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Integrating classification,
regression, and time series
models to assess biochar safety,
optimize pollutant removal, and
predict environmental impacts
Shreyashi Deb Roy, Ganesh Khekare*, Sejal Chhajed
and Adrine Sharon Victor

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil
Nadu, India
Biochar, which is a high-carbon biomass pyrolysis byproduct, has considerable

potential in environmental remediation, serving as a soil conditioner, a carbon

sequestration substrate, and a wastewater treatment agent. Nevertheless, for its

effective and safe application, thorough assessment techniques must be employed

to analyze and measure the presence of potential risks like organic pollutants,

metallic toxicants, and volatile organic compounds (VOCs). This research presents

an automated framework based on artificial intelligence (AI), designed to evaluate

the quality of biochar in real-time and enhance its environmental sustainability. The

proposed system leverages data from the publicly available database to create

biochar safety models for prediction. The system consists of three separatemodels:

a classification model to evaluate the safety of biochar according to its chemical

makeup, a regression model to estimate quantified levels of heavy metals, and a

time series model to predict VOC emissions under different environmental

conditions, facilitating evaluation of potential air quality effects. Performance

results show that the Random Forest Regression model achieved a low Mean

Squared Error (MSE) of 0.0046 and a strong R2 score of 0.9549, indicating high

reliability in predicting heavy metal content, while the Random Forest Classifier

achieved an external validation accuracy of 96.7%. The efficacy of the LSTM-based

time series model in real-time environmental monitoring was demonstrated by the

Mean Absolute Percentage Error (MAPE) accuracy of 87.14% in predicting VOC

emissions. The multi-model system permits ongoing, precise monitoring while

drastically minimizing human interaction and related errors. The AI models

developed show great efficacy in classifying biochar safety, estimating the

content of heavy metals, and estimating VOC emissions at future times. The

system improves evaluation accuracy, operational efficiency, and production

optimization while reducing disposal expenses and environmental hazards. This
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study provides a new contribution by integrating classification, regression, and time

series analysis in one automated quality assessment system for biochar. It presents a

scalable and smart solution that can be applied across environmental and industrial

applications, enabling the wider integration of AI technologies into sustainable

material management and environmental monitoring.
KEYWORDS

biochar, classification, LSTM, machine learning, random forest regression,
environmental safety
1 Introduction
Biochar is a byproduct with high carbon content resulting from

the pyrolysis of biomass in conditions of limited oxygen. It has

emerged as a significant material in environmental and agricultural

sectors because of its remarkable physicochemical characteristics,

including high surface area, porosity, and various functional groups.

These qualities facilitate a range of applications such as enhancing

soil quality, sequestering carbon, purifying water, and adsorbing

pollutants. Therefore, there is a growing worldwide focus on

utilizing biochar as a sustainable solution to tackle environmental

issues. Nonetheless, despite its benefits, the safety and long-term

environmental effects of biochar are not always guaranteed. Its

properties can vary widely, largely determined by variables

including the feedstock type, pyrolysis parameters, and any post-

treatment processes. This variability can change biochar’s chemical

makeup, leading to the potential presence of harmful constituents

like heavy metals and polycyclic aromatic hydrocarbons (PAHs).

Moreover, under specific environmental conditions, biochar can

release volatile organic compounds (VOCs), which may harm air

quality both indoors and outdoors. Thus, it is crucial to conduct a

thorough evaluation of biochar’s safety and effectiveness before

practical implementation.

Historically, assessing biochar has involved labour-intensive and

time-consuming laboratory analyses that often lack scalability. These

traditional methods may not accurately capture the intricate and

nonlinear relationships between biochar’s composition and its

environmental effects. Additionally, the absence of solid predictive

frameworks limits the ability to generalize findings across various

biochar types and application scenarios.

In response to these challenges, this study puts forward a multi-

model machine learning (ML) strategy to enhance the predictive

assessment of biochar’s safety and functional performance.

Specifically, the research develops:
1. A supervised classification model aimed at evaluating the

safety of biochar based on its chemical composition, serving

as an initial screening tool to identify potentially

hazardous materials.
02
2. A Random Forest regression model to predict the

adsorption efficiency for specific pollutants, such as heavy

metals and synthetic dyes, aiding in the customization of

biochar for specific applications.

3. A time series model to forecast VOC emissions under

variable environmental conditions, offering insights into

the long-term air quality consequences of biochar usage.
This comprehensive framework takes advantage of machine

learning’s capability to extract meaningful insights from complex

datasets and identify underlying patterns, enabling a fast, scalable,

and reliable assessment of biochar properties. The study ultimately

seeks to assist manufacturers, environmental regulators, and

agricultural practitioners in making informed decisions regarding

the production and use of biochar. This research contributes to the

sustainable and responsible use of biochar by aligning its technological

capabilities with environmental safety and compliance with

regulatory standards.
2 Literature review

Biochar has become a sustainable and adaptable material with a

wide range of uses in environmental management in recent years.

Biochar, which is made by pyrolyzing biomass in low-oxygen

environments, is prized for its high carbon content, porous

structure, and capacity to improve soil fertility, sequester carbon,

and adsorb contaminants. Because of its many uses, more research is

being done in fields like water treatment, agriculture, and climate

change mitigation. However, the physicochemical characteristics of

biochar, which are impacted by variables like feedstock type, pyrolysis

conditions, and environmental interactions, are crucial to its efficacy

and safety. The need to thoroughly evaluate biochar’s performance

and environmental impact has grown as interest in it has spread

throughout the world. There have been many research studies

designed to systematically characterize biochar through its

structural, chemical, and functional qualities in different

environmental applications. The following review examines some

significant contributions that have helped develop aspects of

biochar’s capability and its limitations, as well as the developing use
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of machine learning methods for predictive modeling and field

applications of biochar.

As stated in (1), biochar is becoming highly popular sustainably

for crop output boosting, soil health improvement, and lessening

the effects of climate change. It has been demonstrated that a

carbon-rich substance made by pyrolysis of biomass, also called

biochar, enhances soil physical properties, including bulk density,

porosity, water retention, as well as its chemical properties such as

pH, cation exchange capacity (CEC), nutrient availability, etc. These

promote microbial activity, which helps to boost plant growth and

output. Studies have shown that the incorporation of biochar has

the potential to enhance crop productivity by up to 20%,

particularly in acidic and nutrient-poor soils. Biochar further

reduces greenhouse gas emissions and contributes to long-term

carbon sequestration by acting as a carbon sink. There exist issues

such as the requirement for larger field research to comprehend its

long-term effects and regional variances, especially in tropical areas

where very little research has been carried out. Overall, biochar

promises to be a tool for sustainable agriculture. However, an in-

depth study is required to increase its use to the maximum potential

in various agricultural settings.

According to (2), biochar has captured popularity because of its

high surface area, porosity, and functional groups that make it capable

of absorbing both organic and inorganic contaminants. Pyrolysis is

considered the most effective approach for biochar synthesis. Other

processes include hydrothermal carbonization, gasification,

torrefaction, and pyrolysis. Factors such as feedstock type, pyrolysis

temperature, and activation procedures affect how well biochar can

remove pollutants. Biochar has been effectively used as a catalyst in the

synthesis of biofuels and energy, as well as in the treatment of

wastewater and soil remediation. Moreover, biochar aids in carbon

sequestration by improving soil carbon storage and lowering

greenhouse gas emissions. But there are still unresolved issues, like

the requirement for larger field research to comprehend long-term

consequences, the optimization of biochar’s characteristics for specific

use cases, and handling any flaws, such as the emission of hazardous

substances. Future studies should focus on crafting novel activation

techniques, comprehending how microbes interact with biochar, and

enhancing the characteristics of biochar to maximize its effectiveness

in diverse environmental applications.

Reference (3) explores the use of machine learning algorithms

like Random Forest, k-Nearest Neighbors, and Support Vector

Regression to forecast how heavy metals will interact with biochar

surfaces, with a focus on sorption efficiency across various

feedstocks and pyrolysis parameters. Although the models show

good performance in estimating adsorption behavior, the study’s

scope is still constrained because it focuses on sorption potential

rather than offering accurate predictions of heavy metal

concentrations embedded in biochar. Furthermore, the model’s

applicability to field-scale or industrial applications is limited by

its dependence on static, laboratory-scale datasets. Environmental

variables that could affect the stability and emission properties of

biochar, like temperature swings or humidity levels, are not taken

into account. Furthermore, insights into post-application impacts,

such as possible emissions over time, are limited by the lack of
Frontiers in Soil Science 03
temporal analysis. The interpretability of machine learning models

is further limited by their black-box nature, which raises questions

regarding their transparency and regulatory framework

acceptability. Incorporating quantitative predictions of hazardous

components, investigating environment-dependent behaviors, and

using time-aware models that enable the evaluation of changing

environmental risks related to biochar applications would be

beneficial for future research.

Reference (4) suggests that ML is a promising tool for advancing

biochar production by addressing the drawbacks of conventional

experimental and computational modelling techniques. ML enables

efficient prediction of biochar yield, properties, and pyrolysis

conditions, optimising production processes while reducing time

and labour, unlike other traditional processes. Numerous ML

algorithms have been devised to model biochar synthesis,

pollutant removal, and thermochemical processes, although most

studies rely on lab-scale data rather than industrial-scale

implementations. The black-box nature of ML remains a

challenge, which highlights the need for hybrid models that

integrate mechanism-based analysis to improve reliability and

interpretability. Future studies should focus on enhancing model

generalisation, expanding datasets, and validating ML predictions

with experimental data to support large-scale biochar applications.

Adding further insight (5), emphasizes both the potential benefits

and drawbacks of biochar application in environmental systems.

Concerns regarding its environmental impact have risen. Research

shows that biochar may release harmful components such as heavy

metals, PAHs, and free radicals based on feedstock selection and

pyrolysis conditions. In addition to this, biochar aging can change its

properties by affecting soil microbial activity, increasing pollutant

migration in water, and contributing to particulate emissions in the

atmosphere. While earlier reviews have mainly focused on the benefits

and improving strategies for biochar, recent research throws light on

the need for comprehensive risk assessment and mitigation strategies

across soil, water, and air to ensure sustainable biochar application

within the environmental system.

The findings in (6) shed light on the ML model application for

predicting the content and types of persistent free radicals (PFRs) in

biochar, a critical factor influencing its environmental applications.

This employs ML algorithms, such as XGBoost. RF, SVM, which

analyzes a dataset compiled from peer-reviewed literature. XGBoost

proved to be the most effective model by achieving high accuracy in

both regression and classification tasks (R² = 0.95, AUROC = 0.92).

Key factors such as metal/non-metal doping, pyrolysis temperature,

carbon content, and specific surface area, etc., were identified as

influencers of PFR content and type. This study emphasizes the dual

nature of PFRs, which can have both advantageous and

disadvantageous effects depending on their application, and

introduces a GUI to facilitate PFR prediction. This research gives

valuable insights into optimising biochar while minimising adverse

effects for environmental applications.

Biochar, produced through the pyrolysis of biomass, is

frequently employed for enhancing soil health and addressing

environmental challenges. However, it is crucial to examine its

heavy metal content and potential environmental risks before large-
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scale application. Different types of biochar may contain heavy

metals such as cadmium (Cd), lead (Pb), and arsenic (As), which

have the potential to leach into soil and water, resulting in ecological

hazards. A detailed analysis was performed in study (7) on the

concentrations of heavy metals in biochar obtained from different

sources, including plant biomass, municipal solid waste (MSW),

compost, and coal refuse. To assess contamination levels and the

mobility of these metals, pollution indices such as the geo-

accumulation index (GAI), ecological risk index (Eri_i), and

potential ecological risk index (PERI) were applied. The findings

reported that the concentrations of heavy metals differed depending

on the feedstock used. Biochar produced from coal refuse showed

the greatest pollution potential, especially regarding cadmium

contamination. This research highlights the vital need to examine

metal mobility to assess the appropriateness of biochar for

environmental and agricultural uses.

The study (8) sheds light on the properties of Biochar. Biochar is

recognized for its ability to improve soil quality and reduce heavy

metal contamination, but its effectiveness depends on production

methods and feedstock composition. Understanding its

physicochemical properties and interactions with soil is crucial for

effective environmental management. Production methods like slow

pyrolysis, fast pyrolysis, and gasification impact characteristics such as

surface area, porosity, and cation exchange capacity (CEC). Higher

pyrolysis temperatures generally enhance surface area and stability,

while lower temperatures promote functional groups that improve

nutrient retention and metal immobilization. Feedstock composition

also influences biochar’s chemical properties and adsorption capacity.

By enhancing nutrient availability and improving soil structure,

biochar offers significant potential for sustainable agriculture and

environmental restoration. Optimizing its production is essential for

maximizing benefits in carbon sequestration and pollutant

stabilization. Heavy metal contamination in agricultural soils

constitutes a significant threat to plant growth and food safety.

Biochar has been identified as a potential soil amendment for

mitigating heavy metal accumulation, though its efficiency varies

depending on soil properties, biochar type, and plant species.

In the study (9), a meta-analysis of 74 peer-reviewed studies,

encompassing 1,298 independent observations, was conducted to

assess the impact of different soil conditions, biochar types, and

contamination levels on plant uptake of cadmium (Cd), lead (Pb),

copper (Cu), and zinc (Zn). The results demonstrated that biochar

application substantially decreased the uptake of heavy metals by

plants, with cadmium decreasing by 38%, lead by 39%, copper by

25%, and zinc by 17%. The effect was more pronounced in coarse-

textured soils and those with high organic matter content. Among

the different biochar types, manure-derived biochar exhibited the

greatest ability to reduce heavy metal bioavailability. While the

meta-analysis provides strong evidence that biochar has the

potential to decrease the uptake of heavy metals in plants, the

results cannot be generalized because of the heterogeneity of

experimental designs (e.g., differences in soil attributes,

feedstocks, and production conditions of biochar, contamination

level, and plant species) among the 74 peer-reviewed

studies analyzed.
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Study (10) demonstrates that the use of traditional adsorption

models to predict metal sorption onto biochar is often hindered by

inaccuracies stemming from the complex mechanisms involved in

adsorption. In contrast, machine learning (ML) techniques present

a more dependable option by incorporating various factors, such as

the characteristics of biochar, environmental conditions, and

properties of heavy metals. In the study, Artificial Neural

Network (ANN) and Random Forest (RF) models were trained

on a dataset that included 353 adsorption experiments with six

heavy metals: Pb, Cd, Ni, As, Cu, and Zn, along with 44 different

biochar samples. The input parameters for the models were critical

biochar properties, including pH, cation exchange capacity (CEC),

surface area, and the concentration ratio of metals to biochar. The

analysis revealed that the RF model (R² = 0.973) was superior to the

ANN model (R² = 0.948) in predicting adsorption efficiency. CEC

and pH emerged as the most significant factors, whereas surface

area played a relatively minor role. Overall, these findings suggest

that machine learning models hold the potential to greatly minimize

the reliance on experimental adsorption tests by providing

precise predictions.

Study (11) concluded that the ability of biochar to remove heavy

metals is influenced by its physicochemical properties, which can

differ based on the methods of production. Conventional trial-and-

error techniques for optimizing biochar can be lengthy and

ineffective. To improve this process, a hybrid machine learning

model was created to forecast the adsorption capacity of biochar.

The model combines factors such as biomass composition, pyrolysis

conditions, and the characteristics of biochar to enhance the

efficiency of metal removal. In laboratory experiments, nine types

of biomass feedstocks were tested to confirm the model’s forecasts.

The model achieved a high accuracy rate for predicting adsorption

efficiency, with an R² value of 0.996. The experimental findings

corroborated the model’s predictions, showing similar adsorption

capacities. This study demonstrated the potential of machine

learning in improving biochar production processes for

environmental uses. Implementing improvements specific to

biochar production, but used on one heavy metal only, would

improve efficiency and accuracy.

In study (12), Machine learning has been utilized to predict the

adsorption capabilities of biochar; however, many current models

lack clarity, which complicates the understanding of how individual

factors influence outcomes. This research involved training four

machine learning models—Random Forest, XGBoost, Artificial

Neural Network (ANN), and Support Vector Machine (SVM)—

on a dataset that included 1,183 biochar samples and 1,518 cases of

heavy metal adsorption. To enhance the interpretability of the

models, an analysis of feature importance was conducted using

SHAP (SHapley Additive exPlanation) values and partial

dependence plots. XGBoost proved to be the most effective

model, achieving an accuracy rate of 99%. The analysis revealed

that key variables influencing adsorption included specific surface

area, pH, and adsorption time. Overall, this study increases the

transparency of machine learning applications, facilitating the

optimization of biochar characteristics for heavy metal removal.

Although high predictive accuracy was achieved, the complex
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nature of advanced machine learning algorithms remains a

considerable barrier to wider adoption, as the mechanistic

rationale connecting specific biochar properties to heavy metal

adsorption may be hidden.

Heavy metal contamination in agricultural soils, specifically

involving lead (Pb), cadmium (Cd), and chromium (Cr), presents

significant risks to the environment and food safety. A laboratory

study (13) assessed the impact of biochar, applied at various rates

(ranging from 0% to 10%), on loamy sand soil that was artificially

contaminated. After 30 days of incubation, maize (Zea mays) was

planted and allowed to grow for an additional 30 days. The results

showed that biochar enhanced soil conditions by increasing pH,

organic matter, and nutrient availability. There were notable

declines in the availability of Pb (28.68%) and Cd (85.14%),

indicating effective immobilization. However, the availability of Cr

increased, likely due to pH alterations that facilitated its conversion to

a more toxic form (Cr (VI)). Maize biomass significantly improved in

soils treated with 5% and 10% biochar, indicating better plant growth

and reduced stress from heavy metals. While this study underscores

the potential of biochar for stabilizing Pb and Cd, it cautions against its

use in soils contaminated with Cr without appropriate pH

management. Overall, the research reinforces biochar’s effectiveness

in improving soil health and enhancing crop productivity.

The study (14) found that current machine learning (ML)

models aimed at predicting heavy metal adsorption by biochar

often face challenges with generalizability due to suboptimal feature

selection. To enhance the accuracy of these models, the properties

of biochar were converted into molar-based ratios. Therefore, a new

feature, (H-O-2N)/C, was introduced to more effectively represent

the efficiency of adsorption. The Gradient Boosting Regression

(GBR) model achieved an impressive R² value of 0.997,

surpassing other models in performance. This innovative

approach to feature engineering not only boosted prediction

accuracy but also improved interpretability. The model’s

generalizability to different environmental conditions and biochar

types was not explored, limiting the generalizability of the results.

The study (15) discussed how Cadmium (Cd) contamination in

agricultural soils is a major threat to the environment and public

health, disrupts plant growth, and accumulates in edible parts,

resulting in human exposure through food consumption.

Conventional remediation techniques are often expensive and not

very effective, while biochar has emerged as a viable and sustainable

alternative for lowering Cd mobility in soil and its uptake by plants.

Research has investigated how biochar enhances soil characteristics

and reduces Cd bioavailability by affecting soil pH, microbial

communities, and nutrient dynamics. Important mechanisms

identified include ion exchange, electrostatic interactions, and

microbial activation. Additionally, the research looked at how

biochar manages Cd transport within plants, focusing on its

uptake by roots and movement through the xylem. The results

indicated that biochar successfully immobilized Cd by raising soil

pH and boosting cation exchange capacity. This significantly

curtailed Cd absorption by plant roots, thereby reducing its

movement to edible plant parts. These findings highlight

biochar’s potential to mitigate Cd exposure through the food
Frontiers in Soil Science 05
chain, reinforcing its importance in sustainable agriculture for

producing safer crops. In conclusion, the reviewed studies

highlight the potential of biochar for soil remediation and

stabilization of heavy metals. Employing machine learning

significantly enhances prediction accuracy, lessens experimental

requirements, and improves the optimization of biochar

properties for environmental applications. Although mechanisms

were fully articulated, it remains necessary to comprehensively

validate real-world evidence under multiple field conditions of use

to demonstrate the efficacy of biochar-based remediation strategies

and their further scalability.

This paper (16) involves a machine learning approach to predict

and improve the adsorption capacity of biochar for heavy metal

removal. Datasets from 476 instances were collected, and seven

classical ensemble models were created to predict adsorption

efficiency. Ensemble models include Random Forests, where the

final prediction is obtained by taking the average of all decision

trees, Gradient Boosting Machines correct errors made by previous

predictions to optimize performance, and AdaBoost, which

improves accuracy. The final stack model combines the inputs

from seven ensemble models to make final predictions. The results

showed increased predictive accuracy through ensemble learning,

but model stacking required a lot of computation, which could limit

its applicability to large data sets or real-time applications.

Study (17) analysed 1012 adsorption experiments and used six

machine learning models to predict the adsorption efficiency of lead

on biochar. Several input parameters are considered, such as

biochar type, pyrolysis temperature, production conditions, and

adsorption properties. Six machine learning models used include

Random Forest Regression, Gradient Boosting Regression (strong

predictive performance), Support Vector Regression for kernel-

based learning and to identify non-linear relationships, Kernel

Ridge Regression to handle multicollinearity and manage between

bias and variance, Extreme Gradient Boosting for prediction

accuracy, and Light Gradient Boosting Machine for faster training

of models. Performance was calculated using Mean Squared Error,

Root Mean Squared Error, Mean Absolute Error, and R2 score.

Extreme Gradient Boosting and Light Gradient Boosting Machine

models performed best. For lead (Pb2+) adsorption, it was

concluded that pyrolysis temperature and surface area were

crucial factors. Fluidized bed biochar shows more adsorption

capacity. Thus, this study helps to design better biochar materials.

In conclusion, while the models performed well with respect to

predicting lead adsorption, their application to other heavy metals

was not assessed, reducing the extent to which the findings can be

generalized across other contamination situations.

According to a study (18), biochar production reached almost

3,50,000 metric tons in 2023. Biochar is produced by pyrolysis (a

thermochemical process that decomposes biomass under high

temperatures and limited oxygen to generate biochar along with

other products). This paper analyses the amount of NOx emissions

produced to optimize the process and comply with environmental

regulations. The results would help in climate change control and

maintaining a sustainable environment. The study uses a Random

Forest Regressor to predict the target value (NOx emissions) using
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input parameters: mass flow, moisture content, temperature, valve

positions, ventilator adjustments, and oxygen flow control. The

input data is collected from sensors, and then the data is

normalized, and the model is trained. A five-fold cross-validation

(CV) was executed to identify the optimal set of hyperparameters.

The hyperparameter tuning focused on the mean squared error,

exploring combinations of several estimators and minimum sample

splits. The final model was then stored for subsequent deployment

to the IoT device. The Random Forest Regressor was optimized

under the constraint that predicted O2 concentrations remained

within the range 0-10% and CO2 concentrations within 0-20%. All

constraints can be set by the user to obtain an optimization based on

their needs. The transferability of the model to other biochar

systems remains uncertain, as differences in the setup and input

conditions may lead to a change in prediction accuracy. Additional

validation is required for larger-scale use. Immobilization means

reducing the impact of heavy metals. Biochar can help bind heavy

metals and make them less toxic. In study (19), machine learning

models are built to find what biochar amendments could be added

for soil remediation. Various input parameters like surface area, pH,

organic matter content, and concentration of heavy metals are taken

into consideration. The output is the immobilization efficiency,

which is the percentage reduction in HM bioavailability after

biochar application. Random Forest algorithms, Support Vector

Regression, and Artificial Neural Networks have been used. SHAP

(SHapley Additive exPlanation), Pearson Correlation Coefficient

(PCC), and Hierarchical Clustering were used for feature selection.

In conclusion, higher N content biochar enhances adsorption due to

functional groups that interact with heavy metals. Higher biochar

application rates lead to better HM immobilization through pH

increase, ion exchange, and formation of stable precipitates.

Functional groups in biochar, like carboxyl, hydroxyl, and

phenolic, play a key role in immobilization. In conclusion,

although the results were encouraging, there was a lack of long-

term field data to validate model performance and the accuracy of

immobilization predictions in real field conditions.

Biochar is widely recognised for its effective sorption properties

and is used as a catalyst in the production of biodiesel and syngas

cleaning. Biochar has a high surface area, pore size/volume, and

surface chemistry, and is cost-effective. In study (20), single and

multicomponent sorption experiments on two types of biochar:

bagasse and wheat straw, were performed. Physical and chemical

properties of the samples were examined using elemental analysis,

Fourier-transform infrared spectroscopy (FTIR), scanning electron

microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface

area analysis. The lab facility investigated the kinetics of both

pure and mixed gas adsorption on biochar. Biochar samples were

collected and processed at various pyrolysis temperatures, washed

with deionized water, oven-dried, and ready for the adsorption

kinetics test. Sorption mechanisms are influenced by elemental

composition, morphology, surface area, pore volume, and

functional groups. The paper uses environmental chemistry and

adsorption kinetics to analyze biochar efficiency. Sorption
Frontiers in Soil Science 06
Isotherms like Langmuir Isotherm, Freundlich Isotherms,

adsorption kinetics, pore structure, surface area analysis, and

Fourier Transform for functional group analysis are used. Though

machine learning algorithms were not used much, mathematics and

chemistry were used to get valuable insights. The Bagasse biochar

had the greatest ability to adsorb both single and mixed gases, as it

had a larger specific surface area and pore volume. Biochar had the

highest tendency to adsorb acetone.

This paper (21) uses supervised machine learning techniques to

predict fuel properties of biochar. Data from 64 published articles

have been used to train the model. Support Vector Regression

scored better than Random Forest models by achieving higher R2

values. Interpretative tools like Kernel SHAP (SHapley Additive

exPlanation) have been used to predict biochar properties using

input parameters. The analysis found that both the process

temperature and carbon composition of the feedstock were

important features that influenced the fuel properties of

hydrochar and pyrochar. Nitrogen and hydrogen contents were

necessary for hydrochar and pyrochar, respectively. This study

helps in understanding properties like heavy metal adsorption by

biochar. However, this research is limited by the smaller size of the

dataset, potentially compromising the generalizability and

robustness of the machine learning predictions.

This study (22) focuses on predicting ammonia nitrogen

adsorption capacity using Machine learning. It uses 12 models for

evaluation, which include kernel-based methods, tree-based

models, deep learning models, Bayesian optimization, cross-

validation for model tuning, gradient boosting algorithms, and

achieved an R2 score of 0.9329 and an RMSE score of 0.5378. The

study found that biochar’s adsorption capacity depends on

experimental conditions and its chemical properties. Optimal

removal of ammonia was achieved in an initial concentration of

above 50 mg/L and pH between 6 and 9. A Python GUI

incorporating the CatBoost model, a gradient boosting algorithm,

was developed to enable users to predict efficiency in removing

ammonia based on properties of biochar and environmental

conditions. The stability and dependability of model predictions,

however, could be impacted by environmental variability,

particularly in situations that are not reflected in the training data.

Machine learning optimization to enhance biochar production

has been used in a study (23). Data collected includes biomass

feedback, pyrolysis conditions, and biochar properties. Machine

learning models like Random Forest, Multiple Linear Regression,

Decision Tree, Adaboost Regressor, and Bagging Regressor were

trained on pyrolysis tests and used to predict biochar yield. Training

features include feedstock type, temperature, heating rate, and

residence time. The output is to understand relationships between

production conditions and the characteristics of biochar,

identifying parameters needed for sustainable production and

usage of biochar. Although the study improved knowledge of the

relationships between processes and properties, it lacked external

validation to verify model performance across different production

settings or independent datasets.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1661097
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Roy et al. 10.3389/fsoil.2025.1661097
The author in study (24) reviews how various ML algorithms

like SVM, decision trees, and ANNs can be used to predict

adsorption capacities, properties of biochar, and their impact on

the environment. It can also be used to optimize production

parameters and estimate CO2 capture potential. ANNs can

predict biochar surface area, adsorption capacities. SVMs help to

categorize biochar by feedstock and performance. Decision trees

assist in finding feature importance. KNNs can be used for small

datasets and predict using previous data. The input parameters

include feedstock type, chemical composition, and pyrolysis

conditions (25). The authors also discuss the challenges in finding

proper datasets, cross-domain integration. The author also

highlights the need for Graphical User Interfaces to make

machine learning models accessible to users without much

technical knowledge. The research concludes, highlighting the

importance of machine learning in optimizing the use of biochar

in a sustainable manner without harming the environment.

A growing interest in using biochar for environmental

remediation is evident in the body of literature, especially in the

fields of pollutant adsorption, heavy metal immobilization, and soil

enhancement. The effectiveness of biochar in a variety of applications

has been demonstrated by numerous studies; however, issues with

performance variability resulting from feedstock types, pyrolysis

conditions, and changing physicochemical properties still exist.

Moreover, experimental methods are frequently time-consuming,

have limited scalability, and are susceptible to operational and

regional variability, even though they provide insights into

adsorption behavior and environmental impact. A related trend is

the use of machine learning (ML) to improve prediction accuracy,

lessen the need for experimental trials, and model the properties of

biochar under various circumstances. Numerous machine learning

models, ranging from Random Forest to Gradient Boosting and

Neural Networks, have been used to forecast the adsorption

capacity, heavy metal content, and environmental behavior of

biochar. The evaluation of several safety indicators, such as VOC

emissions, heavy metal leaching, and composition safety, is not always

unified into a single framework in these implementations, which

frequently concentrate on single-objective outputs like yield prediction

or adsorption potential. Furthermore, many studies are still limited by

dataset size, generalizability problems, or lack of interpretability, even

though some have used real-world datasets and experimentally

validated model predictions. A more integrated and automated

approach is required due to the difficulty of forecasting the

environmental impact of biochar, especially in dynamic conditions

and long-term applications. These gaps point to the need for a more

comprehensive strategy that can effectively and precisely assess a

variety of biochar risk factors. The shortcomings of existing

approaches might be addressed by a sophisticated, real-time

framework that combines time series modeling, regression, and

classification. This approach aligns well with the current trends in

automation, AI integration, and environmental monitoring, and it has

the potential to optimize the safe and sustainable deployment of

biochar in industrial, ecological, and agricultural settings while

streamlining the assessment process.
Frontiers in Soil Science 07
3 Methodology

3.1 A classification model to check the
safety of biochar based on its compounds

This section outlines the methodology employed to build a

classification model for measuring the environmental safety of

biochar as per its chemical composition. The proposed biochar

safety assessment framework uses a machine learning paradigm

that takes advantage of improved feature engineering and

conservative thresholding to reduce false positive predictions. The

approach is illustrated in Figure 1, which provides a holistic

representation of the system architecture, including data

preprocessing, feature engineering, training models targeting

safety-driven optimization, and robust categorization for safety

classifications using conservative thresholds. The proposed

approach fills important gaps in existing methods for biochar

safety assessment that historically used safety limits based on

properties, and the paradigm is shifted to a machine learning

framework that incorporates domain knowledge via safety

boundary feature engineering with sophisticated ensemble

learning, achieving increased safety performance relevant

especially to applications with an emphasis on minimizing

false positives.

3.1.1 Dataset description and preprocessing
3.1.1.1 Training dataset characteristics

The main training dataset, Biochar Properties.csv, was sourced

from the U.S. government’s open data repository, Data.gov (30).

The dataset consists of 30 biochar samples with full

physicochemical characterization across 37 variables. The dataset

includes different feedstock origins, including agricultural residues

(wheat straw, barley plants), wood types (conifer wood, juniper,

grape wood), and animal manures (poultry litter). Production

methods vary within gasification, pyrolysis, flame-cap pyrolysis,

and temperatures ranging from 350°C to greater than 1250°C,

providing appropriate representations of conditions found in

biochar production on commercial scales.

3.1.1.2 External validation dataset

The validation dataset, BiocharDS_V1.0, as referenced in (31),

comes from the research work by Gao et al. (1) and is a global

compilation of 367 peer-reviewed studies from 37 different

countries. It contains 2,438 data points from 891 separate

experiments that address greenhouse gas emissions, soil

characteristics, and crop yield. This dataset offers strong cross-

feedstock and cross-geographic validation capabilities, allowing for

a thorough evaluation of the model’s generalizability in a range of

production and application scenarios.
3.1.1.3 Preprocessing steps

Data preprocessing was performed systematically to impute

missing values using median-based strategies implemented in
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scikit-learn’s SimpleImputer with strategy=“median”. The

training dataset had a total of 47 missing values. We observed

that we imputed median values, which are less sensitive to outliers

that were likely found in biochar property measurements. Feature

scaling was not performed because Random Forest is robust to

different feature scales, and we wanted to keep interpretability in

the original.
3.1.1.4 Feature selection and imputation

Twelve essential safety-related characteristics that were directly

connected to accepted biochar safety standards were identified at

the start of the feature selection process. These key characteristics

included exchangeable minerals (Ext.Ca, Ext.K, Ext.Mg, Ext.Na,

Ext.S in mg/kg), carbon fractions, including inorganic carbon

(Inorg.C), elemental composition parameters (C, H, N, and S

expressed as percentage dry basis), and critical physical properties

(ash content as percentage and pH). The selection criteria gave

priority to features that were directly related to safety standards for

biochar, available in both training and validation datasets, proven to

be significant in agricultural and environmental applications, and

measurable using conventional analytical techniques.
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Missing values were handled by a SimpleImputer using a

median method, helping ensure data completeness (this was an

important procedure to make sure that we maintained the integrity

and robustness of the dataset for subsequent analysis). The original

feature vector x = [C, H, N, S, Ash, pH,…] is returned to a new

feature space as defined in Equations 1-3.

Safety boundary features:

f _ sb(x)   =  ½C   −   50,   30  −  Ash,   pH  −   8j j,   2  −   S� (1)

Derived ratios:

f _ dr(x)   =  ½C=(N   +   e),  C=(H   +   e),  Ash=(C   +   e)� (2)

Risk indicators:

f _ ri(x)   =  ½I(C   ≥   70),   I(Ash   ≤   15),   I(7   ≤   pH   ≤   9),   I(S   ≤   1)�
(3)

where e = 1� 10−6 prevents division by zero.

3.1.1.5 Conservative threshold optimization

The decision function uses a conservative threshold, t _ c   >   0:5,

to minimise false positives, as defined in Equation 4:
FIGURE 1

Block diagram of the Random Forest algorithm showing decision tree construction through bootstrap sampling and final prediction with majority
voting.
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ŷ = I(P(y = 1 x) ≥ tc)j (4)

where P(y   =   1 x)j is the predicted probability of being safe.

3.1.1.6 Class weight optimization

To balance class imbalance and reduce false positives more

aggressively, a method of dynamic class weights is calculated as

defined in Equations 5 and 6:

w0 = n=(2� n0) (5)

w1 = (n� a)=(2� n1) (6)

where n is the total samples, n _ 0 and n _ 1 are the number of

unsafe and safe samples, respectively, and a = 2.0 is penalizing a

false positive.

3.1.2 System architecture and implementation
3.1.2.1 Model architecture design

The Random Forest Classifier was chosen as the main algorithm

because of its strong performance in managing non-linear

relationships between safety outcomes and biochar properties, its

ability to interpret feature importance, its resilience to outliers that

are frequently found in biochar datasets and its capacity to offer

uncertainty analysis and interpretable results, both of which are more

pertinent for applications involving safety. Because of its ensemble

approach, which maintains interpretability through feature

importance rankings while offering prediction stability, the

algorithm is especially well-suited for safety-critical applications

where it is crucial to comprehend feature contributions.

The model architecture was optimised with certain

hyperparameters, such as 100 estimators to balance prediction

stability and computational efficiency, no maximum depth

restriction to prevent overfitting while capturing important

feature interactions, minimum samples per split of 2 and

minimum samples per leaf of 1 to ensure robust node creation,

and utilizing max_features=‘auto’, the default maximum features

setting to add randomness and enhance generalisation.

To address the urgent need for a decrease in false positives in

the safety evaluation of biochar, class weight optimisation was put

into place. Based on the sample distribution, dynamic class weights

were determined. A false positive penalty factor of 2.0 means that

misclassifying unsafe biochar as safe carries twice the penalty of the

reverse error. This method is in line with the practical reality that

misclassifying hazardous biochar as safe is more dangerous than

being unduly cautious. Both class imbalance and the asymmetric

cost of classification errors are taken into consideration in the class

weight formulation.

3.1.2.2 Hyperparameter configuration

The Random Forest implementation used optimal

hyperparameters such as n_estimators=100 for balance and

efficiency, max_depth=None to limit the algorithm from

overfitting, min_samples_split=2 and min_samples_leaf=1 to

capture statistical significance when dividing leaf nodes, a

max_features = ‘auto’ (default) for adding randomness, and
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custom class_weights to apply the penalty for false positives for

an imbalanced training set. During training, out-of-bag scoring was

activated for internal validation, and consistent outcomes across

model runs were guaranteed by a fixed random state of 42.

3.1.2.3 Training and validation protocol

The training protocol uses stratified data splitting using an 80%

training and 20% internal validation split, keeping class

distributions maintained across splits. The external validation was

undertaken from completely independent datasets employing the

same preprocessing pipeline to further prevent any data leakage.

The conservative threshold t_c = 0.7 was established using the

precision-recall curves to best minimize false positives while

maintaining an acceptable level of recall.

3.1.2.4 Safety classification labeling

A binary safety label was assigned to each biochar sample

according to pre-determined chemical thresholds defined by

international standards and industry. Samples were classified as

“Safe Biochar” (label = 1) if they met the criteria: Carbon (C) ≥ 50%,

ash < 30%, pH between 6 to 10, and Sulfur (S) < 2%. The limits on

carbon and ash are recognized by the European Biochar Certificate

(EBC) and the International Biochar Initiative (IBI) as standards for

healthy and safe quality to ensure a quality product for the removal

of pollutants and safety for the environment, as defined by (26)

(27),, and (28). The pH range and sulfur limit were aligned with the

generally accepted procedures for safe and effective use of biochar.

3.1.2.5 Mathematical model formulation

The classification problem of biochar safety is treated as a

binary classification problem, where each biochar sample x ∈ Rn

is assigned a safety label y ∈ {0, 1}, where 0 represents an unsafe type

of biochar and 1 represents a safe type of biochar. The safety criteria

are defined mathematically as defined in Equation 7:

S(x) = 1=4� ½I(C ≥ 50) + I(Ash < 30) + I(6 ≤ pH ≤ 10) + I(S < 2)� (7)

where I( · ) is the indicator function returning 1 for true and 0

for false.
3.1.2.6 Performance evaluation

Comprehensive metrics that addressed both standard

classification accuracy and safety-specific requirements were used

in the performance evaluation. The main metrics were recall, which

measured true positives in relation to all actual positive cases,

precision, which quantified true positives in relation to all positive

predictions (essential for reducing false positives), overall accuracy,

which measured correct predictions across all samples, and F1-

score, which provided the harmonic mean of precision and recall.

Safety-specific assessments that concentrated on false positive

analysis were added to these common metrics.

A key element of performance evaluation was false positive

analysis, where absolute false positive counts gave a direct

assessment of unsafe biochar that was mistakenly labelled as safe.

The improvement from standard to conservative threshold
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approaches was used to calculate the false positive reduction

percentage, indicating the efficacy of the conservative approach.

The improvement in positive prediction reliability was particularly

highlighted by precision improvement metrics, which is important

for safety applications where a high level of confidence in “safe”

classifications is critical.

In order to assess the robustness of the model across various

datasets, generalisation assessment compared the performance of

internal validation with the outcomes of external validation. Instead

of using k-fold CV to evaluate model robustness, uncertainty analysis

and external dataset validation were used to make sure that

borderline predictions were flagged conservatively. The distribution

of prediction probabilities was analysed using uncertainty analysis,

which revealed samples with probabilities ranging from 0.4 to 0.8 that

needed more investigation in real-world settings.

The entire pipeline implementation, from data preprocessing to

the final model deployment, is shown in Figure 2.

3.1.3 Visualization
The complete visualizations included performance comparison

charts with internal and external validation metrics using the

standard and conservative thresholds. The bar charts clearly showed

improvements in both accuracy and precision, which demonstrated the

value of the false positive reduction strategy directly. The false positive

comparison charts supplied convincing evidence of improvements in

safety, evidenced by a reduction in the potentially unsafe-to-safe

misclassifications from multiple instances to zero when using a

conservative threshold.Probabilistic distribution histograms clearly

showed the separation between safe and unsafe biochar samples,

indicated by decision thresholds at 0.5 and 0.7. This provided

viewers not only information about model confidence, but also the

impact that conservative thresholds have on borderline cases. With the

confusion matrix for this conservative threshold, it was clear that it

completely removed false positives, so no unsafe biochar sample was

classified as safe.The feature importance plots showed the most

significant variables, with pH-based features, inorganic carbon, and

exchangeable also listed in the prominent position in each case. It

resulted in the validation of the utility of the enhancement feature

engineering safety boundaries to formulate a robust classification.

3.1.4 Ethical considerations
The biochar safety assessment model was conducted with the

explicit consideration of all potential implications (both

environmental and agricultural) of its misclassification types. The

conservative threshold-based method prioritizes public safety and

aims to achieve the lowest false positive rate since a stakeholder

could wrongly classify the biochar as safe; the public will determine

there is correspondingly greater risk to society than if stakeholders
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take a conservative application approach. The reason why this is

ethical is that it reflects the precautionary principle in an

environmental monitoring and assessment approach. There is an

urgency to minimize potential harm to society from wrong

decisional outcomes; this is the objective of the toxicologist.

There is a commitment to transparency in the model

development process, which is evidenced in the documentation of

the rationale for feature selection, the establishment of the safety

criteria, and the development of the performance evaluation

methods. The openness in every attempt to describe methods

enables peer review and reproducibility, as well as useful and

responsible deployment of machine learning in safety-critical

applications. Reported feature importance supports the direct use

of explainable AI (XAI) capabilities, which enables domain experts

to understand and validate the model decisions as opposed to being

satisfied with black-box predictions.

Data privacy, except where expressly stated, when it can be

identified, biochar production (and where it is not a superfluous

barrier to our research), and intellectual property concerns related to

documenting all biochar samples as prescribed but anonymized where

necessary, were addressed whilst retaining scientific defensibility

through recording as enough feedstock and production method data

as possible and descriptive. The validation dataset was global, and

there is no regional or biogeographic bias (or any bias associated when

working with biochar-based systems). This guarantees all engaged

parties are socially responsible by application of data interpretation in

various agricultural representations in associative practices (e.g.,

risk assessment).

3.1.5 Conclusion
The safety boundary feature engineering approach and

conservative threshold implementation provide a dependable

framework for safety-critical biochar assessment, supporting

informed decision-making for producers, regulators, and

agricultural stakeholders in biochar applications. The developed

machine learning model successfully established a robust biochar

safety classification system through innovative feature engineering

and conservative threshold optimisation, achieving 96.7% external

validation accuracy with complete false positive elimination and

demonstrating excellent generalisation across diverse biochar

samples from global datasets.
3.2 Predicting adsorption efficiency of
biochar using random forest regression

3.2.1 Data collection and preprocessing
The dataset used in this study was derived from Zhu et al. (2019)

in their research titled “The application of machine learning methods
FIGURE 2

Overview of the ML pipeline for biochar safety analysis.
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for prediction of metal sorption onto biochars.” Their dataset

encompassed 353 adsorption experiments involving six heavy

metals (Pb, Cd, Ni, As, Cu, Zn) across 44 different biochars

produced from various lignocellulosic biomass sources under

pyrolysis conditions ranging from 300°C to 700°C. This diversity in

experimental conditions and feedstocks ensured a comprehensive

representation of biochar characteristics.

Four sections were created from the consideration of fifteen

contributing factors: (i) properties of the biochar, such as its pH in

water (pHH2O), surface area (SA, m2/g), cation exchange capacity

(CEC, cmol(+)/kg), ash content (ash, %), particle size (PS, mm),

mass percentage of total carbon in the biochar (C, %), molar ratio of

nitrogen and oxygen to carbon [(O+N)/C], molar ratio of oxygen to

carbon (O/C), and molar ratio of hydrogen to carbon (H/C); (ii)

adsorption conditions, such as solution pH (pHsol) and adsorption

temperature (T, oC); (iii) initial concentration ratio of heavy metals

to biochars (C0, mmol/g); and (iv) properties of the heavy metals,

such as charge number, ion radius (r, nm), and electronegativity (c).
For this study, the dataset was structured into two Excel sheets:

“Biochar_adsorption” and “metadata.” The “Biochar_adsorption”

sheet captured the experimental adsorption outcomes, while the

“metadata” sheet included detailed physicochemical properties of

the biochar samples. These sheets were selected as they

comprehensively covered both the experimental results and biochar

properties necessary for accurate modeling (Figure 3).

Multi-entry columns like ‘Metal type’ were split and

normalized to ensure each row represented a unique adsorption

case (Figure 4), thereby simplifying the dataset structure and

avoiding ambiguity. Numeric columns were converted to

appropriate data types to enable seamless numerical

computations. Categorical variables (“Biomass feedstock” and

“Metal type”) were encoded using label encoding. (Figure 5)

Label encoding was preferred over one-hot encoding to

maintain computational efficiency and avoid the dimensionality
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explosion, given the moderate number of categories. Missing

values were removed to maintain data integrity, ensuring the

machine learning model was not biased or skewed due to

incomplete records. Independent(features) and dependent

(targeted) variables were identified and split into an 80/20 ratio

for training and testing of the model (Figure 6).
3.2.2 Model training
The Random Forest Regression model (Figure 7) was employed

to predict the adsorption efficiency of biochar for various heavy

metals, based on physicochemical and processing parameters.

Random Forest is an ensemble-based algorithm that builds

multiple decision trees during the training phase and produces

the average prediction from these individual trees to enhance

predictive accuracy and reduce overfitting.

The working of the Random Forest model, pictorially, is best

explained by Figure 1.

Let the training dataset be (Equation 8):

D = (xi, yi)f gNi=1, xi ∈ Rd , yi ∈ R (8)

where xi represents the feature vector and yi the corresponding

target value.

A Random Forest Regressor creates T decision trees. For each

tree t   ∈ 1,   2,  …,  Tf g, a bootstrap sample Dt is drawn with

replacement from D. At each node split, a random subset of

features m   <   d is chosen to determine the best split. Each tree is

grown fully or to a specified maximum depth without pruning.

The final prediction ŷ (x) for an unseen input x is given by

(Equation 9):

ŷ (x) =
1
To

T

t=1
ft(x) (9)

where ft(x) is the prediction from the t -th decision tree.
FIGURE 4

Cleansing and restructuring the metadata, including handling of compound metal types and formatting inconsistencies.
FIGURE 3

Initial loading of the excel dataset into colab, including reading sheets for analysis.
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The performance of the model is assessed using the

following metrics:

Mean Squared Error (MSE)(Equation 10):

MSE =
1
no

n

i=1
(yi − byi)

2 (10)

Coefficient of Determination (R2) (Equation 11):

R2 = 1 −o
n
i=1(yi − byi)

2

on
i=1(yi − y)2

(11)

where y is the mean of the actual values.

To enhance model performance, hyperparameter tuning was

performed using Grid Search with Cross-Validation (Grid Search

CV). By training the model on various combinations of

hyperparameter values, this method does an exhaustive search

over a given parameter grid and evaluates them using k-fold

cross-validation.

Let Q = (q1, q2,…, qk)f g represent the set of all possible

hyperparameter combinations. For each q ∈ Q , k-fold cross-

validation is performed as follows:
Fron
• Split the training data into k disjoint subsets:

D1,D2,…,Dkf gFor each fold k, train the model on D ∖Dk

and validate on DkCompute the average validation score

(Equation 12):
CV(q) =
1
K o

K

k=1

scorek(q) (12)

The optimal hyperparameter set q* is selected as (Equation 13):

q* = arg  maxq∈QCVR2 (q) (13)
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In this study, GridSearchCV from scikit-learn was used with

k = 5, and the scoring metric was the R2 score. This allowed

identification of the most effective hyperparameters, including the

number of trees (n_estimators), maximum tree depth (max_depth),

and minimum samples per leaf (min_samples_leaf), to enhance

model performance on unseen data.
3.3 Time series model to predict potential
VOC emissions from biochar under
different environmental conditions,
assessing the air quality impact

Another objective is to create a model to predict Volatile Organic

Compound (VOC) emissions from biochar in various environmental

conditions using time-series data. The dataset is collected from a

publicly available research paper (29). The primary dataset (1b -

Paper1exp1gas_metadata.csv) contains 1440 experimental

observations, each representing a soil core under a specific treatment

and measurement time. The dataset includes characterization across 29

variables, covers soil and biochar treatments, temporal factors, and

environmental conditions such as the incubation temperature, water

content, and porosity. Greenhouse gas data comprise fluxes of CO2,

CH4, and N2O along with the initial gas concentrations. The dataset

collectively provides an integrated view of the soil, biochar, and

environment interactions driving greenhouse gas emissions.

The dataset originates from a controlled soil incubation study

conducted in Lincolnshire, United Kingdom, in March 2011.

Twenty soil cores (150-180 mm depth, ~1.6 kg dry soil each)

were collected three weeks after planting and nitrogen fertilizer

addition. The cores were subjected to a four-treatment factorial
FIGURE 5

Merging cleaned metadata with adsorption data, handling missing values, encoding categorical variables, and ensuring data consistency.
FIGURE 6

Identifying independent variables (features) and target variable for model training, followed by a standard train-test split.
frontiersin.org

https://doi.org/10.3389/fsoil.2025.1661097
https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org


Roy et al. 10.3389/fsoil.2025.1661097
design (biochar amendment vs. no amendment; wetted vs.

unwetted) under controlled temperature and storage conditions.

The data spans a 116-day incubation period with repeated gas

flux and concentration measurements taken throughout. Key

measurement points were aligned with four wetting events (days

17, 46, 67, and 116) in addition to baseline equilibration and

continuous monitoring during incubation.

For making CO2 emission prediction model, only 5 variables

were used from the dataset which include the following: ugCH4-

Cfluxm2h1 represents CH4 gas flux in the units mg CH4-C flux per

square metre soil per hour, ugN2O-Nfluxm2h1 represents N2O gas

flux in the units mg N2O-N flux per square metre soil per hour,

CO2ppmt0 represents CO2 ppm in the static chamber headspace at

t0, CH4ppmt0 represents CH4 ppm in the static chamber headspace

at t0, N2Oppmt0 represents N2O ppm in the static chamber

headspace at t0. The target variable is mgCO2-Cm2h1, which

represents CO2 gas flux (units mg CO2-C flux per square metre

soil per hour).

The input features are experimental measurements of greenhouse

gas fluxes and initial gas concentrations, which act as predictors, and

the output target is the CO2 flux (mgCO2-Cm2h1), which needs to be

predicted. The dataset provides high-resolution insights into biochar-

soil interactions, particularly CO2 dynamics under moisture variation.

The representativeness is, however, limited to a single site

(Lincolnshire), one soil type, a specific biochar application rate (3%

soil dry weight; ~22 t ha-¹), and controlled incubation conditions.

Thus, the extrapolation to other soils, climates, cropping systems or

biochar feedstocks should be made with caution.

The main objective is to find CO2 emissions, which are one of

the major volatile organic compounds emitted from biochar, which,

at high concentrations in the environment, can cause harm. The

model predicts CO2 emissions (mgCO2-Cm2h1) using other gas

fluxes (CH4, N2O) and initial concentrations. The emissions are

predicted using a time series deep learning approach (as data
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consists of sequential dependencies), which learns from past

observed values of fluxes and initial gas concentrations.

3.3.1 Data preprocessing
The dataset is loaded with correct encoding, missing values are

removed and selected features are normalised using MinMaxScaler

to scale values between 0 and 1 for converging better

during training.

3.3.2 Using LSTM model
To input data into the LSTMModel (Long Short TermMemory

model), the data is formatted into 3D, which includes samples, time

steps, and features to fit the LSTM requirements. This allows the

LSTM model to use each feature as a timestamp in a single

observation, leading to more effective sequential processing power

of the LSTM.

A 3-layer LSTM model with dropout regularization method is

used to reduce overfitting, which involves.

LSTM(128) -> Dropout -> LSTM(64) -> Dropout -> LSTM(32)

->Dropout -> Dense(1).

LSTM (64) learns about long-term temporal dependencies,

LSTM(32) adds depth and non-linearity, Dense(1) gives a scalar

output, which is the target.

With a learning rate of 0.001, the model makes use of the Adam

optimizer. It adapts the individual learning rates for each parameter

helpful for handling real-world data. The model is trained for 100

epochs with a batch size of 4. The batch size helps the model to

understand small nuances in a less variable dataset.

3.3.3 Testing and performance
Using the 80:20 rule, the data is trained and tested using the

train_test_split function from Scikit-learn. The bidirectional LSTM

model performance is evaluated by using Mean Absolute

Percentage Error (MAPE) and R2 score. The output was to
FIGURE 7

Training a random forest model, making predictions, and evaluating initial performance using metrics such as MSE and R-squared. Optimizing model
performance using GridSearchCV and evaluating the tuned estimator for improved accuracy. Visualizing model results through residual analysis,
prediction accuracy, and feature influence to interpret model behavior.
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predict a single continuous target value. A good R2 score of 0.8992

shows a better fit, an MAPE accuracy score of 77.33% ensures

almost reliable predictions, but better models can be found.

Traditional LSTMs process time steps sequentially in a forward

direction, but this may limit context awareness; thus, another model

is created, which uses a bidirectional LSTM along with a dense layer,

early stopping, ReduceLRonPlateau that will analyze both forward

and backward dependencies effectively.

The new model is a bidirectional LSTM model to predict CO2

flux based on initial flux values of CH4 and N2O and their

concentrations. Dropout rates of 0.3, 0.3, and 0.2 were applied

over each LSTM layer. Dropout means to randomly disable neurons

during the training phase to reduce the overfitting factor.

To increase prediction accuracy, the model was further fine-

tuned. Encoding of non-numeric values was performed using ISO-

8859-1 encoding. Missing values in the dataset were filled with

mean values. The Z-score method was applied to remove outliers

that could cause skewness while training the model. It also improves

the generalization and convergence factor. To better understand the

complex intricacies, more features from the dataset were included in

model training (6 features compared to 2 features in the initial

model). The model consists of 3 LSTM layers, and batch

normalization is applied after each LSTM layer to stabilize the

training, to improve convergence, and allow higher learning rates.

Adding more layers creates a stacking effect, which helps learning

hierarchical temporal characteristics using the model. Lower layers

capture short-term interactions like relationships between flux and

ppm concentration of gases, whereas deeper layers learn about the

abstract and long-term dependencies, which include analyzing

emission trends under various environmental conditions.

If no improvement was noted, 10 consecutive epochs of early

stopping were introduced to halt training. The model uses a

learning rate scheduler to lower the learning rate when the

validation loss plateaus. To fine-tune the training phase, the

learning rate was reduced from 10 to 5 stagnant epochs to ensure

that the data converges better and escapes from local minima. It also

gives more time for models to fine-tune deeply.

The new model, which is the optimized Bidirectional LSTM,

also uses the Adam optimizer with a learning rate of 0.001. Training

was done over 100 epochs with a batch size of 4, like the initial

model. The model achieved 87.14% accuracy and R2 score of 0.9829,

outperforming the previous model. A higher R2 score of 0.9829

shows a better fit, indicating the ability of the model to explain

approximately 98% of the variance in CO2 flux data, symbolizing

the excellent fit of the model for the time series predictions.

Methane and Nitrous oxides were identified as key predictors.

The MAPE accuracy score of 87.14% ensures more reliable

predictions than the previous model. The second model has

better generalization due to the inclusion of 6 features compared

to 2 features in the previous model, the introduction of early

stopping, and learning rate reduction.

3.3.4 Features found
Important features found include CH4 flux and N2O flux, whose

interaction with CO2 flux is notable and must be considered while
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making predictions regarding the impact of VOCs on the

environment. The initial CO2 baseline concentration also plays a

strong role in determining its emission behaviour. These features

affect how the VOC emissions from biochar affect the environment

and its surroundings, helping in predicting in which locations they

can be used safely without causing any additional harm. The feature

importance insights can be further supported and verified using

permute feature importance or SHAP (SHapley Additive

exPlanation) analysis.

3.3.5 Reason for LSTM over other models
LSTM was chosen due to its special ability to model sequential

dependencies and to retain long-term information in time series

data. It captures past and future dependencies in VOC gas

emissions, which help us predict future trends under various

environmental conditions, making it easier to classify whether it

would be beneficial to use it in the region or not.

3.3.6 Working of LSTM
LSTM (Long Short-TermMemory) is a type of RNN (Recurrent

Neural Network) that learns temporal dependencies from time

series data. It overcomes the problem of short-term memory in

RNNs. It maintains long-term memory using cell gates and

mechanisms for gating, namely the Input Gate, Forget Gate, and

Output Gate. It is known for efficient handling of vanishing

gradients than traditional RNNs. It is most suited for analysing

and predicting from time series, sequential data. It remembers the

important last-used data and discards the unimportant ones. The

model learns this classification of important and unimportant data

during its training from datasets. Long-term dependencies can be

learned by LSTMs.

Like RNNs, LSTMs also contain chain-like topologies; however,

the repeating module is structured differently. Having several neural

network layers as opposed to only one, there are four that interact

differently. For the VOC emissions dataset, it processes the

sequential data of gas readings from the dataset and notes the

patterns and time-dependent relationships that impact CO2

emissions. It also predicts the future CO2 flux based on the past

fluxes and gas concentration data.

Each line in Figure 8 represents carrying a vector from the

output node to the input node. Pointwise operators, neural network

layers are also represented in the diagram. A merging line indicates

concatenation, whereas a forking line represents content that is

copied and relocated to several locations (25).

The first step in LSTM is to decide which step to discard. The

sigmoid function makes the decision (forget gate layer) (Equation

14). Input is ht−1 and xt data, output lies between 0 and 1. One

means to remember the data, whereas zero means to forget the data.

ft = s  (Wf ·  ½ht−1, xt �   +   bf ) (14)

The next step (Equation 15) decides which new data to

remember. The input gate layer uses a sigmoid layer to decide

what data needs to be updated. Another vector Ct may be added to

the state, which is created by a tanh layer (Equation 16).
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it = s  (Wi ·  ½ht−1, xt �   +   bi) (15)

Ct=tanh (Wc ·  ½ht−1, xt �   +   bC) (16)

The old cell value is then updated from Ct-1 to new cell Ct

(Equation 17). The old state is multiplied with ft (to remove old

state) then add an additional factor to scale by how much the user

wanted to update the state values.

Ct = ft*Ct−1 + it*  Ct (17)

Final output is based on the current state of the cell (Equation

18). First is the sigmoid function, then (Equation 19) the cell state

passes through tanh and is multiplied with the output of the

sigmoid gate.

ot = s  (Wo  ½ht−1, xt �   +   bo) (18)

ht = ot* tanh   (Ct) (19)

This is how LSTM works to forget the data that is not required

and to remember the key data that may be needed in the future for

analysis. The LSTMmodel is trained with the dataset to understand

the importance of data which helps it learn important patterns and

sequences of features from the time series data.

Traditional models like ARIMA, XGBoost, and Random Forest

were less effective for time series analysis as they were unable to

model linear and temporal dependencies and showed poor

performance with incomplete and time series data.

LSTM overcomes these problems by leveraging memory gates

to selectively retain relevant information, handle incomplete time

sequences, and generalize effectively for various features across

different environmental domains, thus providing solutions and

analysis that can be used in real life.

The ethical considerations include ensuring environmental

responsibility to ensuring that accurate models are used to assess

the safety, suitability, and sustainability of biochar usage in

agriculture. Features should be chosen carefully based on

importance in real-world scenarios, which would help in solving

actual problems in the agriculture domain. Certain limitations

include using a small dataset, which may cause issues in
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generalization and may lead to overfitting. Using single steps may

also affect accuracy. The usage of interpretation tools like SHAP can

help in feature extraction.

The optimized model achieved an accurate score of 87.14% and

an R2 score of 0.9829, outperforming its previous model. Key

improvements include expanding the feature set from 2 to 6,

removing outliers using the Z-outlier method, applying batch

normalization, and regularization techniques. This model has

strong potential to predict real-time VOC emissions from biochar

and helps in proactive risk assessment for the environment by

forecasting sustainable biochar utilization strategies. The model

offers reduced validation loss and effective generalization.
4 Overall architecture of the model

A cumulative machine learning pipeline was developed in the

research, integrating classification, regression, and time-series

models. Standard procedures were used to preprocess input data

such as chemical composition, adsorption capacity, and emissions

measurements. A set of outputs from these models was used to

analyze biochar stability, adsorption efficiency, and environmental

effects. The integrated workflow of this whole pipeline is

schematically represented in Figure 9.
5 Results and discussion

5.1 Classification model

The biochar safety assessment and predictive model showed

strong quantitative performance. External validation had 96.7%

accuracy with 1.000 precision at the conservative threshold (t =

0.7), demonstrating its ability to accurately differentiate safe versus

unsafe biochar. Internal validation produced comparable results

indicating solid generalizability across independent datasets. The

validation results are summarized in Figure 10, and the comparative

decrease of false positives is highlighted in Figure 11.
FIGURE 8

Interaction of four layers in the LSTM model (cell state, forget gate, input gate, output gate).
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A key contribution of the model is the elimination of false

positives. At the standard threshold (t = 0.5), the classifier produced

eight unsafe to safe misclassifications, which would pose significant

safety issues when deployed in the real world. The conservative

threshold removed all false-positives, ensuring that all unsafe

biochar was not misclassified as safe. The improvement can be

clearly seen in the confusion matrix in Figure 12, in which none of

the unsafe samples were misclassified as safe.

An uncertainty analysis in Figure 13 reinforced this conservative

orientation. About 93.3% of external validation samples landed within

the intermediate probability zone, confirming the threshold’s use to

filter borderline cases to be excluded from consideration. The approach

ensures low-confidence predictions are not automatically declared safe,

which fits with a safety-first approach.

A key contribution of the model is the elimination of false

positives. At the standard threshold (t = 0.5), the classifier produced

eight unsafe-to-safe misclassifications, which would pose significant

safety issues when deployed in the real world. The conservative

threshold removed all false positives, ensuring that all unsafe

biochar was not misclassified as safe. The improvement can be

clearly seen in the confusion matrix in Figure 12, in which none of

the unsafe samples were misclassified as safe.

The feature importance analysis, as shown in Figure 14,

indicated that the top predictor was pH-centre distance, followed
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by pH, inorganic carbon, and exchangeable calcium. Other

extractable and elemental features were less important predictors.

These rankings illustrate the efficacy of the feature engineering

method safety boundary presented in this analysis. The safety

boundary method is interpretable and makes sure that the

features relevant to contextual interpretation are driving the

classifications instead of the numeric units in the data.

The feature importance analysis, as shown in Figure 14,

indicated that the top predictor was pH-centre distance, followed

by pH, inorganic carbon, and exchangeable calcium. Other

extractable and elemental features were less important predictors.

These rankings illustrate the efficacy of the feature engineering

method safety boundary presented in this analysis. The safety

boundary method is interpretable and makes sure that the

features relevant to contextual interpretation are driving the

classifications instead of the numeric units in the data.

As compared to existing methods, the proposed model offers

distinct benefits. Evaluation by an expert alone achieves only 60–

70% accuracy, with significant inconsistency due to bias.

Threshold-based methods offer similar performance, but do not

take into account parameter interactions. Standard machine

learning classifiers offer some improvement, with false positive

rates near 20%. The proposed framework, on the other hand,

attained a record 96.7% accuracy with zero false positives,
FIGURE 9

System architecture of the overall machine learning model.
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representing a significant advancement in both reliability and

confidence of safety.

The practical significance of these findings is considerable. For

producers of biochar, this framework will provide a reliable basis for

ensuring quality assurance and compliance with regulations, and

minimize the potential risks associated with issuing an unsafe

product. For regulators, this framework provides the capability to

ensure a structured and transparent process for assessing

compliance, while simultaneously ensuring that safety standards

will be enforced consistently without losing the ability to efficiently

complete other tasks.

Although the research has provided some contributions, there

are limitations to consider. The training data were constructed with

only 30 samples, potentially limiting the model’s ability to recognize

rare combinations of biochar properties. In addition, binary

classification describes a continuous environmental safety

spectrum into a simplified and discrete safe/unsafe scenario.

Future directions of research could include expanding the

training dataset, constructing multi-class classification options to

draw finer distinctions in risk level, and incorporating biological

safety indicators along with physicochemical properties.

The overall results highlight the importance of safety-specific

optimization in environmental machine learning implementations.

It can be seen that avoiding false positives, highlighting

interpretability, and demonstrating good generalization laid a

methodological groundwork for implementing responsible AI in

safety-critical environmental areas.

In conclusion, the proposed machine-learned framework for

biochar hazard assessment provides a false positive-free process

and achieved an external validation accuracy of 96.7% with a

precision of 1.000 under conservative thresholding which far

exceeds the performance of typical degradation assessment

approaches, it demonstrated dependable and interpretable

predictions through uncertainty analysis that informed the reader

that 93.3% of samples were in the intermediate region, and through
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feature importance analysis that confirmed the importance of some of

the most critical physicochemical properties including pH-distance to

center, pH, and inorganic carbon. The suggested machine learning

framework could be limited in part due to how small the training

dataset was and the degree to which the analysis used a simplified

binary classification method; however, the study provides a

framework for an action-based safety assessment strategy that

should be beneficial for industry and regulators alike, while

establishing the groundwork for future multi-class and biologically

integrated models for environmental safety applications. Table 1

shows the results for classification model using random

forest classifier.
5.2 Predicting adsorption efficiency of
biochar using random forest regression
model training and evaluation

The cleaned dataset was split into predictors (X) and the target

variable, “Adsorption Efficiency (mmol/g)” (y). An 80:20 division

between training and testing was implemented to create a balanced

assessment framework, where there was enough data for training,

thereby ensuring a dependable test set to evaluate model generalization.

Initially, a Random Forest regressor with 500 estimators and

‘sqrt’max features was trained. Random Forest was selected because

of its robustness to overfitting and its ability to handle non-linear

relationships and mixed data types. The model obtained a Mean

Squared Error (MSE) of 0.0089 and an R² score of 0.912, indicating

strong predictive capability and generalization power.
FIGURE 10

Internal vs external validation showing 96.7% accuracy and precision
1.000 precision under the conservative threshold.
FIGURE 11

False positive reduction from 8 cases (standard threshold) to zero
(conservative threshold).
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Feature importance analysis was conducted to find the key

contributors to adsorption efficiency. It revealed that C0 (mmol/g)

was the most influential factor (27.8%), followed by pHsol (14.5%),

CEC (11.3%), and Total carbon content (8.8%). Understanding

feature importance is crucial as it offers practical insights, guiding

researchers and practitioners to focus on optimizing these

parameters for enhanced adsorption performance.

5.2.1 Hyperparameter optimization
Hyperparameter tuning was performed using GridSearchCV

with a 5-fold cross-validation strategy to improve the model’s

performance. GridSearchCV was chosen because it exhaustively

searches all possible parameter combinations within the defined
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grid, ensuring the identification of the optimal configuration. The

parameter grid included: n_estimators [100, 200]: max_depth: [10,

None], min_samples_leaf [1, 4]:

These parameters were selected based on their known influence

on Random Forest performance: the number of trees (n_estimators)

balances bias and variance, max_depth controls tree complexity,

and min_samples_leaf prevents overfitting by setting a minimum

number of samples at each leaf node.

The best parameter combination obtained was n_estimators =

200, max_depth = None, and min_samples_leaf = 1. The optimized

model on the test set yielded a Test R² score = 0.9549 and a Test

MSE = 0.0046, marking a significant improvement over the initial

model. Table 2 shows the results for the regression model using the

Random Forest Regressor.

5.2.2 Feature importance plot
Feature importance (Figure 15) analysis revealed that C0

(mmol/g) was the most influential factor (27.8%), followed by

pHsol (14.5%), CEC (11.3%), and Total carbon content (8.8%).

This highlights the dominant role played by these factors in the

adsorption process. The outcome of the model is consistent with the

fact that the safety of biochar use for environmental remediation is

associated with the physicochemical properties of biochar,

specifically, pHsol, C0, and CEC, which were identified as the

most important predictors in the Random Forest model. The

solution pH (pHsol) will govern the solubility and mobility of

heavy metals in the soil and/or water, and extreme pH will either

increase metals leachability or cause changes in soil chemistry,

posing risks to the plants and microbial communities they form

symbiotic relationships. The initial concentration of heavy metals

versus biochar (C0) will determine the highest adsorption potential;

for example, high C0 values can exceed the adsorption capacity of

the biochar, resulting in excess mobile heavy metal and thus

increased risk to the environment. Cation exchange capacity
FIGURE 12

Confusion matrix under conservative threshold confirming zero
unsafe-to-safe errors.
FIGURE 13

Probability distribution of external validation samples, with 93.3% in
the uncertain range.
FIGURE 14

Feature importance ranking with pH-center distance, pH, and
inorganic carbon as top predictors.
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(CEC) gives an indication of the material’s ability to hold positively

charged ions (e.g., Pb²+, Cd²+, and Zn²+), preventing their exodus

into the surrounding environment. In addition to identifying top

predictors of adsorption efficiency, highlighting properties such as

pHsol, C0, and CEC emphasizes that when selecting appropriate

biochars, physicochemical properties of biochar must be considered

for their essential role in ensuring environmentally safe use, linking

adsorption behavior directly to the reduced risk of contamination.

5.2.3 Actual vs. predicted scatter plot
In Figure 16, each point represents an observation from the test

set, and a diagonal reference line (y = x) indicates perfect prediction.

The close clustering of data points around the ideal 45° line signifies

a high degree of predictive accuracy, confirming that the Random

Forest model correctly captures the relationship between biochar

properties and adsorption efficiency.
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5.2.4 Residual plot
A residual distribution plot (Figure 17) was examined to analyze

the characteristics of the model’s errors. The errors appeared to be

normally distributed and centered around zero. Hence, the model

does not consistently overestimate or underestimate adsorption

efficiency. The randomness of these residuals is a good sign of the

model’s calibration and its capability to account for the natural

variability present in the experimental data.

5.2.5 Partial dependence plots
To enhance the model’s interpretability, partial dependence

plots (Figure 18) were created. These plots focused on key

features such as “C0 (mmol/g)”, “pHsol”, “CEC(cmol(+)/kg)”, and

“Total carbon (%)”, showing trends such as increasing adsorption

efficiency with increasing C0 (mmol/g) and slightly decreasing or

constant Total carbon(%), while more complex, non-linear

increasing relationships were observed for pHsol and CEC(cmol

(+)/kg). The changes in each predictor independently influence

predicted adsorption efficiency, regardless of other variables. These

visualizations highlight the directional effects (whether positive or

negative) and pinpoint potential thresholds where a predictor’s

influence might increase.

5.2.6 Correlation with matrix heatmap
A feature (Figure 19) correlation matrix analysis was conducted to

provide a comprehensive overview of the relationships between

predictor variables. Strong positive correlations were identified

among the atomic ratio parameters, with the correlation between O/

C and H/C at r = 0.83. Strong negative correlation was observed

between Total carbon (%) and Ash content (%) (r = -0.82), suggesting

that as the ash content increases, the organic carbon content decreases,

an expected trend in biochar composition due to the inverse

relationship between inorganic residue and carbonaceous matter.

Temperature-related variables also showed different

relationships with chemical properties. Pyrolysis temperature

exhibited strong negative correlations with both H/C (r = -0.87)

and (O+N)/C (r = -0.74), revealing that higher thermal treatment

reduces the relative hydrogen and heteroatom content in the

biochar, which is consistent with progressive carbonization at
TABLE 2 Results for the regression model using the random forest regressor.

Aspect Initial Model Optimized Model (GridSearchCV)

Model Type Random Forest Regressor Random Forest Regressor

Hyperparameters
n_estimators = 500
max_features = ‘sqrt’

n_estimators = 200
max_depth = None
min_samples_leaf = 1

Tuning Method None GridSearchCV (5-fold cross-validation)

Parameter Grid Searched —

n_estimators: [100, 200]
max_depth: [10, None]
min_samples_leaf: [1, 4]

MSE (Test) 0.0089 0.0046

R² Score (Test) 0.912 0.9549

Performance Summary Good generalization and predictive capability Significant improvement after hyperparameter tuning
TABLE 1 Results for classification model using random forest classifier.

Component Details

Model Used Random Forest Classifier

Objective Classification of biochar as safe or unsafe.

Test Accuracy 0.967(External validation, conservative threshold).

Classification
Report

External validation (conservative threshold): F1-Score =
0.947, Precision = 1.00, Recall = 0.90

Confusion
Matrix

No false positives, 1 false negative observed.

Important
Features

pH, inorganic carbon, exchangeable calcium, extractable
elements (Na, Mg, K, S, etc.), pH-center distance.

Hyperparameter
Tuning

GridSearchCV with tuned RF parameters

Optimal
Parameters

100 Estimators, No Max Depth, Min Samples Split = 2, Min
Samples Leaf = 1

Interpretability
Tools

Confusion matrix, probability distribution analysis, feature
importance ranking, safety criteria distributions

Applications
Environmental monitoring, sustainable agriculture, and
safety compliance.
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elevated temperatures. Similarly, Total carbon (%) was negatively

correlated with C0 (mmol/g) (r = -0.62), implying that higher initial

adsorbate concentrations tend to coincide with lower carbon

content in the material, potentially due to variations in feedstock

or pyrolysis conditions.

Moderate to strong positive correlations were also found

between Temperature (°C) and both (O+N)/C (r = 0.66) and O/C

(r = 0.67), suggesting that these chemical ratios increase with

thermal processing. CEC (cmol(+)/kg), which reflects the cation

exchange capacity of the biochar, showed moderate correlations

with several compositional variables, including T (°C) (r = 0.49),

(O+N)/C (r = 0.47), and O/C (r = 0.46), revealing that higher

temperature and heteroatom content may enhance the ion

exchange potential of the biochar.
5.2.7 Model performance comparison with
existing biochar adsorption studies

Although Zhu et al. (10) provided the dataset for this study, its

methodology, model design, and interpretability were quite distinct.

Zhu et al. modelled the adsorption of heavy metals onto biochars

using Random Forest (RF) and Artificial Neural Networks (ANN),

determining that pH and cation exchange capacity (CEC) were

important predictors. Their study concentrated more on showing

that machine learning can accurately predict adsorption.

The current work, on the other hand, uses a stricter approach

that includes meticulous hyperparameter tuning, optimised feature

selection, and structured data preprocessing.

The performance of predictive models over multiple studies is

displayed in Figure 20 using R² values. Zhu et al. (10), Leng et al. (11),

Wang et al. (12), Shen et al. (14), Li et al. (16), Köppel et al. (18), and

the current study are among the studies whose R2 values are

represented by each bar. The current study maintains strong
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performance (R2 = 0.9549) while focusing on input simplicity and

model transparency, whereas models like those by Shen et al. and Leng

et al. exhibit high R2 values close to 0.99 because they employ ensemble

and hybrid approaches and rely on intricate and domain-specific

features like surface area, elemental ratios, or customized input

parameters. Despite their utility, these variables may make it more

difficult for such models to be widely used because of the complexity of
FIGURE 15

Feature importance scores of the Random Forest model identify the most influential variables affecting the target outcome. C0 (mmol/g), pHsol, and
CEC(cmol(+)/kg) emerge as the top three predictors, indicating their strong influence on model performance.
FIGURE 16

Scatter plot comparing actual vs. predicted adsorption efficiency of
the Random Forest model. The close alignment of data points along
the red dashed 1:1 line indicates strong predictive performance and
high model accuracy.
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measurement. The current study’s model, on the other hand,

emphasizes operational viability, input simplicity, and wider

generalization across a variety of heavy metals while exhibiting

competitive performance. The current model strikes a good balance

between practical usability and prediction accuracy. It expands the
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availability of machine learning tools in environmental monitoring and

decision-making for biochar-based remediation strategies by lowering

reliance on labour-intensive variables while preserving accuracy.

5.3 Time series model to predict potential
VOC emissions from biochar under
different environmental conditions,
assessing the air quality impact

The initial LSTMmodel had an accurate score of 77.33%, which

is indicative of good predictability, but it could be further enhanced.

The model captured temporal patterns but lacked proper handling

of outliers, feature diversity, and regularization. This led to moving

towards developing a more enhanced Bidirectional LSTM model,

which predicts CO2 emissions from biochar datasets using flux and

concentration data of various greenhouse gases. Workflow began

with data processing, choosing relevant features, filling missing

values with mean imputation, and encoding of non-numeric values.

Removal of outliers using the Z-score was performed. The MinMax

scale was used to scale values between 0 and 1. Data was reshaped to

a 3D format to be fed to the LSTM model, and testing and training

were performed in an 80:20 ratio.

The model is made of 3 stacked Bidirectional LSTM layers with

128, 64, and 32 units, respectively. Batch normalization and

regularization were performed on the model. The final dense

layer gives a single continuous output predicting CO2 emissions.

The model used early stopping and a learning rate scheduler to

make the model adaptive. Adam optimizer with a learning rate of

0.001 was used in the training phase. To calculate the loss function,

Mean Squared Error was used. The model was trained using 100
FIGURE 17

Histogram of residuals (prediction errors) from the Random Forest
model. The distribution is approximately centered around zero with
a slight right skew, indicating that the model generally performs
well, with most prediction errors being small and symmetrically
distributed.
FIGURE 18

Partial dependence plots (PDPs) for the top four most important features (C0, pHsol, CEC, and total carbon) from the Random Forest model. These
plots illustrate how each feature influences the predicted adsorption efficiency, with C0 (mmol/g) showing a strong positive effect, while total carbon
(%) exhibits minimal impact.
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FIGURE 19

Heatmap showing the Pearson correlation coefficients among features used in the model. Strong correlations (both positive and negative) are
highlighted, such as the negative correlation between total carbon and ash content, and the positive relationship between CEC and C0.
FIGURE 20

Comparative R² scores of machine learning models used in biochar-based heavy metal adsorption studies.
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epochs with a batch size of 4. The model achieved an accurate score

of 87.14% and R2 score of 0.9829. Low validation score of

approximately 3.72e-4 is indicative of good model performance.

The new model proved better than the initial one. Z-score used

to remove outliers, inclusion of more features for better predictions,

usage of regularization techniques for dropout and batch

normalization to reduce overfitting, usage of early stopping and

learning rate scheduler to improve generalization and convergence,

made the model more efficient. The 3-layered model helped to

analyze complex patterns effectively. Table 3 shows the results for

the time series model using LSTM.

The visualizations help better understand the efficiency of the

model. Loss curve indicates good learning rate and generalization if

it shows steady decline during training and testing, whereas the

actual vs predicted plot shows how close the predicted values are to

the actual values, which explains the accuracy of the model.

Deviation would mean variance or bias in model predictions. The

first two graphs are from models with 77.33% accuracy. The

validation loss curve (Figure 21) has too many spikes, which

indicates overfitting and unstable data. The train loss curve has a

steady decrease, which indicates that the model works well on

known data but does not perform well on unseen data. The model

might have learnt noise and patterns from the training data, thus it

works correctly only for that set of data. The fluctuation with each

batch/epoch may be due to a small dataset or a high learning rate.

The Actual vs Predicted graph consists of slight variations

between actual and predicted values, which may be due to low

feature selection or improper removal of outliers, but only small

errors exist, as it is near-linear. (Figure 22).
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The two graphs below are from the Bidirectional LSTM model

with 87.14% accuracy. The graph below shows a steady decrease in

loss over epochs, indicative of stable learning. The model learnt

from the data well and provides generalized output for unseen data.

It shows ideal behavior without any underfitting or overfitting.

(Figure 23). A steady decrease in loss indicates a stable model.

For the Actual vs Predicted graph, the new model has a near-

linear graph, which indicates the strong forecasting and predictive

power of the model. It is a good model fit. The actual and predicted

values are almost linear, indicative of low errors. Fine-tuning can be

performed to achieve a more linear graph. (Figure 24).

A key limitation of this study is the scarcity of comprehensive

biochar emission datasets. The experimental data are derived from a

single controlled incubation study, which uses soils from one field

site in Lincolnshire, United Kingdom. As a result, samples from

diverse soil types, climatic zones, and other experimental setups

could not be incorporated. Representation of regional variability in

greenhouse gas fluxes is restricted, and the robustness of broader

inferences becomes constrained.

The applicability of the findings is limited by the narrow scope

of the dataset, which is restricted to one soil type, a single biochar

application rate, and controlled incubation conditions. Without

collecting data from varied climatic conditions, soil types, and

biochar feedstocks, the predictive capacity of the model cannot be

extended to wider agricultural or ecological contexts.

Soil pH, carbon (C), and nitrogen (N) content are critical

parameters that mechanistically influence CO2 emissions from

biochar–amended soils. The activity ranges of many VOC-

producing microbes and enzymes depend on pH. If the pH is too
TABLE 3 Results for time-series model using LSTM.

Aspect Initial Model Optimized model

Model Used
Used Bidirectional LSTM with 3 LSTM layers, Dropout, and
batch normalization, no dense layers

Bidirectional 3 LSTM Layers, Dropout, batch normalization, dense output Dense
(16, activation=‘relu’)

Objective
From initial GHG concentrations predicted CO2 flux (mgCO2-
Cm2h1) and other fluxes (ugCH4-Cfluxm2h1, ugN2O-
Nfluxm2h1, CO2ppmt0, CH4ppmt0, N2Oppmt0)

From initial concentrations predicted CO2 emission rate (mgCO2-Cm2h1) and
fluxes of CO2, CH4, and N2O using time-series learning

Test accuracy Based on MAPE, accuracy = 100-MAPE = 77.33% Using MAPE, accuracy = 87.14%

Classification
Report

Loss Function = Mean Squared Error (MSE), Final Validation
Loss = ~0.0052, R² Score = 0.8992
MAPE = ~22.67%
Accuracy = 77.33%

MSE (Loss) = ~0.000374,
R² Score = 0.9829,
MAPE = ~12.86%,
Accuracy = 87.14%

Hyperparameters
Epochs = 100, Batch size = 4, Optimizer = Adam, Learning
rate = 0.001, LSTM units = 128, 64, 32, Dropout = 0.2 to 0.3

Epochs = 100, Batch size = 8 (less noisy gradient), Optimizer = Adam (lr=0.001),
Layers = 3 LSTM layers (128, 64, 32 units), Dropout = 0.2 to 0.3

Tuning Method Manual Tuning, no callbacks
Early stopping with patience equal to 10, ReduceLROnPlateau with factor = 0.5,
patience=5, min_lr=1e-5

Optimal
Parameters

At epoch 99, reached best validation loss 0.00082, model
structure LSTM(128) -> LSTM(64) -> LSTM(32) with Dropout
and BatchNorm

Around 35 epochs reached best epoch, final learning rate = 1.5625e-5, final loss
approx 0.000344

Conclusion
Bidirectional LSTM has good R2 and accuracy in predicting
CO2 flux from GHG data, and advanced hypertuning
parameters can improve the efficiency of the model

The bidirectional LSTM model has high accuracy and R2 score, indicating an
excellent fit, good predictive capacity, regularization, and learning rate to prevent
overfitting. Effectively captures non-linear relationships in data.
Model handles numeric, non-numeric, outlier data, uses validation-aware callbacks,
an extra dense layer, and an adaptive learning rate
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acidic or alkaline, it can suppress enzymes that are involved in

breaking down organic molecules into VOCs. If the pH is near-

neutral, it may enhance microbial metabolism, which might

potentially increase VOC release. Thus, maintaining a balanced pH

can minimize the formation of harmful VOCs. The initial carbon

pool provides the substrate for microbial respiration, leading to CO2

flux. High amounts of unstable carbon increase the risk of VOC

emissions, whereas stable aromatic carbon in biochar promotes long-

term sequestration with minimal VOC release.

The availability of nitrogen modulates microbial metabolism and

the balance between C and N cycling, which influences the rate and

stability of decomposition. Incomplete decomposition by microbial

pathways due to excess or limiting nitrogen can favour VOC

generation. Balanced C: N ratios reduce VOC byproducts. These

parameters mechanistically determine whether biochar promotes
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stable carbon sequestration or accelerates mineralization, directly

linking to the safety outcome by minimizing unintended CO2

release and ensuring that biochar applications do not increase

greenhouse gas emissions.

Regulating pH, C, and N can help determine whether biochar

applications can lead to stable carbon sequestration with minimal

VOC release or stimulate microbial processes, which may generate

harmful VOCs. These parameters can be controlled to ensure that

biochar use does not increase toxic emissions, thus protecting both

the environment and human health.

The model predicts CO2 emissions (mgCO2-Cm2h1) using

other gas fluxes (CH4, N2O) and initial concentrations. This

shows the interdependence of greenhouse gases; the prediction

task proves that soil CO2 emissions are linked to methane and

nitrous oxide fluxes. This also highlights real soil-biochar processes

where microbial activity influences all gases simultaneously. The

initial concentrations (CO2ppmt0, CH4ppmt0, N2Oppmt0) act as
FIGURE 21

Training vs validation loss curve representing mean squared error over
100 epochs of training and validation data. Spikes in the validation
curve show overfitting of data. A steady decrease in the train loss
curve indicates low performance of the model for unseen data.
FIGURE 22

Scatter plot of actual vs predicted CO2 emission rates using LSTM
model. Small variations indicate inconsistencies in prediction.
FIGURE 23

Training vs validation loss curve using bidirectional LSTM model.
FIGURE 24

Actual vs predicted curve for bidirectional LSTM model. Near near-
linear graph indicates low error and a good model fit.
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early signals that help estimate the emission rates. The finding

highlights the correlation of high starting gas concentrations with

higher fluxes.
6 Limitations

The Classification Model faces a number of limitations, many of

which will need to be considered when placing it into practice. The

training dataset, containing 30 samples, was comprehensive with

respect to the coverage of features, but it was a small sample size for

a machine learning application. The sample size may restrict the

generalization of the model when predicting biochar samples that

contain unique and rare combinations of biochar properties. The

conservative threshold process provided reductions in false positive

rates, but increased the likelihood of false negative rates from the

model, with the potential to reject safe biochar samples that could

provide benefit in an agricultural context.

Turning to feature compatibility with respect to training and

validation datasets, the performance of the model was affected by a

lack of advanced biochar properties in some of the validation datasets.

In this case, feature imputation strategies were implemented, whichmay

have implications for uncertainty in predicting biochar samples with

incomplete characterizations. The model was limited to a binary safety

classification, which was reasonable for a regulatory perspective, but not

representative of the diverse and complex nature of biochar safety and

biochar effectiveness.

Geographic and temporal limitations arise from the static nature of

the safety criterion, which will change from region to region, based on

soil conditions, climate, future uncertainties, and changing regulatory

standards. Although the model emphasizes physicochemical properties,

it does not consider key aspects of biological safety, such as pathogen

content or potential allelopathic effects. This oversight limits the model’s

ability to provide a comprehensive safety assessment. In terms of scaling

considerations, the model needs standardized analytical methods to

measure the same features consistently across multiple laboratories and

production sites.

The Regression Model’s dataset provides a thorough basis for

modeling adsorption capacity by capturing a broad range of biochar

properties, adsorption conditions, and heavy metal characteristics.

However, not all studies report the same descriptors, including ash

content, surface area, elemental ratios, and cation exchange

capacity. As a result of variations in experimental design,

adsorption conditions, such as solution pH and temperature, also

differ significantly. These factors add unpredictability to the data

and can affect how reliably the model captures relationships.

The dataset’s emphasis on adsorption investigations carried out

in carefully monitored lab settings, frequently using simplified

metal solutions, is another factor to take into account. Although

these environments offer useful comparability, they might not

accurately capture the intricacy of natural systems, where

elements like competing ions or organic matter might also be

involved. Similar to this, some feedstock types (Tropical and

novel biomass sources) and process conditions (e.g., residence

time, heating rate, or carrier gas atmosphere) are still
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underrepresented in the dataset, despite the fact that it covers a

variety of biochar feedstocks and pyrolysis temperatures.

These elements emphasize how crucial it is to increase the

variety and consistency of data available in subsequent research.

Broader coverage of feedstocks and operating parameters, along

with more consistent reporting of important biochar properties and

adsorption conditions, would enable predictive models to more

accurately capture relationships and broaden their applicability to

more scenarios.

A key limitation of the time-series model is the scarcity of

comprehensive biochar emission datasets. The experimental data

are derived from a single controlled incubation study, which uses

soils from one field site in Lincolnshire, United Kingdom. There

was a lack of availability of samples from diverse soil types, climatic

zones, and other experimental setups, which captured the relation

between the use of biochar and its effect on the emission of

volatile gases.

Representation of regional variability in greenhouse gas fluxes

could not be found due to the lack of availability of datasets, thus

affecting the robustness of broader inferences. The applicability of

the findings is also limited by the narrow scope of the dataset, which

is restricted to one soil type, a single biochar application rate, and

controlled incubation conditions. If data is collected from varied

climatic conditions, soil types, and biochar feedstocks, the

predictive capacity of the model can be extended to wider

agricultural or ecological contexts.
7 Conclusion

This study has developed an all-new AI-enabled framework to

help improve the environmental safety and effectiveness of biochar by

taking advantage of automated quality inspection and predictive

analysis. By combining contemporary spectroscopic modalities with

machine learning predictive models, the framework directly addresses

many of the pesky safety assessment hurdles associated with working

with biochar, such as hazard tracking, optimization of adsorption

efficiencies, and predicting emissions. With an external validation

accuracy of 96.7%, the Random Forest Classification model

successfully classified the safety levels of biochar. The Random

Forest Regression model showed good predictive performance,

accurately quantifying heavy metal concentrations with a high R2

score of 0.9549 and a low Mean Squared Error (MSE) of 0.0046. The

LSTM-based time series model obtained anMAPE accuracy of 87.14%

in predicting VOC emissions, confirming its ability to predict

environmental impacts in real time. Additionally, the framework

represents a scalable alternative to conventional safety assessments,

which typically are laborious; this offers the immediate benefit of

reducing human error while allowing data-informed decision-making

and in-the-moment risk assessments to be performed by stakeholders

across agriculture, industry, and environmental regulation. The AI-

supported automation of the framework also fits the global

sustainability goals and enables allowable uses of biochar to safely

protect the environment in the applications of carbon sequestration in
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mitigating climate change, improving soil health, and cleaning up

pollution. Proactively assessing risks by determining the leaching of

heavy metals or off-gassing volatile organic compounds lessens costs

to both the environment and to the economy associated with poorly

mishandled biochar, where environmental criteria are not met. In

conclusion, this work provides an important link from the theoretical

promise of biochar to grounded, responsible application. This work

tried to demonstrate that AI can be a valuable resource to regulate

innovation while permitting safety and in the service of leveraging

biochar as a natural resource for climate resilience, circular economies,

and care for the environmental commons.

In the future, further research can be directed toward enhancing

the existing AI models by investigating other latest machine learning

models, including XGBoost or Support Vector Machines (SVM), to

potentially improve model precision and performance in biochar

safety evaluation. Further enhancing the predictive power of the

classification and regression models can also be achieved through the

incorporation of deep learning algorithms such as Convolutional

Neural Networks (CNNs) for feature extraction. For the time series

model, other architectures like Transformer-based models or GRU

(Gated Recurrent Unit) may provide better scalability and long-term

prediction ability. Increasing dataset size and variability would result

in stronger models, particularly for forecasting VOC emissions under

different environmental conditions. The inclusion of real-time data

streams using IoT devices would also increase the framework’s utility

in dynamic environments. Additionally, extending the model’s

applicability to evaluate other bio-based materials besides biochar

could enable universal safety standards across environmental and

industrial applications. Finally, applying federated learning for

decentralized data gathering could enable ongoing model training

while maintaining privacy, promoting better collaboration and

innovation between industries.
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