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Effective soil characterization is crucial for a better understanding of ecosystem
functions and for establishing ecological restoration strategies in degraded areas.
However, measuring soil physical and chemical variables is usually cost- and
time- consuming, which can be restrictive across large areas. X-ray fluorescence
spectroscopy (XRF) has been successfully used for predicting soil variables, but
has shown limits for some of them, such as soil texture in hyperarid
environments. In this study, we tested the combination of centered log-ratio
(CLR) transformation on XRF calculated atomic concentration data and locally
weighted partial least squares regression (LWPLSR), for the prediction of soil
properties in a hyperarid environment. Soil samples were collected across the
AlUla region in Saudi Arabia for XRF spectra acquisition and physico-chemical
analysis, such as texture, pH, carbonates content, electrical conductivity, cation
exchange capacity (CEC), available macro- and micro-elements content, and soil
carbon. LWPLSR construction was based on cross-validation over a calibration
dataset to select the optimal number of latent variables. The models’
performances were then evaluated on a validation dataset using the ratio of
performance to deviation (RPD) or to inter-quartile (RPIQ), root mean square
error of prediction (RMSEP), and the determination coefficient (R?). Accurate
predictions were found for clay, silt, and sand content (R? = 0.96, 0.88 and 0.93,
respectively), CEC (R? = 0.93), exchangeable CaO, MgO and K,O (R? = 0.89, 0.86
and 0.8, respectively), total carbonates content (R> = 0.81) and soil inorganic
carbon (R? = 0.92). These findings highlight the potential of CLR transformation
as an effective preprocessing method for XRF data and offer new insights into
predicting soil physico-chemical properties in hyperarid environments.
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1 Introduction

Soil characterization is important in ecology, agriculture and
forestry (1, 2) to identify similar environments and evaluate the
potential level of natural or anthropogenic degradation (e.g. soil
pollution, compaction, erosion, etc.) which often directly impact
plant and microbial communities, as well as soil functions (3-5).
Soil physical and chemical properties are usually measured,
including texture (clay, silt and sand content), water availability,
soil acidity and salinity, content of macro and micro elements for
plant nutrition as well as organic matter, carbon and nitrogen
content (6, 7). Soil fauna and soil microbial composition are also
often taken into account as they represent an important part of soil
properties and functionalities (5).

Measuring soil physical and chemical properties using
standardized methods is often expensive and time consuming,
and therefore, is usually carried out on a small number of
samples, which can strongly limit the resolution of large-scale
studies due to a lack of data. New methods have been explored in
recent decades to assess soil properties more efficiently using
advanced technologies such as visible-near infrared diffuse
reflectance spectroscopy (VNIRS) and X-ray fluorescence
spectrometry (XRF) in laboratory or directly in the field (8-12).
Nonetheless, these types of measurements need proper calibration,
data treatment (e.g., data transformation), and modelling methods
for effective use (9, 13, 14). XRF consists in measuring the intensity
of emission lines (fluorescence energies) that are then converted by
the equipment software in chemical elements relative abundance
(weighted percent) from the periodic table, ranging from
Magnesium (Mg) to Uranium (U) resulting in a compositional
dataset. Atomic concentration accuracy increases with atom size, it
is the reason why atoms with a size lower than Mg are not
represented (like Na, B, C and N). However, this data alone does
not provide information over the available forms of these elements
for plants and soil microbes, which rely upon other chemical
interactions like clay-organic complexes and soil pH (15).

Compositional data refers to measured variables carrying
relative information where the sum of the variables is a constant,
meaning that the variables can’t vary separately from the rest of the
composition. This type of data has specific mathematical properties
(16) that make it impossible to analyze directly in an Euclidean
space without first processing the data (17). Several mathematical
transformations have already been proposed to handle
compositional data, including the log-ratio transformations
(additive, isometric, centered) and the alpha-transformation (18).
In the case of the compositional XRF data, the centered log-ratio
(CLR) transformation provided the best results for studying the
relative contributions of elements in the whole composition (17).
Since high concentrations of elements hide the presence of small
elements, this CLR transformation makes it possible to look closely
at the low concentrations and avoid misleading results. This
transformation has been used to predict elements concentrations
using the elemental intensities obtained by XRF scanning for
calibration (19, 20), and using mid-infrared (MIR) spectra (21)
through partial least squares regression (PLSR). Despite these
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observations and the properties of CLR values in processing
compositional data, soil characteristics modelling with XRF data
has, to our knowledge, not yet employed the CLR transformation.
The same observation can be made for soil texture, which is also
defined by a compositional data, and for which CLR
transformations could potentially enhance predictive modelling.

XREF spectroscopy has already proven successful in predicting
some soil properties, sometimes combined with infra-red
spectroscopy. These properties include soil texture (9, 12, 22, 23),
cation exchangeable capacity (CEC) (24, 25), pH in soil-water
extract, macro-elements content (13, 14, 26, 27) as well as
calcium carbonates and salinity (28). Predicting soil salinity using
XRF integrated with VNIRS and remote sensing (RS) offered
excellent potential for assessing soil salinity comparable to
standard method (8). Different predictive models have been used
to analyze XRF data, ranging from simple and multiple linear
regression (SR and MLR) models, and partial least squares
regression model (PLSR), to more complicated models like
support vector machine (SVM), decisional tree (e.g., random
forest or cubist model), or convolutional neural network (CNN).
All of these models typically use raw or log-transformed XRF data.
In the context of arid regions, soil texture prediction with XRF data
and PLSR was found unreliable (28).

PLSR methods have been widely used for predicting soil
properties such as chemical variables and texture using XRF data
(22, 23). However, a more advanced method has been proposed
recently called locally weighted partial least squares regression
(LWPLSR) (29). This method has shown better results in the
prediction of soil properties based on VNIRS data (30). LWPLSR
can deal with nonlinear variables by using the nearest neighbors of
each new data, while maintaining a good interpretability of the model
since variable influence on projection (VIP) can be retrieved for each
local model (31). To our knowledge, combining CLR-transformed
XRF data and LWPLSR method has never been done in the literature
for the prediction of soil physical and chemical properties.

The objectives of this work are: (i) to assess models’
performances for predicting each soil property, (ii) to determine
the main atomic elements involved in the predictions, and (iii) to
compare the gain in predictability between PLSR and LWPLSR, as
well as between raw and CLR-transformed compositional data
(XRF and/or texture data). We hypothesize that combining CLR-
transformed XRF data and LWPLSR would provide an efficient
method to predict soil physical and chemical properties in a
hyperarid environment. This approach could significantly reduce
the cost and time required for soil analysis compared to more
classical physicochemical measurements, with the possibility of
interpretation in terms of XRF variables contribution to the model.

2 Materials and methods
2.1 Sampling study area
This study was carried out in AlUla County, Saudi Arabia. The

County covers 22,561 km? including the UNESCO World Heritage
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Site of Hegra, the archeological sites of Dadan and Tkmabh, various
cultivated areas, as well as six protected areas: Sharaan National
Park, Harrat Uwayrid Biosphere Reserve, Wadi Nakhlah Nature
Reserve, AlGharameel Nature Reserve, Harrat AlZabin Nature
reserve, and the Khaybar White Volcano Geopark (Figure 1).
Average annual rainfalls were recorded to be 15.9mm, 52.5mm
and 73.7mm in 2021, 2022 and 2023 respectively, with most rain in
November and December (meteostat.net data). Precipitation
occurred mainly in the form of severe thunderstorms, with
uneven precipitation distribution. The average annual wind
velocity over this period was around 10.4 km/h, with the average
annual temperature ranging from 4°C to 38.9°C (with a mean of
28.4°C). Soils were formed on Cambrian sandstone formations,
with depth of up to 1.5 meters. Desert areas, red sandstone canyons
and sandy valleys are the most representative landscapes in the
region. The climate is typical of a desert region with dry and
arid conditions.

A total of 579 soil samples were collected between 2019 and
2024 as part of different projects founded by the French Agency for
AlUla Development (AFALULA) and the Royal Commission for
AlUla (RCU) which aimed to characterize the diversity of soils and
flora in the region of AlUla, and to manage ecological restoration of
degraded sites. For each soil sample, a pit of 50cm in length x 50cm
in large x 40cm in depth was dug. For each pit, five sub-samples of

10.3389/fs0il.2025.1668732

near 200g were collected between 30 and 40cm depth at the center,
north, south, east, and west directions, before being mixed together
(for a total of 1kg per soil sample) and sieved at 2mm for
further analyses.

2.2 Soil physico-chemical properties

The following physical and chemical variables were measured by
COFRAC-certified laboratories (www.aurea.eu, www.laboratoire-
teyssier.com and www.celesta-lab.fr) using normative techniques
(French or International standards, Supplementary Table S1): clay
(%), silt (%), sand (%), pH (water), pH (KCl), resistivity (ohm.cm),
electrical conductivity (EC; mS/m), total CaCO; (%), P,Os
(Olsen method; mg/kg), exchangeable K,O (mg/kg), exchangeable
MgO (mg/kg), exchangeable Na,O (mg/kg), exchangeable
CaO (mg/kg), CEC (cmol/kg), DTPA Fe (mg/kg), DTPA
Mn (mg/kg), and Boron (mg/kg). Soil organic carbon (SOC; %)
and soil inorganic carbon (SIC; %) were measured using the Rock-
Eval analysis (32). Since different projects had different needs, not
all these variables were measured on all the samples. For example,
202 samples were analyzed only with Rock-eval. Since texture data
is also a compositional data, a CLR transformation was performed
before modelling. For other physical and chemical variables,

[ study area 0 25
71 Natural reserves, archaeological sites ® Archaeological site location A

and cultivated area boundaries

FIGURE 1

® Points of interest

Spatial distribution of soil sampling locations in AlUla region, Saudi Arabia.

Data source: Google satellite, Valorhiz, CIRAD, Royal Commission for AlUla
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depending on the distribution, data transformation was performed
to reduce skewness. The transformations were typically decimal
logarithms, except for the pH measurements (no transformation),
resistivity (square root transformation), and EC (square root of
decimal logarithm).

2.3 X-Ray Fluorescence spectra acquisition
and transformation

X-Ray Fluorescence (XRF) data were acquired using the
portable XRF S1 Titan analyzer 800 (Bruker, Billerica,
Massachusetts, USA), which provided the predicted relative
abundance of atomic elements (called here raw data, compared to
CLR transformed data) by the equipment software, from
magnesium to uranium, based on measured spectral intensities.
For each soil sample, XRF acquisitions were conducted on three
independent soil sub-samples (loose powder) with three replicates
per sub-sample, resulting in a total of nine acquisitions per sample
using the “geo-exploration” mode of the XRF S1 Titan analyzer
(measurement consisted of three phases). For this equipment, based
on constructor information, the voltage ranges from 5 to 50 kV,
with a maximum current of 200 pA, and a multi-filter with 5
positions selected automatically by the apparel. The atmospheric
measurement environment is air. Absence of detection was replaced
by 10 ® values (0.01 ppm) to deal with the problem of zero values in
compositional data (16), with the assumption of elements being
trace elements at least. When the presence of elements was detected
below the limit of detection (< LOD), the limit value for each
element, as indicated by the constructor, was used as replacements
(Supplementary Table S2). The geometric mean was then calculated
for the nine measurements. These replacements allow us to perform
CLR transformation (17) without losing the distinction between
measured values, detected elements but not measured (LOD) and
non-detected elements (represented as one ppm). The CLR
transformation is used to open the matrix and to show the
relative contribution of each element to the whole composition. It
is obtained with the following formula:

Xi
clr(x;) = log ( 2 )

With: E:’zlclr(x,-) =0, and the geometric mean g(x) =
o i log(x;)

The CLR transformation is made after a first selection of
elements based on the sample size and raw element variability. If
the threshold for variability is set at 10, we would expect n/10
unique values for one element, eliminating the ones where we have
too many LOD values or 10-° replacements (limit or absence of
detection). Elements with an absence of variation (i.e., those with a
standard deviation of 0) are discarded during this process. After
performing the CLR transformation, a second element selection is
conducted with a stricter or equal threshold, still applied on the raw
values. This step ensures that only the most significant elements, in
terms of their contribution to describing the dataset, are retained.
However, by keeping some elements before the CLR
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TABLE 1 Soil physical and chemical variables measured and their
respective statistics.

Variables \ Mean Median SD Min Max
Clay (%) 202 6.7 4.5 7.1 0.4 38.6
Silt (%) 202 13.5 6.4 17.3 0.2 74.8
Sand (%) 202 79.7 88.8 23.0 6.7 98.6
pH (water) 352 9.0 9.0 0.5 7.3 10.1
pH (KCI) 353 8.4 8.3 0.4 6.9 9.3
Resistivity

(ohm.cm) 324 9345 8333 7650 = 21 38314
EC (mS/m) 324 105 12 412 3 4762
Total CaCOs3 (%) 353 334 22 3.37 0.0 21.0
Olsen P,Os5 (mg/kg) | 353 15 13 14 2 204
Exc K,0 (mg/kg) 323 299 182 331 18 2869
Exc MgO (mg/kg) | 323 | 393 291 380 12 2457
Exc Na,O (mg/kg) 291 276 60 843 2 8729
Exc CaO (mg/kg) 323 8364 7159 8321 = 507 72123
CEC (cmol/kg) 298 5.5 4.1 4.5 1.5 30.7
DTPA Fe (mg/kg) 140 | 16 14 07 | 03 43
DTPA Mn (mg/kg) 140 1.2 1.0 0.8 0.2 4.5
Boron (mg/kg) 140 0.06 0.04 0.10 0.01 1.08
SOC (%) 344 0.16 0.07 0.27 0.01 248
SIC (%) 344 0.22 0.10 0.32 0 2.01

N, Number of samples; SD, Standard Deviation; Min, Minimum value; Max, Maximum value;
EC, electrical conductivity; Exc, Exchangeable; CEC, Cation Exchange Capacity; DTPA,
diethylenetriaminepentaacetic acid; SOC, Soil Organic Carbon; SIC, Soil Inorganic Carbon.

transformation, we kept the information of less significant
elements which are part of the composition. The two thresholds
were optimized by testing different values for the first and second
selection of variables, allowing us to determine which elements
should be retained or discarded from the compositional data.
Therefore, each physical and chemical predicted variables had
their own set of elements selected. Principal Component Analysis
(PCA) was performed over the whole XRF dataset after elements
selection and CLR transformation, with a threshold of 10 for the
first selection, and 2 for the second, to describe overall
sample variability.

2.4 Models’ construction and evaluation

For each predicted variable, samples were separated in a
calibration and a validation dataset, based on the Kennard-Stone
algorithm (33), with the aim of covering the entire distribution of
the dataset, including extreme points. The calibration dataset
represented 80% of each chemical variable dataset (112 samples
minimum and 282 samples maximum depending of available data,
Table 1). LWPLSR (29) was then performed on the calibration
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dataset. The LWPLSR model maximizes the covariance with the
response variable (soil properties) through latent variables (LV)
which are orthogonal and built as linear regression of explanatory
variables (XRF CLR values). Since it is locally weighted, one model
is produced for each XRF data, and is based only on a few samples,
selected from the calibration dataset. This selection is based on the
Mahalanobis distance between the XRF data of a new sample and
the XRF data of all the samples from the calibration dataset.
Number of samples selected using this distance was set to 30.
This number could be lower if outliers (high distance) were detected
and are then assigned with a weight of 0. For the other selected
samples, weight is calculated as an exponential function based on
Mahalanobis distances between samples:

- dy
Ji MAD(d;)

wij= e

Where w;; is the weight and d;; is the Mahalanobis distance of
the calibration sample i with the validation sample j. MAD is the
median absolute deviation of the Mahalanobis distances for the
validation sample j. The coefficient h is the sharpness of the weight
function and was set to 1. The weights are then normalized between
0 and 1.

Optimal number of LVs (1 to 10 were tested) was obtained
through 6-fold cross-validation (randomly selected over the
calibration dataset) repeated 3 times, using a precision gain ratio
R,. Gain in root mean square error of cross-validation (RMSECV) is
calculated for each LV and the optimal number is set when R, does
not further improve (threshold of 0.02). Then, for each sample of
the validation set, each variable was predicted using the calibration
set. Model performance was evaluated using:

- The Root Mean Squared Error of Prediction (RMSEP) over
the validation set.

- The coefficient of determination R* between prediction and
measured values in the validation set (inverse CLR is
performed for the texture).

- The Ratio of Performance to Deviation (RPD), being the
standard deviation (SD) divided by RMSEP (the
performance), which should be over 2 for good model
performance (34) and which indicates an untrusted
model with values below 1.4.

- The Ratio of Performance to Inter-Quartile (RPIQ). Inter-
Quartile Range (IQR) being the difference between third
and first quartile replacing SD in the RPD, which is more
appropriate if a variable is not normally distributed (35).
Successful predictions were defined with RPIQ > 1.9 (36),
acceptable predictive power was associated with RPIQ
between 1.7 and 1.9 (37).

Mean VIP were calculated over the calibration dataset for each

element to determine which were most important (31). This
method allows the identification of atomic elements for which the

Frontiers in Soil Science

10.3389/fs0il.2025.1668732

relative contribution to the XRF data has the highest impact on
studied variables.

Effects of CLR transformation for composition data (XRF and
texture), as well as chosen model between LWPLSR and PLSR, were
tested for the different variables under study. RMSEP and R? were
computed to evaluate each method combination. Modelling and
analysis were performed using the R software language (38), with
FactoMineR package (39) for PCA, and with the rnirs and rchemo
packages (29, 40) for LWPLSR and PLSR.

3 Results
3.1 Soil physical and chemical properties

Measured sand, silt and clay content covered different texture
class based on the USDA triangle texture classification (Figure 2).
The majority of samples (87%) were classified as: Sand, Sandy Loam
and Loamy Sand soils, and a minority (13%) as: Sandy Clay Loam,
Loam, Silty Loam and Silty Clay Loam. Sand content distribution
was the most extended over the soil samples with values between 7%
and 99% (Table 1), and half of the samples had a sand content above
89%. The silt content was distributed on a gradient from 0.2% to
75%, with an uneven distribution (median = 6%). The clay content
range was the lowest with a maximum of 39%, and half of samples
below 4.5% (narrowing the full texture gradient studied).
Additionally, three classes of texture were not covered: Clay,
Sandy Clay and Silt (Figure 2).

Other measured chemical properties are described in Table 1. Soil
pH measured in water varied from 7.3 to 10.1, classifying the samples
from neutral to strongly alkaline. Soil resistivity (and EC) showed a
wide variability, from 21 to 38,314 ohm.cm, and a very uneven
distribution, with a skewness of 8.9 for EC. About 10% of the samples
had a resistivity below 500 ohm.cm, classifying them as corrosive.
Most of the samples had a total CaCO; content below 20%,
classifying as non-calcareous. Other macro and micro-elements
measured had an uneven distribution, with skewness values
ranging from 1.4 (DTPA Fe) to 8.6 (Olsen P,0s). Exchangeable
CaO was the highest of the macro-elements (8364 mg/kg on average),
while Na,O was the lowest (276 mg/kg on average). Low content and
uneven distributions were also found for organic and inorganic
carbon, with a mean of 0.16% and 0.22% respectively.

Distribution of calibration and validation dataset for each
studied variable, selected with the Kennard-Stone algorithm, is
represented in Figure 3. The figure demonstrates a relatively
similar distribution between both datasets.

3.2 Description of XRF data

To describe XRF data, we first selected 29 atomic elements
based on a threshold of at least 58 different values across the 579
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Density plots for each soil property showing the calibration and validation datasets.
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samples (1/10 of the samples). CLR transformation was then
performed on those elements. Following this, 18 atomic elements
were selected for the PCA based on a second threshold of at least
290 different values (also in the raw data) through the 579 samples
(half of the samples). Considering the first four principal
components, 74% of soil samples variability was explained
including 57% by the first two axes (Figure 4).

Since XRF data was CLR-transformed, the PCA shows the
relationship between elements that have a similar relative
contribution to each sample composition (high or low measured
values compared to the geometric mean). The global distribution
along the first two axes revealed three important directions. The
first one shows an enrichment in SiO, and impoverishment in K,O,
Mn, Fe and Zn (corresponding to sandy and clayey soils). The
second one was represented by the elements Cu and Ca being more
present, and Pb being more absent (silty and clayey soils). The third
one was driven by Zr on the positive side and MgO, P and Cr on the
negative side (silty and sandy soils). The gradients of each texture
variable represented on the PCA, showing these three directions,
can be found in Supplementary Figure SI.

10.3389/fs0il.2025.1668732

3.3 LWPLSR model performances

3.3.1 Prediction of soil texture

For texture variables (clay, silt and sand), the best model
performance was found by predicting the CLR values of clay
content and silt content. Sand content was calculated from the two
other variables since the sum of CLR values is equal to zero. Using the
precision gain ratio (Ry), the optimal number of latent variables (LVs)
was one. RMSEPs for the validation dataset were below 6% for the
three texture variables (Figure 5A), with RPD > 2 for the three
variables and RPIQ > 1.9 for sand and clay. Only silt content had a
RPIQ lower than this threshold but above 1.7. Nonetheless, the
R? values for each texture variable were high (R* > 0.85), meaning
accurate predictions. Clay content prediction had the best
performance (R* = 0.96 and RPIQ = 2.6), followed by sand content
prediction (R* = 0.93 and RPIQ = 2.36).

Validation set representation over the USDA texture triangle
was completed with the predicted values (Figure 5B). The texture
classes of Loam and Silty Clay Loam had a small amount of sample
representativity, with only two points with clay content over 20%.
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Biplots and scree plot of the principal component analysis (PCA) performed over 579 samples and 18 selected CLR-transformed XRF variables
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Predicted vs. measured texture variables for the validation set shown for each size category content (A) and on the USDA texture triangle (predicted

values in red) (B).

Change of texture class was observed only for 7 samples, but
occurred only between adjacent classes between predicted and
measured values.

3.3.2 Prediction of soil chemical variables

For other soil properties, we found different model
performances, as described in Table 2. Based on VIP values, the
three main predictors were identified for each predicted variable.
Relationship between predicted and measured values is represented
in Figure 6. Poor prediction performances (RPIQ < 1.4) were found
for the extractable micro-elements Mn and Boron, Olsen P,Os,
exchangeable Na,O and EC. Interestingly, P content measured by
XRF was not found in the main predictors based on VIP for P,Os.
On the contrary, Mn content was placed third for DTPA Mn.

Acceptable model performances (RPD > 1.4; RPIQ > 1.9) were
found for resistivity, the two types of pH, and DTPA Fe (Table 2).
SOC had medium performance with a high R* (0.72) and low RPIQ
(1.31). For extractable Fe, Fe content measured by XRF did not
feature in the three main predictors; but rather Zr, Ni and Mn. pH
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(KCI) had a higher RPD and R* values compared to pH (water) and
shared Rb and Sr as their variables with highest VIP.

Excellent LWPLSR model performances (RPD > 2.2; RPIQ > 2)
were found for six chemical variables: CEC, exchangeable MgO,
CaO and KO, total CaCOs3, and SIC (Table 2). R? values were above
0.8. Rb content was placed first predictor for all exchangeable
macro-elements. For SIC, Total CaCOs3, and exchangeable CaO,
Ca content provided by the XRF data appeared as one of the three
highest variables in terms of VIP, as expected. The best prediction
performances were found for the CEC variable (R* = 0.93; RPD =
3.86 and RPIQ = 4.69), with Rb, Ni and SiO, measured by XRF as
the main predictors.

3.4 Methodology comparison
To assess the contribution of CLR transformation on

compositional data and LWPLSR, we tested separately the effect
of using raw compositional data (for XRF and texture data)
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TABLE 2 Modelling performance (validation datasets) for each soil physical and chemical variable.

Variables \| Transformation LV RMSEP RPD RPIQ R2 Highest VIP
Clay (%) 202 clr 1 1.38 4.96 2.6 0.96 Pb, Zr, P

Silt (%) 202 clr 1 4.54 2.89 1.8 0.88 Rb, Ni, Zn
Sand (%) 202 clr NA 521 3.74 2.36 0.93 NA

pH (water) 352 none 1 0.27 1.43 1.98 0.51 Sr, Zr, Rb

pH (KCI) 353 none 1 0.29 1.56 1.96 0.59 Rb, Ni, Sr
Resistivity (ohm.cm) 324 sqrt 1 3892 1.6 2.43 0.61 Zr, Sr, SiO,

EC (mS/m) 324 sqrt(logo) 1 17 0.99 0.55 0.62 S, Zr, Ca

Total CaCO; (%) 339 logy, (>0) 1 113 231 3.86 0.81 $i0,, Ca, Rb
Olsen P,05 (mg/kg) 353 logio 1 4.8 1.15 1.35 0.24 Rb, Zn, Mn
Exc K,0 (mg/kg) 323 logio 1 1114 2.26 2.08 0.8 Rb, Ni, Au

Exc MgO (mg/kg) 323 logio 1 101 2.64 331 0.86 Rb, Sr, Ni

Exc Na,O (mg/kg) 291 logo 1 259 1.61 0.63 0.61 Rb, SiO,, Sr
Exc CaO (mg/kg) 323 logio 1 1371 2.98 5.35 0.89 Rb, Sr, Ca

CEC (cmol/kg) 298 logyo 1 0.92 3.86 4.69 0.93 Rb, Ni, SiO,
DTPA Fe (mg/kg) 140 logio 1 0.5 143 191 0.51 Zr, Ni, Mn
DTPA Mn (mg/kg) 140 logio 1 0.44 1.29 1.38 0.4 Si0,, Zn, Mn
Boron (mg/kg) 140 logyo 1 0.03 1.55 1.13 059 Zn, Ca, SiO,
SOC (%) 344 logo 1 0.11 1.89 1.31 0.72 Si0,, Ca, ALLO;
SIC (%) 277 logy, (>0) 2 0.07 35 2.12 0.92 Ca, SiO,, ALO;

N, Number of samples; LV, Latent Variables; RMSEP, Root Mean Square Error of Prediction; RPD, Ratio of Performance to Deviation; RPIQ, Ration of Performance to Inter-Quartile; clr,
centered log-ratio; sqrt, square root transformation; EC, Electrical Conductivity; Exc, Exchangeable; CEC, Cation Exchange Capacity; DTPA, Diethylenetriaminepentaacetic Acid; SOC, Soil

Organic Carbon; SIC, Soil Inorganic Carbon.

compared to the transformed ones, as well as the classic global PLS
regressions method compared to the locally weighted one.

Modelling performances of each methodology combination
regarding texture variables are presented in Table 3. With PLSR
model, the change between raw values to CLR-transformed values
showed better performance, as reflected by higher R* values. The
performance increase was more important for clay when XRF data
was CLR-transformed (R* of 0.41 for clay, 0.07 for silt, and 0.21 for
sand). In comparison, for texture data, CLR transformation resulted
in better predictions for sand and silt, with R* of 0.19 for clay, 0.38
for silt and 0.33 for sand. Nonetheless, it is the combination of both
that gave the best indicators with global PLSR model (lowest
RMSEP for silt and sand).

Using LWPLSR model, indicators were found higher compared
to global PLSR when using raw data, with R* = 0.62 for silt and sand
content, and R* = 0.55 for clay content. The performances of each
prediction were the highest when both XRF data and texture was
CLR-transformed. The greatest improvement was found when XRF
data was CLR-transformed, with RMSEP being two times lower
than that obtained with raw data.

For the other chemical variables, modelling performances can
be found in Table 4. For all variables, the lowest RMSEP was found
using LWPLSR with CLR-transformed XRF data. For global PLSR,
CLR-transformed XRF data improved R* except for Total CaCOj.

Frontiers in Soil Science

Similarly, for LWPLSR, CLR transformation enhanced the R?
values, except for EC. Transitioning from PLSR model to
LWPLSR model resulted in the highest R* values and the lowest
RMSEP for all variables.

4 Discussion

4.1 Predictions of soil variables with XRF
data

Few soil texture classes were represented in the sampling study
with a huge majority in the sand, sandy loam, and loamy sand texture
class (Figure 2). This specificity was linked to a desertic environment
and representative of hyperarid soils found in Saudi Arabia (41).

Using XRF spectrometry, combined with CLR transformation
and locally weighted PLSR, we found good prediction performances
for soil texture (R* > 0.88, RPIQ > 2.3 for sand and clay). Previous
studies have reported similar prediction potential for soil texture
using XRF data in various environments, including tropical (9),
subtropical (12, 22), and continental (23) climates. Nonetheless, in a
hyperarid environment, combining raw XRF data and PLSR models
has proven inefficient in predicting soil texture using PLSR (28),
which aligns with the results of this study (Table 3).
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Predicted chemical variables from the validation datasets vs. measured variables.

Different methodologies have been explored in previous studies

for soil texture, such as multiple linear regression (MLR) (12, 22)

and random forest (9), those could be eftective methods since

particles size distribution was greater and covering many texture

classes compared to hyperarid environments. In contrast, indicators

Measured SOC (%)

Measured SIC (%)

values in our study were higher for sand, silt, and clay content

predictions using LWPLSR (Figure 5). However, since hyperarid

environments are predominantly composed of sandy texture

classes, the number of samples in our study is very low for other

classes. While clay content prediction performed excellently,

TABLE 3 Modelling performance (validation sets) for texture based on transformation and PLSR type.

Silt (%) Sand (%)

XRF data Texture data Model
R2 RMSEP R2 RMSEP
raw raw PLSR 0.11 6.37 0.15 12.63 0.14 18.19
raw clr PLSR 0.19 6.08 0.38 10.88 0.33 16.08
clr raw PLSR 0.41 525 0.07 12.62 0.21 17.27
clr clr PLSR 0.25 591 0.37 10.38 0.33 15.95
raw raw LWPLSR 0.55 4.53 0.62 8.52 0.62 12.15
raw clr LWPLSR 0.49 4.86 0.52 9.51 0.56 13.01
clr raw LWPLSR 0.95 1.6 0.85 5.09 0.9 6.02
clr clr LWPLSR 0.96 1.38 0.88 4.54 0.93 521
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TABLE 4 Modelling performance (validation sets) for chemical variables
based on PLSR type and XRF data used.

Model LWPLSR
XRF data Raw

pH (water)

RMSEP 0.46 0.33 0.36 0.27

R? 0.22 0.25 0.26 0.59
pH (KCI)

RMSEP 0.46 0.38 0.45 0.29

2

Resistivity R 0 0.36 0.30 0.61
(ohm.cm) RMSEP 8532 4973 7134 3892

R? NA 0.06 0.69 0.62
EC (mS/m)

RMSEP 185 26 101 17

R? 0.68 0.47 0.73 0.81
Total CaCOj; (%)

RMSEP 1.84 1.9 1.7 1.13

R’ 0.03 0.14 0.02 0.24
Olsen P,05 (mg/kg)

RMSEP 8.2 5.11 8.24 4.80

R? 0.34 0.60 0.59 0.80
Exc K,O (mg/kg)

RMSEP 234 160 183 111

R? 0.45 0.54 0.76 0.86
Exc MgO (mg/kg)

RMSEP 181 180 119 101

R? 0.03 0.1 0.03 0.61
Exc Na,O (mg/kg)

RMSEP 689 393 688 259

R? 0.19 0.69 0.72 0.89
Exc CaO (mg/kg)

RMSEP 4846 2259 2867 1371

R? 0.54 0.75 0.7 0.93
CEC (cmol/kg)

RMSEP 1.9 1.78 1.53 0.92

R? 0 0.23 NA 0.51
DTPA Fe (mg/kg)

RMSEP 0.63 0.62 0.72 0.50

R? 0.01 0.04 0.13 0.40
DTPA Mn (mg/kg)

RMSEP 0.94 0.55 0.88 0.44

R? NA 0.02 NA 0.59
Boron (mg/kg)

RMSEP 0.05 0.05 0.05 0.03

R? NA 0.05 0.33 0.72
SOC (%)

RMSEP 0.31 0.2 0.24 0.11

R? 0.29 0.55 0.58 0.92
SIC (%)

RMSEP 0.17 0.16 0.13 0.07

RMSEP, Root Mean Square Error of Prediction; Exc, Exchangeable; CEC, Cation Exchange
Capacity; DTPA, Diethylenetriaminepentaacetic Acid; SOC, Soil Organic Carbon; SIC, Soil
Inorganic Carbon.

applying the model to silty-clayey soils in hyperarid environments
may require further investigation.

Combined methodologies including XRF spectra have also been
previously explored to predict soil texture: using the XRF spectra
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obtained from the two beams (different energy range) after processing
and PCA rather than the elemental content calculated from it, or
using XRF data coupled with near-infrared (NIR) spectra (22, 23). In
these works, PLSR, MLR and cubist models (decisional tree) were
used, showing good performances in subtropical and continental
contexts. Cubist model gave the best performance (RPIQ > 3) in a
continental context, but R* was found below 0.5 regarding Sand and
Loamy Sand classes for silt and sand content predictions (23).
Nevertheless, these studies did not explore CLR transformation
XRF data, not taking into account the properties of compositional
data (17). Moreover, decisional trees lack interpretative results
compared to PLS regressions or MLR, such as the individual
contribution of each explanatory variable, using for example VIP.

Measured soil chemical variable values were representative of
hyperarid environments (42), with low soil organic carbon and low
plant nutrient availability (low P, N, Fe or Zn) (Table 1). We also
found mostly alkaline pH, with some calcareous soils, and some
areas with high salinization (high EC) which can lead to low fertility
or the development of specific plant communities with high
tolerance to these harsh conditions (43).

Given the specific conditions of this environment, depending
on soil chemical variables studied, predictions showed a high level
of variation (Table 2) in terms of performances using XRF data and
LWPLSR. Low model performance was found for Mehlich-3 P by
XRF (44), similar to exchangeable P using resin extraction in
tropical contexts (45), which is in accordance with the R* of 0.24
found for Olsen P,0O5 (sodium bicarbonate) measured in our study.
Phosphorus has indeed a complex cycle in soil with unavailable
forms, associated with Fe and Al oxides, in organic matter or in
other mineral forms, bound with Ca or Mg (46). This makes it
difficult to link P content found with XRF with the plant available
form, explaining the absence of P in the main predictors for
Olsen P,0s.

Similarly, electrical conductivity (EC), as well as water pH are
mostly linked to atomic element forms (ionic or more stable), which
is not given by XRF measurements. Therefore, this could influence
prediction performances for these variables (poor and medium
performances). Yet, in arid context, using XRF data and PLSR, EC
showed good predictions (R* = 0.84), but contrary to our data
(skewness of 8.9) they were made in a more homogeneous salinity
level, less sandy soils and more calcareous (28).

For water pH, prediction performances showed a high
variability in literature (R? varied from 0.12 to 0.77) using MLR,
PLSR, decisional tree and CNN (convolutional neural network)
from temperate to tropical context (13, 23, 27, 45). In (27), which
presented the best predictions performances, pH values ranged
from 4.2 to 8.6 in a continental context. This was very different
compared to the pH range found in our sampling study going from
7.3 to 10.1 in a desertic region, where our model still provided
acceptable performance (RPD > 1.4; RPIQ > 1.9). Since extraction
methodology differed for macro-elements (resin extraction, nitric
acid or ammonium lactate) model performances comparison is
more complicated (13, 14, 45).

In tropical context or when using CNN method, good
predictions for K and Na content have been reported, which was
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also the case for exchangeable K,O in hyperarid context, but not for
Na,O. Given the range of elements analyzed with XRF, organic
elements (C and N) are not identified. Nevertheless, medium
performances were identified for soil organic carbon. This may be
explained by the known interactions with clay or Fe/Al oxides (15,
47) whose elements are measured by XRF.

Good prediction performances were observed for total CaCOs3
content, SIC, exchangeable Ca, Mg and K,O, as well as CEC
(Figure 6). In an arid context, with more calcareous soils (6 to
75%), good predictions of total CaCO; were also reported using
PLSR (28). Extractable Ca and Mg (with ammonium lactate)
predictions with XRF, showed high R values (0.9) in temperate
climates (26), which is in accordance with our results for
exchangeable CaO and MgO predictions, despite the usage of a
different solvent (ammonium acetate). Finally, the variable CEC
usually was predicted with high accuracy: in a continental context
using MLR with R* of 0.91 (24) or reaching 0.82 of R* using SVM
modelling and VNIRS fusion added to XRF data in a subtropical
climate (25). In our study, using LWPLSR with CLR-transformed
XRF data, we achieved the highest performance, with an R* of 0.93.

4.2 Atomic elements involved in prediction
models

Since LWPLSR allows for the calculation of VIP, we were able to
identify the main elements used in each model (Table 2). This
allows better comprehension of each model and its
potential coherence.

Relationship between Rubidium measurements via XRF and
soil texture has been well-established in previous studies (12, 22, 23,
48), and our findings confirm this by identifying Rb as one of the
main predictors. Similarly, elements such as Zn and Zr, which were
important in our study, have also often been associated with clay
and sand prediction in these previous studies. Regarding Pb being
the main predictor for clay content, relationship between clay and
Pb has been reported through the existence of adsorption
mechanisms (49). Since CEC is related to exchangeable cations,
similar predictors were founded like Rb, Ni and Sr. In comparison,
none of these three elements were found in the MLR developed in
(24) for CEC, but this study was conducted on soils belonging to
classes with higher silt and clay content. For Total CaCO3, SIC as
well as exchangeable CaO had Ca as its main predictors, which was
a coherent result. However, for Exchangeable MgO and K,O, we did
not find their respective element measured by XRF as their main
predictors. Indeed, availability of cations is based on other
molecular interactions and soil pH (15). Therefore, while XRF
can capture the overall composition, it does not directly provide
specific information regarding the availability of these cations. Fe
measured by XRF and DTPA has been shown having different
distributions in soils because of the different forms and solubility of
iron (50) which could explained the absence of Fe in the variables
having the highest VIP for DTPA Fe.
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By definition, XRF does not measure element content for
atomic number below 12 (Mg), which includes Sodium (Na),
Carbon (C), and Boron (B), all showed medium to poor
prediction performances. Yet, they were tested in this study since
their association with heavier elements have been acknowledged,
therefore the variables could have been deducted using the others
elements. Indeed, an exception was when carbon, in combination
with calcium (Ca), was used to predict SIC and total CaCO;. And,
Al,O; was found to be a main predictor for SOC, which can be
explained by known interactions between organic matter and Al
oxides (47).

4.3 Advantages of CLR on compositional
data and LWPLSR

The methodology used for modelling was the locally weighted
PLS regression combined with the CLR transformation of
compositional data. Log-ratio transformation was proposed by
Aitchison (16) to avoid difficulties encountered when dealing with
compositional data being a closed matrix where correlations between
ratio are misleading. Log-ratio can be additive, isometric or centered.
This is the third one that was selected as a suitable transformation to
describe compositional data produced by XRF methodology,
compared to their raw values or log-transformed (17). This data
showed better properties in Euclidean spaces such as in PCA. Despite
sometimes being used to calibrate XRF data (19, 20), it was not found
in the literature as a tool to preprocess XRF data before predictions.
We found in Table 3 and Table 4 a strong improvement in model
performances when CLR transformation was applied for XRF data or
texture, in a hyperarid environment. This method should therefore be
tested in more environments or modelling types to study the potential
in increased prediction accuracy.

In a similar way, we showed the prediction improvement by
using LWPLSR rather than PLSR (Table 3, Table 4). LWPLSR was
initially developed to enhance the prediction of soil organic carbon
using VNIR spectra (29) and was later applied to other soil
properties, and proved to be more effective than global PLSR (30,
51). In fact, by producing specific models for each prediction on a
smaller number of samples combined with statistical weights,
LWPLSR can better deal with non-linearity of complex data, but
at the same time, it makes LWPLSR highly dependent on a very
representative calibration dataset. Compared to more advanced
machine learning methods like SVM, Random Forest and CNN,
LWPLSR is able to show importance of elements (or wavelengths
for VNIRS) using the b-coefficients of the model or the VIP values
(31), allowing good interpretability. Moreover, LWPLSR showed
similar or better model performances (Table 2) for texture
predictions compared to SVM, Gaussian, Random Forest (9) or
the Cubist model (23). Thus, in an arid context, where soil texture
predictions using raw XRF data and global PLSR gave unreliable
results (28), we found good model predictions by combining these
two methodologies.
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4.4 Limitations and prospects

This study showed the possibility to predict some physical and
chemical soil variables with good model performance. However,
some variables proved more challenging to predict, based on the
complexity of their cycle and different forms as well as the absence
of their element being measured directly by the XRF (C, B, Na). To
expand the number of soil variables that can be predicted, exploring
other modelling methodologies, such as machine learning and deep
learning, may be beneficial. Previous studies have shown good
predictions using Random Forest for extractable Cu and Mn (44),
K content (14), with SVM for CEC (25) or with CNN for pH (13).

The performance of LWPLSR is very dependent on the
representativity of the dataset, since it is based on the similarity
between the input variables (XRF or VNIR spectra). To improve
model accuracy, it is essential to have a large and diverse dataset,
which can be time- and cost- consuming. Given that, hyperarid
environments are mostly dominated by sandy soils, other soil types
were underrepresented in this study. Further investigations are
needed to ensure broader applicability across different soil types.
Additionally, since each prediction is based on a new model limited
to a subsample of the calibration dataset, it has to be as clean and
representative as possible. Therefore, large datasets allow the
identification of the best spectral neighbors for each prediction, as
shown by Cambou (51).

Combining XRF spectra with other spectroscopic technologies,
such as visible and near-infrared (VNIR), mid-infrared (MIR) or
short-wave infrared (SWIR), has been widely discussed in the
literature (13, 22, 25, 26, 45). These technologies are already
known to give information about soil content through absorption
at given wavelength corresponding to characteristic vibrational
bands. Organic matter properties, soil mineralogy and texture,
pH, and concentrations of macro and micro-elements, have all
been successfully predicted using VNIRS technology (11). Similar to
the XRF analysis, VNIRS is time- and cost-effective but also non-
destructive. They could therefore be combined together to improve
soil variables prediction, in particular since VNIRS can detect
organic compounds linked to carbon (C) and nitrogen (N), atoms
that cannot be detected by XRF. Indeed, soil organic carbon and
nitrogen have shown good prediction performances using VNIRS
data (30, 51). Fusion methods have also been developed, such as
using principal components of NIR spectra (22), least squares (LS),
Granger-Ramanathan (GR), and Outer Product Analysis (OPA) for
combining XRF and VNIRS (26).

By decreasing the time needed to analyze a great number of
samples, the models developed in this study can be applied to
predict soil physical and chemical properties of other soil samples
collected in the AlUla region. These models can support various
scientific topics (e.g. in environmental or agricultural studies) and
need to be challenged on soils collected from other hyperarid
environments. Since aridification of many environments are
expected by climatic models, fast and large-scale characterization
of soils will be an important tool to better understand soil
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functioning and to design relevant soil management strategies for
various purposes (agriculture, ecological restoration strategies).
These time- and cost-efficient methods will also allow designing
high-resolution monitoring regarding soil fertility, salinization, and
erosion at large-scale (42) and link these parameters to crop
productivity and changes in natural plant communities.

5 Conclusion

XRF data acquisitions were carried out on soil samples to
predict soil texture and several chemical properties in the
hyperarid environment of the AlUla region, in Saudi Arabia. Soil
samples were dominated by a sandy texture with low clay content.
An innovative approach was used by combining CLR
transformation on compositional data and locally weighted partial
least squares regression (LWPLSR) modelling. Reliable models were
developed for soil texture, particularly for the clay and sand soil
fractions in hyperarid soils. The respective effects of data
transformation and locally weighted regression were tested
showing the importance of CLR transformation for XRF data and
the relevance of LWPLSR. High model performances were also
found for total CaCO3, exchangeable Ca, Mg and K, as well as CEC.
Acceptable model performances were observed for pH (water and
KCl), resistivity, DTPA Fe, and SOC. On the contrary, EC, available
P, Na, Mn, and B did not show acceptable model performances. The
limitations in modelling could be linked to the environment
conditions and the inherent constraints of XRF technology, which
does not provide information on elements with atomic numbers
lower than Mg or the atomic form (ionic or bonded). Overall, using
prediction models from spectrometry data represents a significant
technological advancement for large-scale soil property
characterization and monitoring at low cost.
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