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and Abdalsamad Aldabaa2,4

1Department of Research and Development, Valorhiz SAS, Montpellier, France, 2Wildlife and Natural
Heritage, Royal Commission for AlUla, AlUla, Saudi Arabia, 3Plant Ecology and Rangeland
Management, Desert Research Center, Cairo, Egypt, 4Pedology Department, Desert Research Center,
Cairo, Egypt
Effective soil characterization is crucial for a better understanding of ecosystem

functions and for establishing ecological restoration strategies in degraded areas.

However, measuring soil physical and chemical variables is usually cost- and

time- consuming, which can be restrictive across large areas. X-ray fluorescence

spectroscopy (XRF) has been successfully used for predicting soil variables, but

has shown limits for some of them, such as soil texture in hyperarid

environments. In this study, we tested the combination of centered log-ratio

(CLR) transformation on XRF calculated atomic concentration data and locally

weighted partial least squares regression (LWPLSR), for the prediction of soil

properties in a hyperarid environment. Soil samples were collected across the

AlUla region in Saudi Arabia for XRF spectra acquisition and physico-chemical

analysis, such as texture, pH, carbonates content, electrical conductivity, cation

exchange capacity (CEC), available macro- andmicro-elements content, and soil

carbon. LWPLSR construction was based on cross-validation over a calibration

dataset to select the optimal number of latent variables. The models’

performances were then evaluated on a validation dataset using the ratio of

performance to deviation (RPD) or to inter-quartile (RPIQ), root mean square

error of prediction (RMSEP), and the determination coefficient (R²). Accurate

predictions were found for clay, silt, and sand content (R² = 0.96, 0.88 and 0.93,

respectively), CEC (R² = 0.93), exchangeable CaO, MgO and K2O (R² = 0.89, 0.86

and 0.8, respectively), total carbonates content (R² = 0.81) and soil inorganic

carbon (R² = 0.92). These findings highlight the potential of CLR transformation

as an effective preprocessing method for XRF data and offer new insights into

predicting soil physico-chemical properties in hyperarid environments.
KEYWORDS

compositional data, hyperarid environment, locally weighted PLSR, soil chemical
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1 Introduction

Soil characterization is important in ecology, agriculture and

forestry (1, 2) to identify similar environments and evaluate the

potential level of natural or anthropogenic degradation (e.g. soil

pollution, compaction, erosion, etc.) which often directly impact

plant and microbial communities, as well as soil functions (3–5).

Soil physical and chemical properties are usually measured,

including texture (clay, silt and sand content), water availability,

soil acidity and salinity, content of macro and micro elements for

plant nutrition as well as organic matter, carbon and nitrogen

content (6, 7). Soil fauna and soil microbial composition are also

often taken into account as they represent an important part of soil

properties and functionalities (5).

Measuring soil physical and chemical properties using

standardized methods is often expensive and time consuming,

and therefore, is usually carried out on a small number of

samples, which can strongly limit the resolution of large-scale

studies due to a lack of data. New methods have been explored in

recent decades to assess soil properties more efficiently using

advanced technologies such as visible-near infrared diffuse

reflectance spectroscopy (VNIRS) and X-ray fluorescence

spectrometry (XRF) in laboratory or directly in the field (8–12).

Nonetheless, these types of measurements need proper calibration,

data treatment (e.g., data transformation), and modelling methods

for effective use (9, 13, 14). XRF consists in measuring the intensity

of emission lines (fluorescence energies) that are then converted by

the equipment software in chemical elements relative abundance

(weighted percent) from the periodic table, ranging from

Magnesium (Mg) to Uranium (U) resulting in a compositional

dataset. Atomic concentration accuracy increases with atom size, it

is the reason why atoms with a size lower than Mg are not

represented (like Na, B, C and N). However, this data alone does

not provide information over the available forms of these elements

for plants and soil microbes, which rely upon other chemical

interactions like clay-organic complexes and soil pH (15).

Compositional data refers to measured variables carrying

relative information where the sum of the variables is a constant,

meaning that the variables can’t vary separately from the rest of the

composition. This type of data has specific mathematical properties

(16) that make it impossible to analyze directly in an Euclidean

space without first processing the data (17). Several mathematical

transformations have already been proposed to handle

compositional data, including the log-ratio transformations

(additive, isometric, centered) and the alpha-transformation (18).

In the case of the compositional XRF data, the centered log-ratio

(CLR) transformation provided the best results for studying the

relative contributions of elements in the whole composition (17).

Since high concentrations of elements hide the presence of small

elements, this CLR transformation makes it possible to look closely

at the low concentrations and avoid misleading results. This

transformation has been used to predict elements concentrations

using the elemental intensities obtained by XRF scanning for

calibration (19, 20), and using mid-infrared (MIR) spectra (21)

through partial least squares regression (PLSR). Despite these
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observations and the properties of CLR values in processing

compositional data, soil characteristics modelling with XRF data

has, to our knowledge, not yet employed the CLR transformation.

The same observation can be made for soil texture, which is also

defined by a composit ional data, and for which CLR

transformations could potentially enhance predictive modelling.

XRF spectroscopy has already proven successful in predicting

some soil properties, sometimes combined with infra-red

spectroscopy. These properties include soil texture (9, 12, 22, 23),

cation exchangeable capacity (CEC) (24, 25), pH in soil-water

extract, macro-elements content (13, 14, 26, 27) as well as

calcium carbonates and salinity (28). Predicting soil salinity using

XRF integrated with VNIRS and remote sensing (RS) offered

excellent potential for assessing soil salinity comparable to

standard method (8). Different predictive models have been used

to analyze XRF data, ranging from simple and multiple linear

regression (SR and MLR) models, and partial least squares

regression model (PLSR), to more complicated models like

support vector machine (SVM), decisional tree (e.g., random

forest or cubist model), or convolutional neural network (CNN).

All of these models typically use raw or log-transformed XRF data.

In the context of arid regions, soil texture prediction with XRF data

and PLSR was found unreliable (28).

PLSR methods have been widely used for predicting soil

properties such as chemical variables and texture using XRF data

(22, 23). However, a more advanced method has been proposed

recently called locally weighted partial least squares regression

(LWPLSR) (29). This method has shown better results in the

prediction of soil properties based on VNIRS data (30). LWPLSR

can deal with nonlinear variables by using the nearest neighbors of

each new data, while maintaining a good interpretability of the model

since variable influence on projection (VIP) can be retrieved for each

local model (31). To our knowledge, combining CLR-transformed

XRF data and LWPLSR method has never been done in the literature

for the prediction of soil physical and chemical properties.

The objectives of this work are: (i) to assess models’

performances for predicting each soil property, (ii) to determine

the main atomic elements involved in the predictions, and (iii) to

compare the gain in predictability between PLSR and LWPLSR, as

well as between raw and CLR-transformed compositional data

(XRF and/or texture data). We hypothesize that combining CLR-

transformed XRF data and LWPLSR would provide an efficient

method to predict soil physical and chemical properties in a

hyperarid environment. This approach could significantly reduce

the cost and time required for soil analysis compared to more

classical physicochemical measurements, with the possibility of

interpretation in terms of XRF variables contribution to the model.
2 Materials and methods

2.1 Sampling study area

This study was carried out in AlUla County, Saudi Arabia. The

County covers 22,561 km² including the UNESCO World Heritage
frontiersin.org
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Site of Hegra, the archeological sites of Dadan and Ikmah, various

cultivated areas, as well as six protected areas: Sharaan National

Park, Harrat Uwayrid Biosphere Reserve, Wadi Nakhlah Nature

Reserve, AlGharameel Nature Reserve, Harrat AlZabin Nature

reserve, and the Khaybar White Volcano Geopark (Figure 1).

Average annual rainfalls were recorded to be 15.9mm, 52.5mm

and 73.7mm in 2021, 2022 and 2023 respectively, with most rain in

November and December (meteostat.net data). Precipitation

occurred mainly in the form of severe thunderstorms, with

uneven precipitation distribution. The average annual wind

velocity over this period was around 10.4 km/h, with the average

annual temperature ranging from 4°C to 38.9°C (with a mean of

28.4°C). Soils were formed on Cambrian sandstone formations,

with depth of up to 1.5 meters. Desert areas, red sandstone canyons

and sandy valleys are the most representative landscapes in the

region. The climate is typical of a desert region with dry and

arid conditions.

A total of 579 soil samples were collected between 2019 and

2024 as part of different projects founded by the French Agency for

AlUla Development (AFALULA) and the Royal Commission for

AlUla (RCU) which aimed to characterize the diversity of soils and

flora in the region of AlUla, and to manage ecological restoration of

degraded sites. For each soil sample, a pit of 50cm in length x 50cm

in large x 40cm in depth was dug. For each pit, five sub-samples of
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near 200g were collected between 30 and 40cm depth at the center,

north, south, east, and west directions, before being mixed together

(for a total of 1kg per soil sample) and sieved at 2mm for

further analyses.
2.2 Soil physico-chemical properties

The following physical and chemical variables were measured by

COFRAC-certified laboratories (www.aurea.eu, www.laboratoire-

teyssier.com and www.celesta-lab.fr) using normative techniques

(French or International standards, Supplementary Table S1): clay

(%), silt (%), sand (%), pH (water), pH (KCl), resistivity (ohm.cm),

electrical conductivity (EC; mS/m), total CaCO3 (%), P2O5

(Olsen method; mg/kg), exchangeable K2O (mg/kg), exchangeable

MgO (mg/kg), exchangeable Na2O (mg/kg), exchangeable

CaO (mg/kg), CEC (cmol/kg), DTPA Fe (mg/kg), DTPA

Mn (mg/kg), and Boron (mg/kg). Soil organic carbon (SOC; %)

and soil inorganic carbon (SIC; %) were measured using the Rock-

Eval analysis (32). Since different projects had different needs, not

all these variables were measured on all the samples. For example,

202 samples were analyzed only with Rock-eval. Since texture data

is also a compositional data, a CLR transformation was performed

before modelling. For other physical and chemical variables,
FIGURE 1

Spatial distribution of soil sampling locations in AlUla region, Saudi Arabia.
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depending on the distribution, data transformation was performed

to reduce skewness. The transformations were typically decimal

logarithms, except for the pH measurements (no transformation),

resistivity (square root transformation), and EC (square root of

decimal logarithm).
2.3 X-Ray Fluorescence spectra acquisition
and transformation

X-Ray Fluorescence (XRF) data were acquired using the

portable XRF S1 Titan analyzer 800 (Bruker, Billerica,

Massachusetts, USA), which provided the predicted relative

abundance of atomic elements (called here raw data, compared to

CLR transformed data) by the equipment software, from

magnesium to uranium, based on measured spectral intensities.

For each soil sample, XRF acquisitions were conducted on three

independent soil sub-samples (loose powder) with three replicates

per sub-sample, resulting in a total of nine acquisitions per sample

using the “geo-exploration” mode of the XRF S1 Titan analyzer

(measurement consisted of three phases). For this equipment, based

on constructor information, the voltage ranges from 5 to 50 kV,

with a maximum current of 200 mA, and a multi-filter with 5

positions selected automatically by the apparel. The atmospheric

measurement environment is air. Absence of detection was replaced

by 10 -6 values (0.01 ppm) to deal with the problem of zero values in

compositional data (16), with the assumption of elements being

trace elements at least. When the presence of elements was detected

below the limit of detection (< LOD), the limit value for each

element, as indicated by the constructor, was used as replacements

(Supplementary Table S2). The geometric mean was then calculated

for the nine measurements. These replacements allow us to perform

CLR transformation (17) without losing the distinction between

measured values, detected elements but not measured (LOD) and

non-detected elements (represented as one ppm). The CLR

transformation is used to open the matrix and to show the

relative contribution of each element to the whole composition. It

is obtained with the following formula:

clr(xi) = log (
xi
g(x)

)

With: on
i=1clr(xi) = 0, and the geometric mean g(x) =  

e
1
non

i=1 log(xi).

The CLR transformation is made after a first selection of

elements based on the sample size and raw element variability. If

the threshold for variability is set at 10, we would expect n/10

unique values for one element, eliminating the ones where we have

too many LOD values or 10–6 replacements (limit or absence of

detection). Elements with an absence of variation (i.e., those with a

standard deviation of 0) are discarded during this process. After

performing the CLR transformation, a second element selection is

conducted with a stricter or equal threshold, still applied on the raw

values. This step ensures that only the most significant elements, in

terms of their contribution to describing the dataset, are retained.

However, by keeping some elements before the CLR
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transformation, we kept the information of less significant

elements which are part of the composition. The two thresholds

were optimized by testing different values for the first and second

selection of variables, allowing us to determine which elements

should be retained or discarded from the compositional data.

Therefore, each physical and chemical predicted variables had

their own set of elements selected. Principal Component Analysis

(PCA) was performed over the whole XRF dataset after elements

selection and CLR transformation, with a threshold of 10 for the

first selection, and 2 for the second, to describe overall

sample variability.
2.4 Models’ construction and evaluation

For each predicted variable, samples were separated in a

calibration and a validation dataset, based on the Kennard–Stone

algorithm (33), with the aim of covering the entire distribution of

the dataset, including extreme points. The calibration dataset

represented 80% of each chemical variable dataset (112 samples

minimum and 282 samples maximum depending of available data,

Table 1). LWPLSR (29) was then performed on the calibration
TABLE 1 Soil physical and chemical variables measured and their
respective statistics.

Variables N Mean Median SD Min Max

Clay (%) 202 6.7 4.5 7.1 0.4 38.6

Silt (%) 202 13.5 6.4 17.3 0.2 74.8

Sand (%) 202 79.7 88.8 23.0 6.7 98.6

pH (water) 352 9.0 9.0 0.5 7.3 10.1

pH (KCl) 353 8.4 8.3 0.4 6.9 9.3

Resistivity
(ohm.cm)

324 9345 8333 7650 21 38314

EC (mS/m) 324 105 12 412 3 4762

Total CaCO3 (%) 353 3.34 2.2 3.37 0.0 21.0

Olsen P2O5 (mg/kg) 353 15 13 14 2 204

Exc K2O (mg/kg) 323 299 182 331 18 2869

Exc MgO (mg/kg) 323 393 291 380 12 2457

Exc Na2O (mg/kg) 291 276 60 843 2 8729

Exc CaO (mg/kg) 323 8364 7159 8321 507 72123

CEC (cmol/kg) 298 5.5 4.1 4.5 1.5 30.7

DTPA Fe (mg/kg) 140 1.6 1.4 0.7 0.3 4.3

DTPA Mn (mg/kg) 140 1.2 1.0 0.8 0.2 4.5

Boron (mg/kg) 140 0.06 0.04 0.10 0.01 1.08

SOC (%) 344 0.16 0.07 0.27 0.01 2.48

SIC (%) 344 0.22 0.10 0.32 0 2.01
frontie
N, Number of samples; SD, Standard Deviation; Min, Minimum value; Max, Maximum value;
EC, electrical conductivity; Exc, Exchangeable; CEC, Cation Exchange Capacity; DTPA,
diethylenetriaminepentaacetic acid; SOC, Soil Organic Carbon; SIC, Soil Inorganic Carbon.
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dataset. The LWPLSR model maximizes the covariance with the

response variable (soil properties) through latent variables (LV)

which are orthogonal and built as linear regression of explanatory

variables (XRF CLR values). Since it is locally weighted, one model

is produced for each XRF data, and is based only on a few samples,

selected from the calibration dataset. This selection is based on the

Mahalanobis distance between the XRF data of a new sample and

the XRF data of all the samples from the calibration dataset.

Number of samples selected using this distance was set to 30.

This number could be lower if outliers (high distance) were detected

and are then assigned with a weight of 0. For the other selected

samples, weight is calculated as an exponential function based on

Mahalanobis distances between samples:

wi,j =   e
−   di,j

h :MAD(dj )

Where wi,j is the weight and di,j   is the Mahalanobis distance of

the calibration sample i with the validation sample j. MAD is the

median absolute deviation of the Mahalanobis distances for the

validation sample j. The coefficient h is the sharpness of the weight

function and was set to 1. The weights are then normalized between

0 and 1.

Optimal number of LVs (1 to 10 were tested) was obtained

through 6-fold cross-validation (randomly selected over the

calibration dataset) repeated 3 times, using a precision gain ratio

Rg. Gain in root mean square error of cross-validation (RMSECV) is

calculated for each LV and the optimal number is set when Rg does

not further improve (threshold of 0.02). Then, for each sample of

the validation set, each variable was predicted using the calibration

set. Model performance was evaluated using:
Fron
- The Root Mean Squared Error of Prediction (RMSEP) over

the validation set.

- The coefficient of determination R² between prediction and

measured values in the validation set (inverse CLR is

performed for the texture).

- The Ratio of Performance to Deviation (RPD), being the

standard deviation (SD) divided by RMSEP (the

performance), which should be over 2 for good model

performance (34) and which indicates an untrusted

model with values below 1.4.

- The Ratio of Performance to Inter-Quartile (RPIQ). Inter-

Quartile Range (IQR) being the difference between third

and first quartile replacing SD in the RPD, which is more

appropriate if a variable is not normally distributed (35).

Successful predictions were defined with RPIQ > 1.9 (36),

acceptable predictive power was associated with RPIQ

between 1.7 and 1.9 (37).
Mean VIP were calculated over the calibration dataset for each

element to determine which were most important (31). This

method allows the identification of atomic elements for which the
tiers in Soil Science 05
relative contribution to the XRF data has the highest impact on

studied variables.

Effects of CLR transformation for composition data (XRF and

texture), as well as chosen model between LWPLSR and PLSR, were

tested for the different variables under study. RMSEP and R² were

computed to evaluate each method combination. Modelling and

analysis were performed using the R software language (38), with

FactoMineR package (39) for PCA, and with the rnirs and rchemo

packages (29, 40) for LWPLSR and PLSR.
3 Results

3.1 Soil physical and chemical properties

Measured sand, silt and clay content covered different texture

class based on the USDA triangle texture classification (Figure 2).

The majority of samples (87%) were classified as: Sand, Sandy Loam

and Loamy Sand soils, and a minority (13%) as: Sandy Clay Loam,

Loam, Silty Loam and Silty Clay Loam. Sand content distribution

was the most extended over the soil samples with values between 7%

and 99% (Table 1), and half of the samples had a sand content above

89%. The silt content was distributed on a gradient from 0.2% to

75%, with an uneven distribution (median = 6%). The clay content

range was the lowest with a maximum of 39%, and half of samples

below 4.5% (narrowing the full texture gradient studied).

Additionally, three classes of texture were not covered: Clay,

Sandy Clay and Silt (Figure 2).

Other measured chemical properties are described in Table 1. Soil

pH measured in water varied from 7.3 to 10.1, classifying the samples

from neutral to strongly alkaline. Soil resistivity (and EC) showed a

wide variability, from 21 to 38,314 ohm.cm, and a very uneven

distribution, with a skewness of 8.9 for EC. About 10% of the samples

had a resistivity below 500 ohm.cm, classifying them as corrosive.

Most of the samples had a total CaCO3 content below 20%,

classifying as non-calcareous. Other macro and micro-elements

measured had an uneven distribution, with skewness values

ranging from 1.4 (DTPA Fe) to 8.6 (Olsen P2O5). Exchangeable

CaOwas the highest of the macro-elements (8364 mg/kg on average),

while Na2O was the lowest (276 mg/kg on average). Low content and

uneven distributions were also found for organic and inorganic

carbon, with a mean of 0.16% and 0.22% respectively.

Distribution of calibration and validation dataset for each

studied variable, selected with the Kennard-Stone algorithm, is

represented in Figure 3. The figure demonstrates a relatively

similar distribution between both datasets.
3.2 Description of XRF data

To describe XRF data, we first selected 29 atomic elements

based on a threshold of at least 58 different values across the 579
frontiersin.org
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FIGURE 3

Density plots for each soil property showing the calibration and validation datasets.
FIGURE 2

Clay, silt and sand content for 202 samples placed on the USDA texture triangle (52).
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samples (1/10 of the samples). CLR transformation was then

performed on those elements. Following this, 18 atomic elements

were selected for the PCA based on a second threshold of at least

290 different values (also in the raw data) through the 579 samples

(half of the samples). Considering the first four principal

components, 74% of soil samples variability was explained

including 57% by the first two axes (Figure 4).

Since XRF data was CLR-transformed, the PCA shows the

relationship between elements that have a similar relative

contribution to each sample composition (high or low measured

values compared to the geometric mean). The global distribution

along the first two axes revealed three important directions. The

first one shows an enrichment in SiO2 and impoverishment in K2O,

Mn, Fe and Zn (corresponding to sandy and clayey soils). The

second one was represented by the elements Cu and Ca being more

present, and Pb being more absent (silty and clayey soils). The third

one was driven by Zr on the positive side and MgO, P and Cr on the

negative side (silty and sandy soils). The gradients of each texture

variable represented on the PCA, showing these three directions,

can be found in Supplementary Figure S1.
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3.3 LWPLSR model performances

3.3.1 Prediction of soil texture
For texture variables (clay, silt and sand), the best model

performance was found by predicting the CLR values of clay

content and silt content. Sand content was calculated from the two

other variables since the sum of CLR values is equal to zero. Using the

precision gain ratio (Rg), the optimal number of latent variables (LVs)

was one. RMSEPs for the validation dataset were below 6% for the

three texture variables (Figure 5A), with RPD > 2 for the three

variables and RPIQ > 1.9 for sand and clay. Only silt content had a

RPIQ lower than this threshold but above 1.7. Nonetheless, the

R² values for each texture variable were high (R² > 0.85), meaning

accurate predictions. Clay content prediction had the best

performance (R² = 0.96 and RPIQ = 2.6), followed by sand content

prediction (R² = 0.93 and RPIQ = 2.36).

Validation set representation over the USDA texture triangle

was completed with the predicted values (Figure 5B). The texture

classes of Loam and Silty Clay Loam had a small amount of sample

representativity, with only two points with clay content over 20%.
FIGURE 4

Biplots and scree plot of the principal component analysis (PCA) performed over 579 samples and 18 selected CLR-transformed XRF variables.
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Change of texture class was observed only for 7 samples, but

occurred only between adjacent classes between predicted and

measured values.

3.3.2 Prediction of soil chemical variables
For other soil properties, we found different model

performances, as described in Table 2. Based on VIP values, the

three main predictors were identified for each predicted variable.

Relationship between predicted and measured values is represented

in Figure 6. Poor prediction performances (RPIQ < 1.4) were found

for the extractable micro-elements Mn and Boron, Olsen P2O5,

exchangeable Na2O and EC. Interestingly, P content measured by

XRF was not found in the main predictors based on VIP for P2O5.

On the contrary, Mn content was placed third for DTPA Mn.

Acceptable model performances (RPD > 1.4; RPIQ > 1.9) were

found for resistivity, the two types of pH, and DTPA Fe (Table 2).

SOC had medium performance with a high R² (0.72) and low RPIQ

(1.31). For extractable Fe, Fe content measured by XRF did not

feature in the three main predictors; but rather Zr, Ni and Mn. pH
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(KCl) had a higher RPD and R² values compared to pH (water) and

shared Rb and Sr as their variables with highest VIP.

Excellent LWPLSR model performances (RPD > 2.2; RPIQ > 2)

were found for six chemical variables: CEC, exchangeable MgO,

CaO and K2O, total CaCO3, and SIC (Table 2). R² values were above

0.8. Rb content was placed first predictor for all exchangeable

macro-elements. For SIC, Total CaCO3, and exchangeable CaO,

Ca content provided by the XRF data appeared as one of the three

highest variables in terms of VIP, as expected. The best prediction

performances were found for the CEC variable (R² = 0.93; RPD =

3.86 and RPIQ = 4.69), with Rb, Ni and SiO2 measured by XRF as

the main predictors.
3.4 Methodology comparison

To assess the contribution of CLR transformation on

compositional data and LWPLSR, we tested separately the effect

of using raw compositional data (for XRF and texture data)
FIGURE 5

Predicted vs. measured texture variables for the validation set shown for each size category content (A) and on the USDA texture triangle (predicted
values in red) (B).
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compared to the transformed ones, as well as the classic global PLS

regressions method compared to the locally weighted one.

Modelling performances of each methodology combination

regarding texture variables are presented in Table 3. With PLSR

model, the change between raw values to CLR-transformed values

showed better performance, as reflected by higher R² values. The

performance increase was more important for clay when XRF data

was CLR-transformed (R² of 0.41 for clay, 0.07 for silt, and 0.21 for

sand). In comparison, for texture data, CLR transformation resulted

in better predictions for sand and silt, with R² of 0.19 for clay, 0.38

for silt and 0.33 for sand. Nonetheless, it is the combination of both

that gave the best indicators with global PLSR model (lowest

RMSEP for silt and sand).

Using LWPLSR model, indicators were found higher compared

to global PLSR when using raw data, with R² = 0.62 for silt and sand

content, and R² = 0.55 for clay content. The performances of each

prediction were the highest when both XRF data and texture was

CLR-transformed. The greatest improvement was found when XRF

data was CLR-transformed, with RMSEP being two times lower

than that obtained with raw data.

For the other chemical variables, modelling performances can

be found in Table 4. For all variables, the lowest RMSEP was found

using LWPLSR with CLR-transformed XRF data. For global PLSR,

CLR-transformed XRF data improved R² except for Total CaCO3.
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Similarly, for LWPLSR, CLR transformation enhanced the R²

values, except for EC. Transitioning from PLSR model to

LWPLSR model resulted in the highest R² values and the lowest

RMSEP for all variables.
4 Discussion

4.1 Predictions of soil variables with XRF
data

Few soil texture classes were represented in the sampling study

with a huge majority in the sand, sandy loam, and loamy sand texture

class (Figure 2). This specificity was linked to a desertic environment

and representative of hyperarid soils found in Saudi Arabia (41).

Using XRF spectrometry, combined with CLR transformation

and locally weighted PLSR, we found good prediction performances

for soil texture (R² > 0.88, RPIQ > 2.3 for sand and clay). Previous

studies have reported similar prediction potential for soil texture

using XRF data in various environments, including tropical (9),

subtropical (12, 22), and continental (23) climates. Nonetheless, in a

hyperarid environment, combining raw XRF data and PLSR models

has proven inefficient in predicting soil texture using PLSR (28),

which aligns with the results of this study (Table 3).
TABLE 2 Modelling performance (validation datasets) for each soil physical and chemical variable.

Variables N Transformation LV RMSEP RPD RPIQ R2 Highest VIP

Clay (%) 202 clr 1 1.38 4.96 2.6 0.96 Pb, Zr, P

Silt (%) 202 clr 1 4.54 2.89 1.8 0.88 Rb, Ni, Zn

Sand (%) 202 clr NA 5.21 3.74 2.36 0.93 NA

pH (water) 352 none 1 0.27 1.43 1.98 0.51 Sr, Zr, Rb

pH (KCl) 353 none 1 0.29 1.56 1.96 0.59 Rb, Ni, Sr

Resistivity (ohm.cm) 324 sqrt 1 3892 1.6 2.43 0.61 Zr, Sr, SiO2

EC (mS/m) 324 sqrt(log10) 1 17 0.99 0.55 0.62 S, Zr, Ca

Total CaCO3 (%) 339 log10 (>0) 1 1.13 2.31 3.86 0.81 SiO2, Ca, Rb

Olsen P2O5 (mg/kg) 353 log10 1 4.8 1.15 1.35 0.24 Rb, Zn, Mn

Exc K2O (mg/kg) 323 log10 1 111.4 2.26 2.08 0.8 Rb, Ni, Au

Exc MgO (mg/kg) 323 log10 1 101 2.64 3.31 0.86 Rb, Sr, Ni

Exc Na2O (mg/kg) 291 log10 1 259 1.61 0.63 0.61 Rb, SiO2, Sr

Exc CaO (mg/kg) 323 log10 1 1371 2.98 5.35 0.89 Rb, Sr, Ca

CEC (cmol/kg) 298 log10 1 0.92 3.86 4.69 0.93 Rb, Ni, SiO2

DTPA Fe (mg/kg) 140 log10 1 0.5 1.43 1.91 0.51 Zr, Ni, Mn

DTPA Mn (mg/kg) 140 log10 1 0.44 1.29 1.38 0.4 SiO2, Zn, Mn

Boron (mg/kg) 140 log10 1 0.03 1.55 1.13 0.59 Zn, Ca, SiO2

SOC (%) 344 log10 1 0.11 1.89 1.31 0.72 SiO2, Ca, Al2O3

SIC (%) 277 log10 (>0) 2 0.07 3.5 2.12 0.92 Ca, SiO2, Al2O3
N, Number of samples; LV, Latent Variables; RMSEP, Root Mean Square Error of Prediction; RPD, Ratio of Performance to Deviation; RPIQ, Ration of Performance to Inter-Quartile; clr,
centered log-ratio; sqrt, square root transformation; EC, Electrical Conductivity; Exc, Exchangeable; CEC, Cation Exchange Capacity; DTPA, Diethylenetriaminepentaacetic Acid; SOC, Soil
Organic Carbon; SIC, Soil Inorganic Carbon.
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Different methodologies have been explored in previous studies

for soil texture, such as multiple linear regression (MLR) (12, 22)

and random forest (9), those could be effective methods since

particles size distribution was greater and covering many texture

classes compared to hyperarid environments. In contrast, indicators
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values in our study were higher for sand, silt, and clay content

predictions using LWPLSR (Figure 5). However, since hyperarid

environments are predominantly composed of sandy texture

classes, the number of samples in our study is very low for other

classes. While clay content prediction performed excellently,
FIGURE 6

Predicted chemical variables from the validation datasets vs. measured variables.
TABLE 3 Modelling performance (validation sets) for texture based on transformation and PLSR type.

XRF data Texture data Model
Clay (%) Silt (%) Sand (%)

R² RMSEP R² RMSEP R² RMSEP

raw raw PLSR 0.11 6.37 0.15 12.63 0.14 18.19

raw clr PLSR 0.19 6.08 0.38 10.88 0.33 16.08

clr raw PLSR 0.41 5.25 0.07 12.62 0.21 17.27

clr clr PLSR 0.25 5.91 0.37 10.38 0.33 15.95

raw raw LWPLSR 0.55 4.53 0.62 8.52 0.62 12.15

raw clr LWPLSR 0.49 4.86 0.52 9.51 0.56 13.01

clr raw LWPLSR 0.95 1.6 0.85 5.09 0.9 6.02

clr clr LWPLSR 0.96 1.38 0.88 4.54 0.93 5.21
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applying the model to silty-clayey soils in hyperarid environments

may require further investigation.

Combined methodologies including XRF spectra have also been

previously explored to predict soil texture: using the XRF spectra
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obtained from the two beams (different energy range) after processing

and PCA rather than the elemental content calculated from it, or

using XRF data coupled with near-infrared (NIR) spectra (22, 23). In

these works, PLSR, MLR and cubist models (decisional tree) were

used, showing good performances in subtropical and continental

contexts. Cubist model gave the best performance (RPIQ > 3) in a

continental context, but R² was found below 0.5 regarding Sand and

Loamy Sand classes for silt and sand content predictions (23).

Nevertheless, these studies did not explore CLR transformation

XRF data, not taking into account the properties of compositional

data (17). Moreover, decisional trees lack interpretative results

compared to PLS regressions or MLR, such as the individual

contribution of each explanatory variable, using for example VIP.

Measured soil chemical variable values were representative of

hyperarid environments (42), with low soil organic carbon and low

plant nutrient availability (low P, N, Fe or Zn) (Table 1). We also

found mostly alkaline pH, with some calcareous soils, and some

areas with high salinization (high EC) which can lead to low fertility

or the development of specific plant communities with high

tolerance to these harsh conditions (43).

Given the specific conditions of this environment, depending

on soil chemical variables studied, predictions showed a high level

of variation (Table 2) in terms of performances using XRF data and

LWPLSR. Low model performance was found for Mehlich-3 P by

XRF (44), similar to exchangeable P using resin extraction in

tropical contexts (45), which is in accordance with the R² of 0.24

found for Olsen P2O5 (sodium bicarbonate) measured in our study.

Phosphorus has indeed a complex cycle in soil with unavailable

forms, associated with Fe and Al oxides, in organic matter or in

other mineral forms, bound with Ca or Mg (46). This makes it

difficult to link P content found with XRF with the plant available

form, explaining the absence of P in the main predictors for

Olsen P2O5.

Similarly, electrical conductivity (EC), as well as water pH are

mostly linked to atomic element forms (ionic or more stable), which

is not given by XRF measurements. Therefore, this could influence

prediction performances for these variables (poor and medium

performances). Yet, in arid context, using XRF data and PLSR, EC

showed good predictions (R² = 0.84), but contrary to our data

(skewness of 8.9) they were made in a more homogeneous salinity

level, less sandy soils and more calcareous (28).

For water pH, prediction performances showed a high

variability in literature (R² varied from 0.12 to 0.77) using MLR,

PLSR, decisional tree and CNN (convolutional neural network)

from temperate to tropical context (13, 23, 27, 45). In (27), which

presented the best predictions performances, pH values ranged

from 4.2 to 8.6 in a continental context. This was very different

compared to the pH range found in our sampling study going from

7.3 to 10.1 in a desertic region, where our model still provided

acceptable performance (RPD > 1.4; RPIQ > 1.9). Since extraction

methodology differed for macro-elements (resin extraction, nitric

acid or ammonium lactate) model performances comparison is

more complicated (13, 14, 45).

In tropical context or when using CNN method, good

predictions for K and Na content have been reported, which was
TABLE 4 Modelling performance (validation sets) for chemical variables
based on PLSR type and XRF data used.

Model PLSR LWPLSR

XRF data Raw Clr Raw Clr

pH (water)
R² 0 0.29 0.41 0.51

RMSEP 0.46 0.33 0.36 0.27

pH (KCl)
R² 0.22 0.25 0.26 0.59

RMSEP 0.46 0.38 0.45 0.29

Resistivity
(ohm.cm)

R² 0 0.36 0.30 0.61

RMSEP 8532 4973 7134 3892

EC (mS/m)
R² NA 0.06 0.69 0.62

RMSEP 185 26 101 17

Total CaCO3 (%)
R² 0.68 0.47 0.73 0.81

RMSEP 1.84 1.9 1.7 1.13

Olsen P2O5 (mg/kg)
R² 0.03 0.14 0.02 0.24

RMSEP 8.2 5.11 8.24 4.80

Exc K2O (mg/kg)
R² 0.34 0.60 0.59 0.80

RMSEP 234 160 183 111

Exc MgO (mg/kg)
R² 0.45 0.54 0.76 0.86

RMSEP 181 180 119 101

Exc Na2O (mg/kg)
R² 0.03 0.1 0.03 0.61

RMSEP 689 393 688 259

Exc CaO (mg/kg)
R² 0.19 0.69 0.72 0.89

RMSEP 4846 2259 2867 1371

CEC (cmol/kg)
R² 0.54 0.75 0.7 0.93

RMSEP 1.9 1.78 1.53 0.92

DTPA Fe (mg/kg)
R² 0 0.23 NA 0.51

RMSEP 0.63 0.62 0.72 0.50

DTPA Mn (mg/kg)
R² 0.01 0.04 0.13 0.40

RMSEP 0.94 0.55 0.88 0.44

Boron (mg/kg)
R² NA 0.02 NA 0.59

RMSEP 0.05 0.05 0.05 0.03

SOC (%)
R² NA 0.05 0.33 0.72

RMSEP 0.31 0.2 0.24 0.11

SIC (%)
R² 0.29 0.55 0.58 0.92

RMSEP 0.17 0.16 0.13 0.07
RMSEP, Root Mean Square Error of Prediction; Exc, Exchangeable; CEC, Cation Exchange
Capacity; DTPA, Diethylenetriaminepentaacetic Acid; SOC, Soil Organic Carbon; SIC, Soil
Inorganic Carbon.
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also the case for exchangeable K2O in hyperarid context, but not for

Na2O. Given the range of elements analyzed with XRF, organic

elements (C and N) are not identified. Nevertheless, medium

performances were identified for soil organic carbon. This may be

explained by the known interactions with clay or Fe/Al oxides (15,

47) whose elements are measured by XRF.

Good prediction performances were observed for total CaCO3

content, SIC, exchangeable Ca, Mg and K2O, as well as CEC

(Figure 6). In an arid context, with more calcareous soils (6 to

75%), good predictions of total CaCO3 were also reported using

PLSR (28). Extractable Ca and Mg (with ammonium lactate)

predictions with XRF, showed high R² values (0.9) in temperate

climates (26), which is in accordance with our results for

exchangeable CaO and MgO predictions, despite the usage of a

different solvent (ammonium acetate). Finally, the variable CEC

usually was predicted with high accuracy: in a continental context

using MLR with R² of 0.91 (24) or reaching 0.82 of R² using SVM

modelling and VNIRS fusion added to XRF data in a subtropical

climate (25). In our study, using LWPLSR with CLR-transformed

XRF data, we achieved the highest performance, with an R² of 0.93.
4.2 Atomic elements involved in prediction
models

Since LWPLSR allows for the calculation of VIP, we were able to

identify the main elements used in each model (Table 2). This

a l lows better comprehension of each model and i ts

potential coherence.

Relationship between Rubidium measurements via XRF and

soil texture has been well-established in previous studies (12, 22, 23,

48), and our findings confirm this by identifying Rb as one of the

main predictors. Similarly, elements such as Zn and Zr, which were

important in our study, have also often been associated with clay

and sand prediction in these previous studies. Regarding Pb being

the main predictor for clay content, relationship between clay and

Pb has been reported through the existence of adsorption

mechanisms (49). Since CEC is related to exchangeable cations,

similar predictors were founded like Rb, Ni and Sr. In comparison,

none of these three elements were found in the MLR developed in

(24) for CEC, but this study was conducted on soils belonging to

classes with higher silt and clay content. For Total CaCO3, SIC as

well as exchangeable CaO had Ca as its main predictors, which was

a coherent result. However, for Exchangeable MgO and K2O, we did

not find their respective element measured by XRF as their main

predictors. Indeed, availability of cations is based on other

molecular interactions and soil pH (15). Therefore, while XRF

can capture the overall composition, it does not directly provide

specific information regarding the availability of these cations. Fe

measured by XRF and DTPA has been shown having different

distributions in soils because of the different forms and solubility of

iron (50) which could explained the absence of Fe in the variables

having the highest VIP for DTPA Fe.
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By definition, XRF does not measure element content for

atomic number below 12 (Mg), which includes Sodium (Na),

Carbon (C), and Boron (B), all showed medium to poor

prediction performances. Yet, they were tested in this study since

their association with heavier elements have been acknowledged,

therefore the variables could have been deducted using the others

elements. Indeed, an exception was when carbon, in combination

with calcium (Ca), was used to predict SIC and total CaCO3. And,

Al2O3 was found to be a main predictor for SOC, which can be

explained by known interactions between organic matter and Al

oxides (47).
4.3 Advantages of CLR on compositional
data and LWPLSR

The methodology used for modelling was the locally weighted

PLS regression combined with the CLR transformation of

compositional data. Log-ratio transformation was proposed by

Aitchison (16) to avoid difficulties encountered when dealing with

compositional data being a closed matrix where correlations between

ratio are misleading. Log-ratio can be additive, isometric or centered.

This is the third one that was selected as a suitable transformation to

describe compositional data produced by XRF methodology,

compared to their raw values or log-transformed (17). This data

showed better properties in Euclidean spaces such as in PCA. Despite

sometimes being used to calibrate XRF data (19, 20), it was not found

in the literature as a tool to preprocess XRF data before predictions.

We found in Table 3 and Table 4 a strong improvement in model

performances when CLR transformation was applied for XRF data or

texture, in a hyperarid environment. This method should therefore be

tested in more environments ormodelling types to study the potential

in increased prediction accuracy.

In a similar way, we showed the prediction improvement by

using LWPLSR rather than PLSR (Table 3, Table 4). LWPLSR was

initially developed to enhance the prediction of soil organic carbon

using VNIR spectra (29) and was later applied to other soil

properties, and proved to be more effective than global PLSR (30,

51). In fact, by producing specific models for each prediction on a

smaller number of samples combined with statistical weights,

LWPLSR can better deal with non-linearity of complex data, but

at the same time, it makes LWPLSR highly dependent on a very

representative calibration dataset. Compared to more advanced

machine learning methods like SVM, Random Forest and CNN,

LWPLSR is able to show importance of elements (or wavelengths

for VNIRS) using the b-coefficients of the model or the VIP values

(31), allowing good interpretability. Moreover, LWPLSR showed

similar or better model performances (Table 2) for texture

predictions compared to SVM, Gaussian, Random Forest (9) or

the Cubist model (23). Thus, in an arid context, where soil texture

predictions using raw XRF data and global PLSR gave unreliable

results (28), we found good model predictions by combining these

two methodologies.
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4.4 Limitations and prospects

This study showed the possibility to predict some physical and

chemical soil variables with good model performance. However,

some variables proved more challenging to predict, based on the

complexity of their cycle and different forms as well as the absence

of their element being measured directly by the XRF (C, B, Na). To

expand the number of soil variables that can be predicted, exploring

other modelling methodologies, such as machine learning and deep

learning, may be beneficial. Previous studies have shown good

predictions using Random Forest for extractable Cu and Mn (44),

K content (14), with SVM for CEC (25) or with CNN for pH (13).

The performance of LWPLSR is very dependent on the

representativity of the dataset, since it is based on the similarity

between the input variables (XRF or VNIR spectra). To improve

model accuracy, it is essential to have a large and diverse dataset,

which can be time- and cost- consuming. Given that, hyperarid

environments are mostly dominated by sandy soils, other soil types

were underrepresented in this study. Further investigations are

needed to ensure broader applicability across different soil types.

Additionally, since each prediction is based on a new model limited

to a subsample of the calibration dataset, it has to be as clean and

representative as possible. Therefore, large datasets allow the

identification of the best spectral neighbors for each prediction, as

shown by Cambou (51).

Combining XRF spectra with other spectroscopic technologies,

such as visible and near-infrared (VNIR), mid-infrared (MIR) or

short-wave infrared (SWIR), has been widely discussed in the

literature (13, 22, 25, 26, 45). These technologies are already

known to give information about soil content through absorption

at given wavelength corresponding to characteristic vibrational

bands. Organic matter properties, soil mineralogy and texture,

pH, and concentrations of macro and micro-elements, have all

been successfully predicted using VNIRS technology (11). Similar to

the XRF analysis, VNIRS is time- and cost-effective but also non-

destructive. They could therefore be combined together to improve

soil variables prediction, in particular since VNIRS can detect

organic compounds linked to carbon (C) and nitrogen (N), atoms

that cannot be detected by XRF. Indeed, soil organic carbon and

nitrogen have shown good prediction performances using VNIRS

data (30, 51). Fusion methods have also been developed, such as

using principal components of NIR spectra (22), least squares (LS),

Granger-Ramanathan (GR), and Outer Product Analysis (OPA) for

combining XRF and VNIRS (26).

By decreasing the time needed to analyze a great number of

samples, the models developed in this study can be applied to

predict soil physical and chemical properties of other soil samples

collected in the AlUla region. These models can support various

scientific topics (e.g. in environmental or agricultural studies) and

need to be challenged on soils collected from other hyperarid

environments. Since aridification of many environments are

expected by climatic models, fast and large-scale characterization

of soils will be an important tool to better understand soil
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functioning and to design relevant soil management strategies for

various purposes (agriculture, ecological restoration strategies).

These time- and cost-efficient methods will also allow designing

high-resolution monitoring regarding soil fertility, salinization, and

erosion at large-scale (42) and link these parameters to crop

productivity and changes in natural plant communities.
5 Conclusion

XRF data acquisitions were carried out on soil samples to

predict soil texture and several chemical properties in the

hyperarid environment of the AlUla region, in Saudi Arabia. Soil

samples were dominated by a sandy texture with low clay content.

An innovative approach was used by combining CLR

transformation on compositional data and locally weighted partial

least squares regression (LWPLSR) modelling. Reliable models were

developed for soil texture, particularly for the clay and sand soil

fractions in hyperarid soils. The respective effects of data

transformation and locally weighted regression were tested

showing the importance of CLR transformation for XRF data and

the relevance of LWPLSR. High model performances were also

found for total CaCO3, exchangeable Ca, Mg and K, as well as CEC.

Acceptable model performances were observed for pH (water and

KCl), resistivity, DTPA Fe, and SOC. On the contrary, EC, available

P, Na, Mn, and B did not show acceptable model performances. The

limitations in modelling could be linked to the environment

conditions and the inherent constraints of XRF technology, which

does not provide information on elements with atomic numbers

lower than Mg or the atomic form (ionic or bonded). Overall, using

prediction models from spectrometry data represents a significant

technological advancement for large-scale soil property

characterization and monitoring at low cost.
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