2 Hyperparameter configuration

The Random Forest implementation used optimal
hyperparameters such as n_estimators=100 for balance and
efficiency, max_depth=None to limit the algorithm from
overfitting, min_samples_split=2 and min_samples_leaf=1 to
capture statistical significance when dividing leaf nodes, a
max_features = ‘auto’ (default) for adding randomness, and
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custom class_weights to apply the penalty for false positives for
an imbalanced training set. During training, out-of-bag scoring was
activated for internal validation, and consistent outcomes across
model runs were guaranteed by a fixed random state of 42.

3.1.2.3 Training and validation protocol

The training protocol uses stratified data splitting using an 80%
training and 20% internal validation split, keeping class
distributions maintained across splits. The external validation was
undertaken from completely independent datasets employing the
same preprocessing pipeline to further prevent any data leakage.
The conservative threshold T_c = 0.7 was established using the
precision-recall curves to best minimize false positives while
maintaining an acceptable level of recall.

3.1.2.4 Safety classification labeling

A binary safety label was assigned to each biochar sample
according to pre-determined chemical thresholds defined by
international standards and industry. Samples were classified as
“Safe Biochar” (label = 1) if they met the criteria: Carbon (C) = 50%,
ash < 30%, pH between 6 to 10, and Sulfur (S) < 2%. The limits on
carbon and ash are recognized by the European Biochar Certificate
(EBC) and the International Biochar Initiative (IBI) as standards for
healthy and safe quality to ensure a quality product for the removal
of pollutants and safety for the environment, as defined by (26)
(27),, and (28). The pH range and sulfur limit were aligned with the
generally accepted procedures for safe and effective use of biochar.

3.1.2.5 Mathematical model formulation

The classification problem of biochar safety is treated as a
binary classification problem, where each biochar sample x € R”
is assigned a safety label y € {0, 1}, where 0 represents an unsafe type
of biochar and 1 represents a safe type of biochar. The safety criteria
are defined mathematically as defined in Equation 7:

S(x) =1/4 x [I(C = 50) + I(Ash < 30) + I(6 < pH < 10) + I(S < 2)] (7)

where I( -) is the indicator function returning 1 for true and 0
for false.

3.1.2.6 Performance evaluation

Comprehensive metrics that addressed both standard
classification accuracy and safety-specific requirements were used
in the performance evaluation. The main metrics were recall, which
measured true positives in relation to all actual positive cases,
precision, which quantified true positives in relation to all positive
predictions (essential for reducing false positives), overall accuracy,
which measured correct predictions across all samples, and F1-
score, which provided the harmonic mean of precision and recall.
Safety-specific assessments that concentrated on false positive
analysis were added to these common metrics.

A key element of performance evaluation was false positive
analysis, where absolute false positive counts gave a direct
assessment of unsafe biochar that was mistakenly labelled as safe.
The improvement from standard to conservative threshold
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approaches was used to calculate the false positive reduction
percentage, indicating the efficacy of the conservative approach.
The improvement in positive prediction reliability was particularly
highlighted by precision improvement metrics, which is important
for safety applications where a high level of confidence in “safe”
classifications is critical.

In order to assess the robustness of the model across various
datasets, generalisation assessment compared the performance of
internal validation with the outcomes of external validation. Instead
of using k-fold CV to evaluate model robustness, uncertainty analysis
and external dataset validation were used to make sure that
borderline predictions were flagged conservatively. The distribution
of prediction probabilities was analysed using uncertainty analysis,
which revealed samples with probabilities ranging from 0.4 to 0.8 that
needed more investigation in real-world settings.

The entire pipeline implementation, from data preprocessing to
the final model deployment, is shown in Figure 2.

3.1.3 Visualization

The complete visualizations included performance comparison
charts with internal and external validation metrics using the
standard and conservative thresholds. The bar charts clearly showed
improvements in both accuracy and precision, which demonstrated the
value of the false positive reduction strategy directly. The false positive
comparison charts supplied convincing evidence of improvements in
safety, evidenced by a reduction in the potentially unsafe-to-safe
misclassifications from multiple instances to zero when using a
conservative threshold.Probabilistic distribution histograms clearly
showed the separation between safe and unsafe biochar samples,
indicated by decision thresholds at 0.5 and 0.7. This provided
viewers not only information about model confidence, but also the
impact that conservative thresholds have on borderline cases. With the
confusion matrix for this conservative threshold, it was clear that it
completely removed false positives, so no unsafe biochar sample was
classified as safe.The feature importance plots showed the most
significant variables, with pH-based features, inorganic carbon, and
exchangeable also listed in the prominent position in each case. It
resulted in the validation of the utility of the enhancement feature
engineering safety boundaries to formulate a robust classification.

3.1.4 Ethical considerations

The biochar safety assessment model was conducted with the
explicit consideration of all potential implications (both
environmental and agricultural) of its misclassification types. The
conservative threshold-based method prioritizes public safety and
aims to achieve the lowest false positive rate since a stakeholder
could wrongly classify the biochar as safe; the public will determine
there is correspondingly greater risk to society than if stakeholders

Algor
Class Weight Opti

FIGURE 2

Overview of the ML pipeline for biochar safety analysis.
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take a conservative application approach. The reason why this is
ethical is that it reflects the precautionary principle in an
environmental monitoring and assessment approach. There is an
urgency to minimize potential harm to society from wrong
decisional outcomes; this is the objective of the toxicologist.

There is a commitment to transparency in the model
development process, which is evidenced in the documentation of
the rationale for feature selection, the establishment of the safety
criteria, and the development of the performance evaluation
methods. The openness in every attempt to describe methods
enables peer review and reproducibility, as well as useful and
responsible deployment of machine learning in safety-critical
applications. Reported feature importance supports the direct use
of explainable AI (XAI) capabilities, which enables domain experts
to understand and validate the model decisions as opposed to being
satisfied with black-box predictions.

Data privacy, except where expressly stated, when it can be
identified, biochar production (and where it is not a superfluous
barrier to our research), and intellectual property concerns related to
documenting all biochar samples as prescribed but anonymized where
necessary, were addressed whilst retaining scientific defensibility
through recording as enough feedstock and production method data
as possible and descriptive. The validation dataset was global, and
there is no regional or biogeographic bias (or any bias associated when
working with biochar-based systems). This guarantees all engaged
parties are socially responsible by application of data interpretation in
various agricultural representations in associative practices (e.g.,
risk assessment).

3.1.5 Conclusion

The safety boundary feature engineering approach and
conservative threshold implementation provide a dependable
framework for safety-critical biochar assessment, supporting
informed decision-making for producers, regulators, and
agricultural stakeholders in biochar applications. The developed
machine learning model successfully established a robust biochar
safety classification system through innovative feature engineering
and conservative threshold optimisation, achieving 96.7% external
validation accuracy with complete false positive elimination and
demonstrating excellent generalisation across diverse biochar
samples from global datasets.

3.2 Predicting adsorption efficiency of
biochar using random forest regression

3.2.1 Data collection and preprocessing
The dataset used in this study was derived from Zhu et al. (2019)
in their research titled “The application of machine learning methods
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Stage 1: Data Loading
Read Sheets:
Start | Upload Excel File via Colab F— Biochar_adsorption and
metadata
FIGURE 3

Initial loading of the excel dataset into colab, including reading sheets for analysis.

for prediction of metal sorption onto biochars.” Their dataset
encompassed 353 adsorption experiments involving six heavy
metals (Pb, Cd, Ni, As, Cu, Zn) across 44 different biochars
produced from various lignocellulosic biomass sources under
pyrolysis conditions ranging from 300°C to 700°C. This diversity in
experimental conditions and feedstocks ensured a comprehensive
representation of biochar characteristics.

Four sections were created from the consideration of fifteen
contributing factors: (i) properties of the biochar, such as its pH in
water (pHH2O), surface area (SA, m2/g), cation exchange capacity
(CEC, cmol(+)/kg), ash content (ash, %), particle size (PS, mm),
mass percentage of total carbon in the biochar (C, %), molar ratio of
nitrogen and oxygen to carbon [(O+N)/C], molar ratio of oxygen to
carbon (O/C), and molar ratio of hydrogen to carbon (H/C); (ii)
adsorption conditions, such as solution pH (pHsol) and adsorption
temperature (T, oC); (iii) initial concentration ratio of heavy metals
to biochars (Cy, mmol/g); and (iv) properties of the heavy metals,
such as charge number, ion radius (r, nm), and electronegativity ().

For this study, the dataset was structured into two Excel sheets:
“Biochar_adsorption” and “metadata.” The “Biochar_adsorption”
sheet captured the experimental adsorption outcomes, while the
“metadata” sheet included detailed physicochemical properties of
the biochar samples. These sheets were selected as they
comprehensively covered both the experimental results and biochar
properties necessary for accurate modeling (Figure 3).

Multi-entry columns like ‘Metal type’ were split and
normalized to ensure each row represented a unique adsorption
case (Figure 4), thereby simplifying the dataset structure and
avoiding ambiguity. Numeric columns were converted to
appropriate data types to enable seamless numerical
computations. Categorical variables (“Biomass feedstock” and
“Metal type”) were encoded using label encoding. (Figure 5)
Label encoding was preferred over one-hot encoding to
maintain computational efficiency and avoid the dimensionality

explosion, given the moderate number of categories. Missing
values were removed to maintain data integrity, ensuring the
machine learning model was not biased or skewed due to
incomplete records. Independent(features) and dependent
(targeted) variables were identified and split into an 80/20 ratio
for training and testing of the model (Figure 6).

3.2.2 Model training

The Random Forest Regression model (Figure 7) was employed
to predict the adsorption efficiency of biochar for various heavy
metals, based on physicochemical and processing parameters.
Random Forest is an ensemble-based algorithm that builds
multiple decision trees during the training phase and produces
the average prediction from these individual trees to enhance
predictive accuracy and reduce overfitting.

The working of the Random Forest model, pictorially, is best
explained by Figure 1.

Let the training dataset be (Equation 8):

D={(y)}, % ERY

yi &R (8)

where x; represents the feature vector and y; the corresponding
target value.

A Random Forest Regressor creates T decision trees. For each
tree t €{1, 2, ..., T}, a bootstrap sample D; is drawn with
replacement from D. At each node split, a random subset of
features m < d is chosen to determine the best split. Each tree is
grown fully or to a specified maximum depth without pruning.

The final prediction y(x) for an unseen input x is given by
(Equation 9):

1.7
@) = 3fi) )
t=1

where f,(x) is the prediction from the f -th decision tree.

Stage 2: Metadata
Preprocessing

Strip Column Names in
Metadata

—»| Split Metal type by /' |—>| Explode Metal type to Rows |—>| Strip Whitespace in Metal type l—}| Reset Metadata Index l——

FIGURE 4

Cleansing and restructuring the metadata, including handling of compound metal types and formatting inconsistencies.
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FIGURE 5

Merging cleaned metadata with adsorption data, handling missing values, encoding categorical variables, and ensuring data consistency.

The performance of the model is assessed using the
following metrics:
Mean Squared Error (MSE)(Equation 10):

12 N
MSE = — >y - 7)’ (10)
i=1
Coefficient of Determination (R*) (Equation 11):
n D)2
RE=1- Ei;l(yt )’z)z 11)
2n0i=Y)

where ) is the mean of the actual values.

To enhance model performance, hyperparameter tuning was
performed using Grid Search with Cross-Validation (Grid Search
CV). By training the model on various combinations of
hyperparameter values, this method does an exhaustive search
over a given parameter grid and evaluates them using k-fold
cross-validation.

Let © ={(6,,6,,...,6,)} represent the set of all possible
hyperparameter combinations. For each 6 € O, k-fold cross-
validation is performed as follows:

» Split the training data into k disjoint subsets:
{D,,D,, ..., D;}For each fold k, train the model on D~ Dy
and validate on D Compute the average validation score
(Equation 12):

CV(0) = %iscorek(ﬂ) (12)
k=1

The optimal hyperparameter set 6" is selected as (Equation 13):

0" = arg maxg=eCVy(6) (13)

In this study, GridSearchCV from scikit-learn was used with
k=5, and the scoring metric was the R® score. This allowed
identification of the most effective hyperparameters, including the
number of trees (n_estimators), maximum tree depth (max_depth),
and minimum samples per leaf (min_samples_leaf), to enhance

model performance on unseen data.

3.3 Time series model to predict potential
VOC emissions from biochar under
different environmental conditions,
assessing the air quality impact

Another objective is to create a model to predict Volatile Organic
Compound (VOC) emissions from biochar in various environmental
conditions using time-series data. The dataset is collected from a
publicly available research paper (29). The primary dataset (1b -
Paperlexplgas_metadata.csv) contains 1440 experimental
observations, each representing a soil core under a specific treatment
and measurement time. The dataset includes characterization across 29
variables, covers soil and biochar treatments, temporal factors, and
environmental conditions such as the incubation temperature, water
content, and porosity. Greenhouse gas data comprise fluxes of CO,,
CH,4, and N,O along with the initial gas concentrations. The dataset
collectively provides an integrated view of the soil, biochar, and
environment interactions driving greenhouse gas emissions.

The dataset originates from a controlled soil incubation study
conducted in Lincolnshire, United Kingdom, in March 2011.
Twenty soil cores (150-180 mm depth, ~1.6 kg dry soil each)
were collected three weeks after planting and nitrogen fertilizer
addition. The cores were subjected to a four-treatment factorial

Stage 4: Feature Definition

y: Adsorption Efficiency

Define Features X and Target

Train-Test Split:
80/20

FIGURE 6

Identifying independent variables (features) and target variable for model training, followed by a standard train-test split.
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FIGURE 7

Training a random forest model, making predictions, and evaluating initial performance using metrics such as MSE and R-squared. Optimizing model
performance using GridSearchCV and evaluating the tuned estimator for improved accuracy. Visualizing model results through residual analysis,

prediction accuracy, and feature influence to interpret model behavior.

design (biochar amendment vs. no amendment; wetted vs.
unwetted) under controlled temperature and storage conditions.

The data spans a 116-day incubation period with repeated gas
flux and concentration measurements taken throughout. Key
measurement points were aligned with four wetting events (days
17, 46, 67, and 116) in addition to baseline equilibration and
continuous monitoring during incubation.

For making CO, emission prediction model, only 5 variables
were used from the dataset which include the following: ugCH4-
Cfluxm2hl represents CH, gas flux in the units mg CH,-C flux per
square metre soil per hour, ugN20-Nfluxm2h1 represents N,O gas
flux in the units mg N,O-N flux per square metre soil per hour,
CO2ppmt0 represents CO, ppm in the static chamber headspace at
t0, CH4ppmtO represents CH, ppm in the static chamber headspace
at t0, N20ppmt0 represents N,O ppm in the static chamber
headspace at t0. The target variable is mgCO2-Cm2hl, which
represents CO, gas flux (units mg CO,-C flux per square metre
soil per hour).

The input features are experimental measurements of greenhouse
gas fluxes and initial gas concentrations, which act as predictors, and
the output target is the CO, flux (mgCO2-Cm2h1), which needs to be
predicted. The dataset provides high-resolution insights into biochar-
soil interactions, particularly CO, dynamics under moisture variation.
The representativeness is, however, limited to a single site
(Lincolnshire), one soil type, a specific biochar application rate (3%
soil dry weight; ~22 t ha™), and controlled incubation conditions.
Thus, the extrapolation to other soils, climates, cropping systems or
biochar feedstocks should be made with caution.

The main objective is to find CO, emissions, which are one of
the major volatile organic compounds emitted from biochar, which,
at high concentrations in the environment, can cause harm. The
model predicts CO, emissions (mgCO2-Cm2hl) using other gas
fluxes (CHy4, N,O) and initial concentrations. The emissions are
predicted using a time series deep learning approach (as data
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consists of sequential dependencies), which learns from past
observed values of fluxes and initial gas concentrations.

3.3.1 Data preprocessing

The dataset is loaded with correct encoding, missing values are
removed and selected features are normalised using MinMaxScaler
to scale values between 0 and 1 for converging better
during training.

3.3.2 Using LSTM model

To input data into the LSTM Model (Long Short Term Memory
model), the data is formatted into 3D, which includes samples, time
steps, and features to fit the LSTM requirements. This allows the
LSTM model to use each feature as a timestamp in a single
observation, leading to more effective sequential processing power
of the LSTM.

A 3-layer LSTM model with dropout regularization method is
used to reduce overfitting, which involves.

LSTM(128) -> Dropout -> LSTM(64) -> Dropout -> LSTM(32)
->Dropout -> Dense(1).

LSTM (64) learns about long-term temporal dependencies,
LSTM(32) adds depth and non-linearity, Dense(1) gives a scalar
output, which is the target.

With a learning rate of 0.001, the model makes use of the Adam
optimizer. It adapts the individual learning rates for each parameter
helpful for handling real-world data. The model is trained for 100
epochs with a batch size of 4. The batch size helps the model to
understand small nuances in a less variable dataset.

3.3.3 Testing and performance

Using the 80:20 rule, the data is trained and tested using the
train_test_split function from Scikit-learn. The bidirectional LSTM
model performance is evaluated by using Mean Absolute
Percentage Error (MAPE) and R* score. The output was to
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predict a single continuous target value. A good R* score of 0.8992
shows a better fit, an MAPE accuracy score of 77.33% ensures
almost reliable predictions, but better models can be found.
Traditional LSTMs process time steps sequentially in a forward
direction, but this may limit context awareness; thus, another model
is created, which uses a bidirectional LSTM along with a dense layer,
early stopping, ReduceLRonPlateau that will analyze both forward
and backward dependencies effectively.

The new model is a bidirectional LSTM model to predict CO,
flux based on initial flux values of CH, and N,O and their
concentrations. Dropout rates of 0.3, 0.3, and 0.2 were applied
over each LSTM layer. Dropout means to randomly disable neurons
during the training phase to reduce the overfitting factor.

To increase prediction accuracy, the model was further fine-
tuned. Encoding of non-numeric values was performed using ISO-
8859-1 encoding. Missing values in the dataset were filled with
mean values. The Z-score method was applied to remove outliers
that could cause skewness while training the model. It also improves
the generalization and convergence factor. To better understand the
complex intricacies, more features from the dataset were included in
model training (6 features compared to 2 features in the initial
model). The model consists of 3 LSTM layers, and batch
normalization is applied after each LSTM layer to stabilize the
training, to improve convergence, and allow higher learning rates.
Adding more layers creates a stacking effect, which helps learning
hierarchical temporal characteristics using the model. Lower layers
capture short-term interactions like relationships between flux and
ppm concentration of gases, whereas deeper layers learn about the
abstract and long-term dependencies, which include analyzing
emission trends under various environmental conditions.

If no improvement was noted, 10 consecutive epochs of early
stopping were introduced to halt training. The model uses a
learning rate scheduler to lower the learning rate when the
validation loss plateaus. To fine-tune the training phase, the
learning rate was reduced from 10 to 5 stagnant epochs to ensure
that the data converges better and escapes from local minima. It also
gives more time for models to fine-tune deeply.

The new model, which is the optimized Bidirectional LSTM,
also uses the Adam optimizer with a learning rate of 0.001. Training
was done over 100 epochs with a batch size of 4, like the initial
model. The model achieved 87.14% accuracy and R? score of 0.9829,
outperforming the previous model. A higher R* score of 0.9829
shows a better fit, indicating the ability of the model to explain
approximately 98% of the variance in CO, flux data, symbolizing
the excellent fit of the model for the time series predictions.
Methane and Nitrous oxides were identified as key predictors.
The MAPE accuracy score of 87.14% ensures more reliable
predictions than the previous model. The second model has
better generalization due to the inclusion of 6 features compared
to 2 features in the previous model, the introduction of early
stopping, and learning rate reduction.

3.3.4 Features found
Important features found include CH, flux and N, O flux, whose
interaction with CO, flux is notable and must be considered while
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making predictions regarding the impact of VOCs on the
environment. The initial CO, baseline concentration also plays a
strong role in determining its emission behaviour. These features
affect how the VOC emissions from biochar affect the environment
and its surroundings, helping in predicting in which locations they
can be used safely without causing any additional harm. The feature
importance insights can be further supported and verified using
permute feature importance or SHAP (SHapley Additive
exPlanation) analysis.

3.3.5 Reason for LSTM over other models

LSTM was chosen due to its special ability to model sequential
dependencies and to retain long-term information in time series
data. It captures past and future dependencies in VOC gas
emissions, which help us predict future trends under various
environmental conditions, making it easier to classify whether it
would be beneficial to use it in the region or not.

3.3.6 Working of LSTM

LSTM (Long Short-Term Memory) is a type of RNN (Recurrent
Neural Network) that learns temporal dependencies from time
series data. It overcomes the problem of short-term memory in
RNNs. It maintains long-term memory using cell gates and
mechanisms for gating, namely the Input Gate, Forget Gate, and
Output Gate. It is known for efficient handling of vanishing
gradients than traditional RNNs. It is most suited for analysing
and predicting from time series, sequential data. It remembers the
important last-used data and discards the unimportant ones. The
model learns this classification of important and unimportant data
during its training from datasets. Long-term dependencies can be
learned by LSTMs.

Like RNNs, LSTMs also contain chain-like topologies; however,
the repeating module is structured differently. Having several neural
network layers as opposed to only one, there are four that interact
differently. For the VOC emissions dataset, it processes the
sequential data of gas readings from the dataset and notes the
patterns and time-dependent relationships that impact CO,
emissions. It also predicts the future CO, flux based on the past
fluxes and gas concentration data.

Each line in Figure 8 represents carrying a vector from the
output node to the input node. Pointwise operators, neural network
layers are also represented in the diagram. A merging line indicates
concatenation, whereas a forking line represents content that is
copied and relocated to several locations (25).

The first step in LSTM is to decide which step to discard. The
sigmoid function makes the decision (forget gate layer) (Equation
14). Input is h,_; and x, data, output lies between 0 and 1. One
means to remember the data, whereas zero means to forget the data.

fi=o Wy [hp,x] + by) (14)

The next step (Equation 15) decides which new data to
remember. The input gate layer uses a sigmoid layer to decide
what data needs to be updated. Another vector C; may be added to
the state, which is created by a tanh layer (Equation 16).
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Interaction of four layers in the LSTM model (cell state, forget gate, input gate, output gate).

iy =0 (W;- [ht—bxt} + by (15)

Ci_tanh (W, - [h_1,x,] + bc) (16)

The old cell value is then updated from C.; to new cell C,
(Equation 17). The old state is multiplied with f; (to remove old
state) then add an additional factor to scale by how much the user
wanted to update the state values.

Ci =fixCiy +ip+ C; (17)

Final output is based on the current state of the cell (Equation
18). First is the sigmoid function, then (Equation 19) the cell state
passes through tanh and is multiplied with the output of the
sigmoid gate.

0, =0 (W, [h_1,x] + b,) (18)

hy = o« tanh (C,) (19)

This is how LSTM works to forget the data that is not required
and to remember the key data that may be needed in the future for
analysis. The LSTM model is trained with the dataset to understand
the importance of data which helps it learn important patterns and
sequences of features from the time series data.

Traditional models like ARIMA, XGBoost, and Random Forest
were less effective for time series analysis as they were unable to
model linear and temporal dependencies and showed poor
performance with incomplete and time series data.

LSTM overcomes these problems by leveraging memory gates
to selectively retain relevant information, handle incomplete time
sequences, and generalize effectively for various features across
different environmental domains, thus providing solutions and
analysis that can be used in real life.

The ethical considerations include ensuring environmental
responsibility to ensuring that accurate models are used to assess
the safety, suitability, and sustainability of biochar usage in
agriculture. Features should be chosen carefully based on
importance in real-world scenarios, which would help in solving
actual problems in the agriculture domain. Certain limitations
include using a small dataset, which may cause issues in
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generalization and may lead to overfitting. Using single steps may
also affect accuracy. The usage of interpretation tools like SHAP can
help in feature extraction.

The optimized model achieved an accurate score of 87.14% and
an R* score of 0.9829, outperforming its previous model. Key
improvements include expanding the feature set from 2 to 6,
removing outliers using the Z-outlier method, applying batch
normalization, and regularization techniques. This model has
strong potential to predict real-time VOC emissions from biochar
and helps in proactive risk assessment for the environment by
forecasting sustainable biochar utilization strategies. The model
offers reduced validation loss and effective generalization.

4 Qverall architecture of the model

A cumulative machine learning pipeline was developed in the
research, integrating classification, regression, and time-series
models. Standard procedures were used to preprocess input data
such as chemical composition, adsorption capacity, and emissions
measurements. A set of outputs from these models was used to
analyze biochar stability, adsorption efficiency, and environmental
effects. The integrated workflow of this whole pipeline is
schematically represented in Figure 9.

5 Results and discussion
5.1 Classification model

The biochar safety assessment and predictive model showed
strong quantitative performance. External validation had 96.7%

accuracy with 1.000 precision at the conservative threshold (T
0.7), demonstrating its ability to accurately differentiate safe versus
unsafe biochar. Internal validation produced comparable results
indicating solid generalizability across independent datasets. The
validation results are summarized in Figure 10, and the comparative
decrease of false positives is highlighted in Figure 11.
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FIGURE 9
System architecture of the overall machine learning model.

A key contribution of the model is the elimination of false
positives. At the standard threshold (t = 0.5), the classifier produced
eight unsafe to safe misclassifications, which would pose significant
safety issues when deployed in the real world. The conservative
threshold removed all false-positives, ensuring that all unsafe
biochar was not misclassified as safe. The improvement can be
clearly seen in the confusion matrix in Figure 12, in which none of
the unsafe samples were misclassified as safe.

An uncertainty analysis in Figure 13 reinforced this conservative
orientation. About 93.3% of external validation samples landed within
the intermediate probability zone, confirming the threshold’s use to
filter borderline cases to be excluded from consideration. The approach
ensures low-confidence predictions are not automatically declared safe,
which fits with a safety-first approach.

A key contribution of the model is the elimination of false
positives. At the standard threshold (T = 0.5), the classifier produced
eight unsafe-to-safe misclassifications, which would pose significant
safety issues when deployed in the real world. The conservative
threshold removed all false positives, ensuring that all unsafe
biochar was not misclassified as safe. The improvement can be
clearly seen in the confusion matrix in Figure 12, in which none of
the unsafe samples were misclassified as safe.

The feature importance analysis, as shown in Figure 14,
indicated that the top predictor was pH-centre distance, followed
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by pH, inorganic carbon, and exchangeable calcium. Other
extractable and elemental features were less important predictors.
These rankings illustrate the efficacy of the feature engineering
method safety boundary presented in this analysis. The safety
boundary method is interpretable and makes sure that the
features relevant to contextual interpretation are driving the
classifications instead of the numeric units in the data.

The feature importance analysis, as shown in Figure 14,
indicated that the top predictor was pH-centre distance, followed
by pH, inorganic carbon, and exchangeable calcium. Other
extractable and elemental features were less important predictors.
These rankings illustrate the efficacy of the feature engineering
method safety boundary presented in this analysis. The safety
boundary method is interpretable and makes sure that the
features relevant to contextual interpretation are driving the
classifications instead of the numeric units in the data.

As compared to existing methods, the proposed model offers
distinct benefits. Evaluation by an expert alone achieves only 60—
70% accuracy, with significant inconsistency due to bias.
Threshold-based methods offer similar performance, but do not
take into account parameter interactions. Standard machine
learning classifiers offer some improvement, with false positive
rates near 20%. The proposed framework, on the other hand,
attained a record 96.7% accuracy with zero false positives,
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FIGURE 10
Internal vs external validation showing 96.7% accuracy and precision
1.000 precision under the conservative threshold.

representing a significant advancement in both reliability and
confidence of safety.

The practical significance of these findings is considerable. For
producers of biochar, this framework will provide a reliable basis for
ensuring quality assurance and compliance with regulations, and
minimize the potential risks associated with issuing an unsafe
product. For regulators, this framework provides the capability to
ensure a structured and transparent process for assessing
compliance, while simultaneously ensuring that safety standards
will be enforced consistently without losing the ability to efficiently
complete other tasks.

Although the research has provided some contributions, there
are limitations to consider. The training data were constructed with
only 30 samples, potentially limiting the model’s ability to recognize
rare combinations of biochar properties. In addition, binary
classification describes a continuous environmental safety
spectrum into a simplified and discrete safe/unsafe scenario.
Future directions of research could include expanding the
training dataset, constructing multi-class classification options to
draw finer distinctions in risk level, and incorporating biological
safety indicators along with physicochemical properties.

The overall results highlight the importance of safety-specific
optimization in environmental machine learning implementations.
It can be seen that avoiding false positives, highlighting
interpretability, and demonstrating good generalization laid a
methodological groundwork for implementing responsible Al in
safety-critical environmental areas.

In conclusion, the proposed machine-learned framework for
biochar hazard assessment provides a false positive-free process
and achieved an external validation accuracy of 96.7% with a
precision of 1.000 under conservative thresholding which far
exceeds the performance of typical degradation assessment
approaches, it demonstrated dependable and interpretable
predictions through uncertainty analysis that informed the reader
that 93.3% of samples were in the intermediate region, and through
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FIGURE 11
False positive reduction from 8 cases (standard threshold) to zero
(conservative threshold).

feature importance analysis that confirmed the importance of some of
the most critical physicochemical properties including pH-distance to
center, pH, and inorganic carbon. The suggested machine learning
framework could be limited in part due to how small the training
dataset was and the degree to which the analysis used a simplified
binary classification method; however, the study provides a
framework for an action-based safety assessment strategy that
should be beneficial for industry and regulators alike, while
establishing the groundwork for future multi-class and biologically
integrated models for environmental safety applications. Table 1
shows the results for classification model using random
forest classifier.

5.2 Predicting adsorption efficiency of
biochar using random forest regression
model training and evaluation

The cleaned dataset was split into predictors (X) and the target
variable, “Adsorption Efficiency (mmol/g)” (y). An 80:20 division
between training and testing was implemented to create a balanced
assessment framework, where there was enough data for training,
thereby ensuring a dependable test set to evaluate model generalization.

Initially, a Random Forest regressor with 500 estimators and
‘sqrt’ max features was trained. Random Forest was selected because
of its robustness to overfitting and its ability to handle non-linear
relationships and mixed data types. The model obtained a Mean
Squared Error (MSE) of 0.0089 and an R” score of 0.912, indicating
strong predictive capability and generalization power.
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FIGURE 12
Confusion matrix under conservative threshold confirming zero
unsafe-to-safe errors.

Feature importance analysis was conducted to find the key
contributors to adsorption efficiency. It revealed that C, (mmol/g)
was the most influential factor (27.8%), followed by pHsol (14.5%),
CEC (11.3%), and Total carbon content (8.8%). Understanding
feature importance is crucial as it offers practical insights, guiding
researchers and practitioners to focus on optimizing these
parameters for enhanced adsorption performance.

5.2.1 Hyperparameter optimization

Hyperparameter tuning was performed using GridSearchCV
with a 5-fold cross-validation strategy to improve the model’s
performance. GridSearchCV was chosen because it exhaustively
searches all possible parameter combinations within the defined
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Probability distribution of external validation samples, with 93.3% in
the uncertain range.
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Top 10 Feature Importance
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FIGURE 14
Feature importance ranking with pH-center distance, pH, and
inorganic carbon as top predictors.

grid, ensuring the identification of the optimal configuration. The
parameter grid included: n_estimators [100, 200]: max_depth: [10,
None], min_samples_leaf [1, 4]:

These parameters were selected based on their known influence
on Random Forest performance: the number of trees (n_estimators)
balances bias and variance, max_depth controls tree complexity,
and min_samples_leaf prevents overfitting by setting a minimum
number of samples at each leaf node.

The best parameter combination obtained was n_estimators =
200, max_depth = None, and min_samples_leaf = 1. The optimized
model on the test set yielded a Test R* score = 0.9549 and a Test
MSE = 0.0046, marking a significant improvement over the initial
model. Table 2 shows the results for the regression model using the
Random Forest Regressor.

5.2.2 Feature importance plot

Feature importance (Figure 15) analysis revealed that C,
(mmol/g) was the most influential factor (27.8%), followed by
pHsol (14.5%), CEC (11.3%), and Total carbon content (8.8%).
This highlights the dominant role played by these factors in the
adsorption process. The outcome of the model is consistent with the
fact that the safety of biochar use for environmental remediation is
associated with the physicochemical properties of biochar,
specifically, pHsol, Cy, and CEC, which were identified as the
most important predictors in the Random Forest model. The
solution pH (pHsol) will govern the solubility and mobility of
heavy metals in the soil and/or water, and extreme pH will either
increase metals leachability or cause changes in soil chemistry,
posing risks to the plants and microbial communities they form
symbiotic relationships. The initial concentration of heavy metals
versus biochar (Cy) will determine the highest adsorption potential;
for example, high C, values can exceed the adsorption capacity of
the biochar, resulting in excess mobile heavy metal and thus
increased risk to the environment. Cation exchange capacity
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TABLE 1 Results for classification model using random forest classifier.

Component Details

Model Used Random Forest Classifier

Objective Classification of biochar as safe or unsafe.

Test Accuracy 0.967(External validation, conservative threshold).

Classification External validation (conservative threshold): F1-Score =
Report 0.947, Precision = 1.00, Recall = 0.90
Confusi

on FSlon No false positives, 1 false negative observed.
Matrix
Important pH, inorganic carbon, exchangeable calcium, extractable
Features elements (Na, Mg, K, S, etc.), pH-center distance.
Hyperparameter

Yp. P GridSearchCV with tuned RF parameters
Tuning
Optimal 100 Estimators, No Max Depth, Min Samples Split = 2, Min
Parameters Samples Leaf = 1
Interpretability Confusion matrix, probability distribution analysis, feature
Tools importance ranking, safety criteria distributions

L Environmental monitoring, sustainable agriculture, and

Applications

safety compliance.

(CEC) gives an indication of the material’s ability to hold positively
charged ions (e.g., Pb*", Cd*", and Zn®"), preventing their exodus
into the surrounding environment. In addition to identifying top
predictors of adsorption efficiency, highlighting properties such as
pHsol, Cop, and CEC emphasizes that when selecting appropriate
biochars, physicochemical properties of biochar must be considered
for their essential role in ensuring environmentally safe use, linking
adsorption behavior directly to the reduced risk of contamination.

5.2.3 Actual vs. predicted scatter plot

In Figure 16, each point represents an observation from the test
set, and a diagonal reference line (y = x) indicates perfect prediction.
The close clustering of data points around the ideal 45° line signifies
a high degree of predictive accuracy, confirming that the Random
Forest model correctly captures the relationship between biochar
properties and adsorption efficiency.

10.3389/fs0il.2025.1661097

5.2.4 Residual plot

A residual distribution plot (Figure 17) was examined to analyze
the characteristics of the model’s errors. The errors appeared to be
normally distributed and centered around zero. Hence, the model
does not consistently overestimate or underestimate adsorption
efficiency. The randomness of these residuals is a good sign of the
model’s calibration and its capability to account for the natural
variability present in the experimental data.

5.2.5 Partial dependence plots

To enhance the model’s interpretability, partial dependence
plots (Figure 18) were created. These plots focused on key
features such as “Cy (mmol/g)”, “pHsol”, “CEC(cmol(+)/kg)”, and
“Total carbon (%)”, showing trends such as increasing adsorption
efficiency with increasing C, (mmol/g) and slightly decreasing or
constant Total carbon(%), while more complex, non-linear
increasing relationships were observed for pHsol and CEC(cmol
(+)/kg). The changes in each predictor independently influence
predicted adsorption efficiency, regardless of other variables. These
visualizations highlight the directional effects (whether positive or
negative) and pinpoint potential thresholds where a predictor’s
influence might increase.

5.2.6 Correlation with matrix heatmap

A feature (Figure 19) correlation matrix analysis was conducted to
provide a comprehensive overview of the relationships between
predictor variables. Strong positive correlations were identified
among the atomic ratio parameters, with the correlation between O/
C and H/C at r = 0.83. Strong negative correlation was observed
between Total carbon (%) and Ash content (%) (r = -0.82), suggesting
that as the ash content increases, the organic carbon content decreases,
an expected trend in biochar composition due to the inverse
relationship between inorganic residue and carbonaceous matter.

Temperature-related variables also showed different
relationships with chemical properties. Pyrolysis temperature
exhibited strong negative correlations with both H/C (r = -0.87)
and (O+N)/C (r = -0.74), revealing that higher thermal treatment
reduces the relative hydrogen and heteroatom content in the
biochar, which is consistent with progressive carbonization at

TABLE 2 Results for the regression model using the random forest regressor.

Aspect Initial Model
Model Type Random Forest Regressor

n_estimators = 500
Hyperparameters

max_features = ‘sqrt’

Tuning Method None
Parameter Grid Searched —
MSE (Test) 0.0089
R? Score (Test) 0.912

Performance Summary

Frontiers in Soil Science

Good generalization and predictive capability

Optimized Model (GridSearchCV)
Random Forest Regressor

n_estimators = 200
max_depth = None
min_samples_leaf = 1

GridSearchCV (5-fold cross-validation)

n_estimators: [100, 200]
max_depth: [10, None]
min_samples_leaf: [1, 4]

0.0046
0.9549

Significant improvement after hyperparameter tuning
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Feature Importance in Random Forest Model
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Feature importance scores of the Random Forest model identify the most influential variables affecting the target outcome. Co (mmol/g), pHsol, and
CEC(cmol(+)/kg) emerge as the top three predictors, indicating their strong influence on model performance.

elevated temperatures. Similarly, Total carbon (%) was negatively
correlated with Cy (mmol/g) (r = -0.62), implying that higher initial
adsorbate concentrations tend to coincide with lower carbon
content in the material, potentially due to variations in feedstock
or pyrolysis conditions.

Moderate to strong positive correlations were also found
between Temperature (°C) and both (O+N)/C (r = 0.66) and O/C
(r = 0.67), suggesting that these chemical ratios increase with
thermal processing. CEC (cmol(+)/kg), which reflects the cation
exchange capacity of the biochar, showed moderate correlations
with several compositional variables, including T (°C) (r = 0.49),
(O+N)/C (r = 0.47), and O/C (r = 0.46), revealing that higher
temperature and heteroatom content may enhance the ion
exchange potential of the biochar.

5.2.7 Model performance comparison with
existing biochar adsorption studies

Although Zhu et al. (10) provided the dataset for this study, its
methodology, model design, and interpretability were quite distinct.
Zhu et al. modelled the adsorption of heavy metals onto biochars
using Random Forest (RF) and Artificial Neural Networks (ANN),
determining that pH and cation exchange capacity (CEC) were
important predictors. Their study concentrated more on showing
that machine learning can accurately predict adsorption.

The current work, on the other hand, uses a stricter approach
that includes meticulous hyperparameter tuning, optimised feature
selection, and structured data preprocessing.

The performance of predictive models over multiple studies is
displayed in Figure 20 using R” values. Zhu et al. (10), Leng et al. (11),
Wang et al. (12), Shen et al. (14), Li et al. (16), Koppel et al. (18), and
the current study are among the studies whose R2 values are
represented by each bar. The current study maintains strong
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performance (R2 = 0.9549) while focusing on input simplicity and
model transparency, whereas models like those by Shen et al. and Leng
et al. exhibit high R2 values close to 0.99 because they employ ensemble
and hybrid approaches and rely on intricate and domain-specific
features like surface area, elemental ratios, or customized input
parameters. Despite their utility, these variables may make it more
difficult for such models to be widely used because of the complexity of

Actual vs. Predicted Adsorption Efficiency
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FIGURE 16

Scatter plot comparing actual vs. predicted adsorption efficiency of
the Random Forest model. The close alignment of data points along
the red dashed 1:1 line indicates strong predictive performance and
high model accuracy.
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FIGURE 17

Histogram of residuals (prediction errors) from the Random Forest
model. The distribution is approximately centered around zero with
a slight right skew, indicating that the model generally performs
well, with most prediction errors being small and symmetrically
distributed.

measurement. The current study’s model, on the other hand,
emphasizes operational viability, input simplicity, and wider
generalization across a variety of heavy metals while exhibiting
competitive performance. The current model strikes a good balance
between practical usability and prediction accuracy. It expands the

10.3389/fs0il.2025.1661097

availability of machine learning tools in environmental monitoring and
decision-making for biochar-based remediation strategies by lowering
reliance on labour-intensive variables while preserving accuracy.

5.3 Time series model to predict potential
VOC emissions from biochar under
different environmental conditions,
assessing the air quality impact

The initial LSTM model had an accurate score of 77.33%, which
is indicative of good predictability, but it could be further enhanced.
The model captured temporal patterns but lacked proper handling
of outliers, feature diversity, and regularization. This led to moving
towards developing a more enhanced Bidirectional LSTM model,
which predicts CO2 emissions from biochar datasets using flux and
concentration data of various greenhouse gases. Workflow began
with data processing, choosing relevant features, filling missing
values with mean imputation, and encoding of non-numeric values.
Removal of outliers using the Z-score was performed. The MinMax
scale was used to scale values between 0 and 1. Data was reshaped to
a 3D format to be fed to the LSTM model, and testing and training
were performed in an 80:20 ratio.

The model is made of 3 stacked Bidirectional LSTM layers with
128, 64, and 32 units, respectively. Batch normalization and
regularization were performed on the model. The final dense
layer gives a single continuous output predicting CO2 emissions.
The model used early stopping and a learning rate scheduler to
make the model adaptive. Adam optimizer with a learning rate of
0.001 was used in the training phase. To calculate the loss function,
Mean Squared Error was used. The model was trained using 100
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plots illustrate how each feature influences the predicted adsorption efficiency, with Co (mmol/g) showing a strong positive effect, while total carbon
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epochs with a batch size of 4. The model achieved an accurate score
of 87.14% and R” score of 0.9829. Low validation score of
approximately 3.72e-4 is indicative of good model performance.

The new model proved better than the initial one. Z-score used
to remove outliers, inclusion of more features for better predictions,
usage of regularization techniques for dropout and batch
normalization to reduce overfitting, usage of early stopping and
learning rate scheduler to improve generalization and convergence,
made the model more efficient. The 3-layered model helped to
analyze complex patterns effectively. Table 3 shows the results for
the time series model using LSTM.

The visualizations help better understand the efficiency of the
model. Loss curve indicates good learning rate and generalization if
it shows steady decline during training and testing, whereas the
actual vs predicted plot shows how close the predicted values are to
the actual values, which explains the accuracy of the model.
Deviation would mean variance or bias in model predictions. The
first two graphs are from models with 77.33% accuracy. The
validation loss curve (Figure 21) has too many spikes, which
indicates overfitting and unstable data. The train loss curve has a
steady decrease, which indicates that the model works well on
known data but does not perform well on unseen data. The model
might have learnt noise and patterns from the training data, thus it
works correctly only for that set of data. The fluctuation with each
batch/epoch may be due to a small dataset or a high learning rate.

The Actual vs Predicted graph consists of slight variations
between actual and predicted values, which may be due to low
feature selection or improper removal of outliers, but only small
errors exist, as it is near-linear. (Figure 22).

TABLE 3 Results for time-series model using LSTM.

Aspect Initial Model
Model Used Used Bldlrect}onél LSTM with 3 LSTM layers, Dropout, and
batch normalization, no dense layers
From initial GHG concentrations predicted CO, flux (mgCO2-
Objective Cm2hl) and other fluxes (ugCH4-Cfluxm2h1, ugN20-

Nfluxm2h1, CO2ppmt0, CH4ppmt0, N2Oppmt0)

Test accuracy Based on MAPE, accuracy = 100-MAPE = 77.33%

10.3389/fs0il.2025.1661097

The two graphs below are from the Bidirectional LSTM model
with 87.14% accuracy. The graph below shows a steady decrease in
loss over epochs, indicative of stable learning. The model learnt
from the data well and provides generalized output for unseen data.
It shows ideal behavior without any underfitting or overfitting.
(Figure 23). A steady decrease in loss indicates a stable model.

For the Actual vs Predicted graph, the new model has a near-
linear graph, which indicates the strong forecasting and predictive
power of the model. It is a good model fit. The actual and predicted
values are almost linear, indicative of low errors. Fine-tuning can be
performed to achieve a more linear graph. (Figure 24).

A key limitation of this study is the scarcity of comprehensive
biochar emission datasets. The experimental data are derived from a
single controlled incubation study, which uses soils from one field
site in Lincolnshire, United Kingdom. As a result, samples from
diverse soil types, climatic zones, and other experimental setups
could not be incorporated. Representation of regional variability in
greenhouse gas fluxes is restricted, and the robustness of broader
inferences becomes constrained.

The applicability of the findings is limited by the narrow scope
of the dataset, which is restricted to one soil type, a single biochar
application rate, and controlled incubation conditions. Without
collecting data from varied climatic conditions, soil types, and
biochar feedstocks, the predictive capacity of the model cannot be
extended to wider agricultural or ecological contexts.

Soil pH, carbon (C), and nitrogen (N) content are critical
parameters that mechanistically influence CO, emissions from
biochar-amended soils. The activity ranges of many VOC-
producing microbes and enzymes depend on pH. If the pH is too

Optimized model

Bidirectional 3 LSTM Layers, Dropout, batch normalization, dense output Dense
(16, activation="relu’)

From initial concentrations predicted CO, emission rate (mgCO2-Cm2h1) and
fluxes of CO,, CHy, and N,O using time-series learning

Using MAPE, accuracy = 87.14%

Loss Function = Mean Squared Error (MSE), Final Validation

Classification Loss = ~0.0052, R? Score = 0.8992

MSE (Loss) = ~0.000374,
R?* Score = 0.9829,

Report MAPE = ~22.67% MAPE = ~12.86%,

Accuracy = 77.33% Accuracy = 87.14%

Epochs = 100, Batch size = 4, Optimizer = Adam, Learning Epochs = 100, Batch size = 8 (less noisy gradient), Optimizer = Adam (Ir=0.001),
Hyperparameters

rate = 0.001, LSTM units = 128, 64, 32, Dropout = 0.2 to 0.3
Tuning Method

Manual Tuning, no callbacks

At epoch 99, reached best validation loss 0.00082, model

Optimal
ptima structure LSTM(128) -> LSTM(64) -> LSTM(32) with Dropout
Parameters
and BatchNorm
Bidirectional LSTM has good R* and accuracy in predicting
Conclusion CO, flux from GHG data, and advanced hypertuning

parameters can improve the efficiency of the model
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Layers = 3 LSTM layers (128, 64, 32 units), Dropout = 0.2 to 0.3

Early stopping with patience equal to 10, ReduceLROnPlateau with factor = 0.5,
patience=5, min_Ir=1e-5

Around 35 epochs reached best epoch, final learning rate = 1.5625e-5, final loss
approx 0.000344

The bidirectional LSTM model has high accuracy and R* score, indicating an
excellent fit, good predictive capacity, regularization, and learning rate to prevent
overfitting. Effectively captures non-linear relationships in data.

Model handles numeric, non-numeric, outlier data, uses validation-aware callbacks,
an extra dense layer, and an adaptive learning rate
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Training vs validation loss curve representing mean squared error over
100 epochs of training and validation data. Spikes in the validation
curve show overfitting of data. A steady decrease in the train loss
curve indicates low performance of the model for unseen data.

acidic or alkaline, it can suppress enzymes that are involved in
breaking down organic molecules into VOCs. If the pH is near-
neutral, it may enhance microbial metabolism, which might
potentially increase VOC release. Thus, maintaining a balanced pH
can minimize the formation of harmful VOCs. The initial carbon
pool provides the substrate for microbial respiration, leading to CO,
flux. High amounts of unstable carbon increase the risk of VOC
emissions, whereas stable aromatic carbon in biochar promotes long-
term sequestration with minimal VOC release.

The availability of nitrogen modulates microbial metabolism and
the balance between C and N cycling, which influences the rate and
stability of decomposition. Incomplete decomposition by microbial
pathways due to excess or limiting nitrogen can favour VOC
generation. Balanced C: N ratios reduce VOC byproducts. These
parameters mechanistically determine whether biochar promotes
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FIGURE 22
Scatter plot of actual vs predicted CO, emission rates using LSTM
model. Small variations indicate inconsistencies in prediction.
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Training vs validation loss curve using bidirectional LSTM model.

stable carbon sequestration or accelerates mineralization, directly
linking to the safety outcome by minimizing unintended CO,
release and ensuring that biochar applications do not increase
greenhouse gas emissions.

Regulating pH, C, and N can help determine whether biochar
applications can lead to stable carbon sequestration with minimal
VOC release or stimulate microbial processes, which may generate
harmful VOCs. These parameters can be controlled to ensure that
biochar use does not increase toxic emissions, thus protecting both
the environment and human health.

The model predicts CO, emissions (mgCO2-Cm2hl) using
other gas fluxes (CH4, N,O) and initial concentrations. This
shows the interdependence of greenhouse gases; the prediction
task proves that soil CO, emissions are linked to methane and
nitrous oxide fluxes. This also highlights real soil-biochar processes
where microbial activity influences all gases simultaneously. The
initial concentrations (CO,ppmt0, CH,ppmt0, N,Oppmt0) act as
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FIGURE 24

Actual vs predicted curve for bidirectional LSTM model. Near near-
linear graph indicates low error and a good model fit.
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early signals that help estimate the emission rates. The finding
highlights the correlation of high starting gas concentrations with
higher fluxes.

6 Limitations

The Classification Model faces a number of limitations, many of
which will need to be considered when placing it into practice. The
training dataset, containing 30 samples, was comprehensive with
respect to the coverage of features, but it was a small sample size for
a machine learning application. The sample size may restrict the
generalization of the model when predicting biochar samples that
contain unique and rare combinations of biochar properties. The
conservative threshold process provided reductions in false positive
rates, but increased the likelihood of false negative rates from the
model, with the potential to reject safe biochar samples that could
provide benefit in an agricultural context.

Turning to feature compatibility with respect to training and
validation datasets, the performance of the model was affected by a
lack of advanced biochar properties in some of the validation datasets.
In this case, feature imputation strategies were implemented, which may
have implications for uncertainty in predicting biochar samples with
incomplete characterizations. The model was limited to a binary safety
classification, which was reasonable for a regulatory perspective, but not
representative of the diverse and complex nature of biochar safety and
biochar effectiveness.

Geographic and temporal limitations arise from the static nature of
the safety criterion, which will change from region to region, based on
soil conditions, climate, future uncertainties, and changing regulatory
standards. Although the model emphasizes physicochemical properties,
it does not consider key aspects of biological safety, such as pathogen
content or potential allelopathic effects. This oversight limits the model’s
ability to provide a comprehensive safety assessment. In terms of scaling
considerations, the model needs standardized analytical methods to
measure the same features consistently across multiple laboratories and
production sites.

The Regression Model’s dataset provides a thorough basis for
modeling adsorption capacity by capturing a broad range of biochar
properties, adsorption conditions, and heavy metal characteristics.
However, not all studies report the same descriptors, including ash
content, surface area, elemental ratios, and cation exchange
capacity. As a result of variations in experimental design,
adsorption conditions, such as solution pH and temperature, also
differ significantly. These factors add unpredictability to the data
and can affect how reliably the model captures relationships.

The dataset’s emphasis on adsorption investigations carried out
in carefully monitored lab settings, frequently using simplified
metal solutions, is another factor to take into account. Although
these environments offer useful comparability, they might not
accurately capture the intricacy of natural systems, where
elements like competing ions or organic matter might also be
involved. Similar to this, some feedstock types (Tropical and
novel biomass sources) and process conditions (e.g., residence
time, heating rate, or carrier gas atmosphere) are still
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underrepresented in the dataset, despite the fact that it covers a
variety of biochar feedstocks and pyrolysis temperatures.

These elements emphasize how crucial it is to increase the
variety and consistency of data available in subsequent research.
Broader coverage of feedstocks and operating parameters, along
with more consistent reporting of important biochar properties and
adsorption conditions, would enable predictive models to more
accurately capture relationships and broaden their applicability to
more scenarios.

A key limitation of the time-series model is the scarcity of
comprehensive biochar emission datasets. The experimental data
are derived from a single controlled incubation study, which uses
soils from one field site in Lincolnshire, United Kingdom. There
was a lack of availability of samples from diverse soil types, climatic
zones, and other experimental setups, which captured the relation
between the use of biochar and its effect on the emission of
volatile gases.

Representation of regional variability in greenhouse gas fluxes
could not be found due to the lack of availability of datasets, thus
affecting the robustness of broader inferences. The applicability of
the findings is also limited by the narrow scope of the dataset, which
is restricted to one soil type, a single biochar application rate, and
controlled incubation conditions. If data is collected from varied
climatic conditions, soil types, and biochar feedstocks, the
predictive capacity of the model can be extended to wider
agricultural or ecological contexts.

7 Conclusion

This study has developed an all-new Al-enabled framework to
help improve the environmental safety and effectiveness of biochar by
taking advantage of automated quality inspection and predictive
analysis. By combining contemporary spectroscopic modalities with
machine learning predictive models, the framework directly addresses
many of the pesky safety assessment hurdles associated with working
with biochar, such as hazard tracking, optimization of adsorption
efficiencies, and predicting emissions. With an external validation
accuracy of 96.7%, the Random Forest Classification model
successfully classified the safety levels of biochar. The Random
Forest Regression model showed good predictive performance,
accurately quantifying heavy metal concentrations with a high R2
score of 0.9549 and a low Mean Squared Error (MSE) of 0.0046. The
LSTM-based time series model obtained an MAPE accuracy of 87.14%
in predicting VOC emissions, confirming its ability to predict
environmental impacts in real time. Additionally, the framework
represents a scalable alternative to conventional safety assessments,
which typically are laborious; this offers the immediate benefit of
reducing human error while allowing data-informed decision-making
and in-the-moment risk assessments to be performed by stakeholders
across agriculture, industry, and environmental regulation. The AI-
supported automation of the framework also fits the global
sustainability goals and enables allowable uses of biochar to safely
protect the environment in the applications of carbon sequestration in
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mitigating climate change, improving soil health, and cleaning up
pollution. Proactively assessing risks by determining the leaching of
heavy metals or off-gassing volatile organic compounds lessens costs
to both the environment and to the economy associated with poorly
mishandled biochar, where environmental criteria are not met. In
conclusion, this work provides an important link from the theoretical
promise of biochar to grounded, responsible application. This work
tried to demonstrate that Al can be a valuable resource to regulate
innovation while permitting safety and in the service of leveraging
biochar as a natural resource for climate resilience, circular economies,
and care for the environmental commons.

In the future, further research can be directed toward enhancing
the existing AT models by investigating other latest machine learning
models, including XGBoost or Support Vector Machines (SVM), to
potentially improve model precision and performance in biochar
safety evaluation. Further enhancing the predictive power of the
classification and regression models can also be achieved through the
incorporation of deep learning algorithms such as Convolutional
Neural Networks (CNNs) for feature extraction. For the time series
model, other architectures like Transformer-based models or GRU
(Gated Recurrent Unit) may provide better scalability and long-term
prediction ability. Increasing dataset size and variability would result
in stronger models, particularly for forecasting VOC emissions under
different environmental conditions. The inclusion of real-time data
streams using IoT devices would also increase the frameworKk’s utility
in dynamic environments. Additionally, extending the model’s
applicability to evaluate other bio-based materials besides biochar
could enable universal safety standards across environmental and
industrial applications. Finally, applying federated learning for
decentralized data gathering could enable ongoing model training
while maintaining privacy, promoting better collaboration and
innovation between industries.
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