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We examine cases of stationary vortices that can appear inside spherical liquid drops in
microgravity conditions. The first case is that of an incompressible external flow of uniform
speed at infinity, leading the liquid in the drop by friction to form a Hill vortex. In the second
case, the external fluid does not interact by friction with the liquid, but the drop is subjected
to an axial temperature gradient causing a variation in surface tension. This time it is the
induced movement which entrains the internal liquid. Note that the two situations can lead
to the same Hill vortex. Combined effects are envisioned. We are also interested in the time
factor in these phenomena.
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1 INTRODUCTION

The drops of the sprays undergo various actions depending on their origin and the resulting physical
situation in which they are found, such as watering spray, medical spray, automotive engine injector,
rocket engine injector, etc. Their modeling includes on the one hand the examination on the scale of
each individual drop, and on the other hand the study of the spray itself on a larger scale, as a
constituent of a multiphase flow which is most often liquid-gas. Individual drop is often considered
to be spherical. This is the case with small drops where capillary efforts are decisive for the
establishment of sphericity. This simplicity of geometric shape is called into question in the case of
large drops and as soon as they are subjected to significant forces of aerodynamic origin for example.1

For the sake of simplicity, we try during theoretical research to keep the spherical shape as long if
possible.

The microgravity can be considered as a factor favorable to the spherical shape of the drops of
average size which can allow experimental observation.

Finally, the study is also interested in applications to launchers. This dual fundamental/applied
aspect makes the study of sprays a reason of choice recommended by CNES within the framework of
Material Sciences.2

The exchanges between the individual drop and its gaseous environment are obviously different
depending on whether there is evaporation-condensation or not. They concern the masses of the
constituents, the momentum, and the energy. Each phase involved also undergoes motions and transfer
phenomena.

For the flow of the spray itself, it is often necessary to model what happens inside the individual
drops. The most classic is to characterize the latter by their radius, their mass, their temperature and
their speed. The distribution in diameter and speed of the drops will always remain the essential
element.
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Nevertheless, it may be interesting to take care of the internal
motions ofmedium-sized drops because these act on the exchanges
at their surface. This is the problem that is proposed in this article,
where we will therefore have to simultaneously study the external
and internal flows of individual drops.

We have retained here the case of spherical liquid drops
subjected either to a uniform external gas flow, or to a thermal
gradient in an axial direction. We will see that Hill’s vortex
modeling is an interesting solution for interior flows.

One of the major problems is that of the connection between the
flow inside the drop-limiting sphere and the flow of the outside fluid.

Indeed, if we assume a perfect fluid on the outside, we can
logically be led to admit perfect sliding conditions for this fluid at the
level of the surface of the drop. But then how to admit that there is
entrainment of the internal liquid in the drop by the external fluid?

The problem of the forces exerted on the drop by the external
fluid is also posed regarding their resultant which is found to be
zero! This constitutes the famous Dalembert paradox. We are
then invited to consider the viscosity of the external fluid, at least
in the close vicinity of the sphere, which leads to Stokes’ theory in
the case of the rigid sphere. The results must also be modified to
consider a liquid sphere. And in the presence of evaporation-
condensation of the liquid it is even more complicated!

Finally, we know that for many linear problems one can
superimpose elementary solutions. We will do this whenever
possible, considering the nature of the fluids and the areas of
validity that are the interior and exterior of the drop.

The origin of our study is related to the problem of combustion
instabilities in rocket engines: It is established that the evaporation of
droplets during combustion is the cause of amplification of HF
vibrations generated by the engine (This model is mentioned in the
appendix.). A feeded drop model was developed to represent the
evaporating spray being. This model results from an improvement of
that of Heidmann which did not consider the internal irreversibilities
of the drop in evaporation. But if this model, with spherical
symmetry, is well adapted to the velocity nodes (pressure anti-
nodes) of standing sound waves, it is not suitable for the other
zones of these waves presenting simultaneous pressure and velocity
oscillations. These speed oscillations actually generate a break in the
spherical symmetry, the consequences of which need to be analyzed.

2 SPHERICAL LIQUID DROP SUBJECTED
TO A UNIFORM EXTERNAL FLOW FAR
AWAY
Hill’s vortex is used to model the flow within a spherical liquid
drop in the presence of relative external flow (Abramzon and
Sirignano, 1989).

This vortex is a special case of a stationary motion of revolution
of an incompressible inviscid fluid (Lamb, 1945). It is a rotational
motion inside a sphere behaving with an irrotational external
flow, so that by choosing suitably the multiplicative constant α of
the stream function, the speeds of the two flows are identical to
the surface of the sphere (Germain, 1986).

We first recall the equations of the fluid flow outside the sphere
of radius R, and we will then determine the velocity field of the

compatible steady liquid flow3 inside this same sphere
(Prud’homme, 2012).

The stationary flow of a perfect fluid inside a sphere of radius R
and the flow around this sphere are characteristic examples,
shown in Figure 1.

FIGURE 1 | Liquid drop in the presence of an infinitely uniform flow:
shape of the streamlines of the external and internal flows in a plane passing
through the axis of symmetry.

FIGURE 2 | Definition of the spherical coordinates and representation of
a sphere of radius R. The current point M can be inside or outside the
considered sphere. p is the point of the half-line OM located at the surface of
the sphere.

3That is to say with no velocity discontinuity at the interface.
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2.1 Incompressible Fluids in Spherical
Coordinates
2.1.1 Understanding the Coordinate System
The quantities r, θ, ϕ, are the spherical coordinates, represented
in Figure 2.

In the case of a symmetry around the axis Oz, one works in
the plane ϕ � const. of Figure 2 since the motion is
independent of this angle. The basic unit vectors can be
defined there.

2.1.2 Continuity Equation
The continuity equation of an incompressible fluid is written in
vectorial notations: � · �v � 0 In expanded form, this gives:

1
r2

z

zr
(r2vr) + 1

r sin θ

z

zθ
(sin θ vθ) + 1

r sin θ

zvϕ
zϕ

� 0 [1]

In the case of a symmetry of axis Oz, the motion is identical in
each plane containing this axis.

The values of the various quantities of the fluid no
longer depend on the angle ϕ. The continuity equation is
therefore reduced to: 1

r2
z
zr (r2vr) + 1

r sin θ
z
zθ (sin θ vθ) � 0, and

we can then define the velocity field from the stream
function Ψ as follows:

vr � − 1
r sin θ

zψ

zθ
, vθ � 1

r sin θ

zψ

zr
, vϕ � 0 [2]

2.1.3 Expressions of the Stream Function in the
Presence of a Sphere
We consider two kinds of flows: a flow irrotational (e) outside the
sphere of radius R, and a rotational flow 1) with vorticity ω inside the
sphere. The flows are connected at any point of their spherical border.

Regarding the vorticity, zero on the outside, it is shown that we
have ω � 5αiy by virtue of the law of transport of the vortex
vector �ω into the interior fluid.

In the spherical coordinate system described above, we gets:
r2 � y2 + z2.

The stream functions ψe and ψi around and inside the sphere
of radius R, are expressed as follows4:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψe � αey

2(1 − R3

r3
), with αe � V0/2 for r≥R, and

ψi � αiy
2(R2 − r2), with αi � −3V0/4R2for r≤R

[3]

therefore:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψe �
V0

2
y2(1 − R3

r3
) for r≥R, and

ψi � −3Vo

4
y2(1 − r2

R2) for r≤R
[4]

In the problem of motion around a stationary sphere of radius
R, the velocity V0 is the one at infinity of the external flow: V0 �
U∞.

The calculations carried out with the stream function are
summarized in Table 1. Theys are explicited hereafter.

2.2 Flow Outside the Sphere
The steady flow of inviscid fluid outside the sphere is an irrotational
flow. Its stream function (Figure 3) is (index e for exterior):

ψe � αer
2sin2θ(1 − R3

r3
), r≥R, αe � U∞

2
[5]

The components of the velocity vector are:

vre � −2αe(1 − R3/r3)cos θ, vθe � 2αe(1 + R3/2r3)sin θ [6]
Its streamlines are represented in Figure 4 with:

�z � z/R, �y � y/R, �ψe � 2ψe/U∞R
2 [7]

Maximum velocity:
Let us call US the value of the speed in z � 0, y � R, which

corresponds to r � R, θ � π/2. We find: USi � Uzi � 2αiR2,
Uyi � 0. If we want US to be positive, then we have α to be
positive. We then have: αi � US/2R2 and the stream function is
written: US

2R2r2sin2 θ(R2 − r2)US is the maximum value ofU at the
surface of the sphere.

The velocity vectors of this flow and of the internal flow will be
identical at any point on the surface of the sphere if the speed at
infinity is suitably chosen: Ure(∞ ) � −Ure(−∞) � U∞.

2.3 Flow Inside the Sphere
2.3.1 Hill Vortex
The stream function of the form:

r≤R, ψi � αir
2sin2θ(R2 − r2) [8]

Corresponds to an internal rotational flow (ref. 4).
Knowing the stream function of the internal flow, we find

the following radial and angular components of the velocity
vector:

vri � −2αi(R2 − r2)cos θ, vθi � 2αi(R2 − r2) sin θ [9]
The results are shown in Figure 5.

TABLE 1 | Correspondence between the coefficients for an external flow coming
from the negative x with the velocity modulusU∞. The quantityUS is the speed
at the surface of the sphere at z = 0. This table incorporates the results of
Section 2.

Internal flow (Hill
vortex) r≤R

External flow r≥R

Stream function ψ i � αi r2 sin
2 θ(R2 − r2) ψ i � αi r2 sin

2 θ(1 − R3/r3)
Velocity �V { vri � −2αi(R2 − r2) cos θ

vθi � 2αi(R2 − 2r2) sin θ { vre � −2αe(1 − R3/r3) cos θ
vθe � 2αe(1 + R3/2r3) sin θ

Coefficients αi � US/2R2 � −3V0/4R2 αe � −US/3 � V0/2

4Ref. (Germain, 1986), p. 312.
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Each value of the stream function corresponds to a toric
surface. The limit value �ψi � 0 is the sphere itself.

The velocity vectors of the external flow are identical to those
of the Hill vortex at any point on the surface of the sphere if the
constants αi and αe are chosen suitably and in relation to the
speed at infinity U∞ [one has: vre(∞ ) � −vre(−∞) � U∞].

One finds in this case:

αi � 3U∞/4R2, αe � −U∞/2 [10]
Let us call US the value of the maximum speed at the surface of

the sphere, which occurs in y � R, z � 0, which corresponds to:
θ � π/2. We find: USi � 2αiR2. If you want US to be positive, then
you have αi to be positive. We then have: αi � US/2R2 and the
stream function is written:

ψi �
US

2
r2 sin2 θ(R2 − r2) [11]

We therefore know how to determine the velocity field and the
stream surfaces of the flows internal and external to the sphere
(ref. iii). It has been shown that then the flows are compatible if
αi � 3U∞/4R2. The maximum speed at the surface of the sphere
could then be determined.

2.3.2 Remark About Viscous Fluid Vortex
The balance equation of the vortex vector in incompressible
viscous fluid is written:

z �ω/zt + �∇ × ( �ω × �v) � ]Δ �ω [12]

FIGURE3 |Definition of the coordinates in the y0z plane containing the axis of symmetry Oz. At the point p of the surface of the sphere of radius R, we define the unit
vectors �t tangent and �n normal to the great circle considered. These vectors correspond to the base vectors ( �eθ , �er) at the point considered.

FIGURE 4 | (A) Inner and outer streamlines, speed vectors �U∞ at infinity and �US maximum at the surface. (B) Streamlines of the flow outside the sphere in the upper
quarter plane passing through the axis. �z � �z(�y), for different values of the reduced stream function �ψe � 2ψe/U∞R2. (C) Stream function as a function of spherical
coordinates θ and reduced radius �r.
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with, in spherical coordinates:

ω � 1
2r

[z(rvθ)
zr

− zvr
zθ

] �eϕ

In the case of the flow inside the sphere, we find without
difficulty for the Hill vortex:

�ωi � −5αir sin θ �eϕ.

The intensity ωi of the vortex vector is proportional to the
distance y � r sin θ from the axis of symmetry. The second term
of the vortex vector balance is calculated as follows.

We set: �A � �∇ × �ω and we get:

Ar � 10αir sin
2θ(R2 − 2r2), Aθ � 10αir sin θ cos θ(R2 − r2)

We then find: � × �A � � × ( � × �ω) � 1
2r [z(rAθ)

zr − zAr
zθ ] �eϕ � �0

In steady flow: z �ω
zt � �0. It follows that the term of the second

member of the vortex balance Eq. (12), ]Δ �ω is also zero.
The consequence is that Hill’s vortex, a solution of

perfect fluid, is also a solution of the equations of viscous
fluids.

In the case of external flow, we obviously have �ωe � �0 since the
flow is irrotational.

3 FLOWS OF A SPHERICAL LIQUID DROP
SUBJECTED TO AN AXIAL THERMAL
GRADIENT
3.1 Presentation of the Problem
The effect of an axial temperature field imposed on the internal
motions of a liquid spherical drop has been studied by various authors.
These movements are caused by the variations in surface tension
induced and by the resulting Marangoni effect in viscous fluid.

We can cite in particular Bauer (Bauer, 1982), (Bauer, 1985),

(Bauer and Eidel, 1987). For mathematical analysis, spherical
harmonics are generally used.

In the article by Bauer (1982), a free-floating liquid drop is subjected
on its surface to an axial temperature field inducing a thermal
convection of Marangoni due to the variation of the surface
tension. The stream function and the velocity distribution are
determined analytically for the stationary and unsteady temperature
fields, by solving the equation verified by the stream function using the
associated Legendre functions of the first type. The particular case of a
stable linear axial temperature field is evaluated numerically.

We consider the case of axial symmetry Oz, the liquid drop
being centered in O. The equation of continuity of the flow of the
supposedly incompressible liquid is written:

1
r2

z

zr
(r2u) + 1

r sin θ

z

zθ
(v sin θ) � 0

where u is the radial velocity and v the angular velocity5. We can
therefore introduce the stream function ψ such that:

u � − 1
r2 sin θ

zψ

zθ
, v � 1

r sin θ

zψ

zr
[13]

By removing the pressure from the unsteady momentum
equations, and defining the operator:

�Δ � z2

zt2
+ sin θ

r2
z

zθ
( 1
sin θ

z

zθ
) [14]

It comes:

�Δ[�Δψ − 1
v

z�ψ

zt
] � 0 [15]

H.F. Bauer first deals with the stationary case by assuming
constant the derivative of the surface tension σ with respect to
the temperature T.

This temperature develops in a series of Legendre polynomials
as follows:

FIGURE 5 | (A) Streamlines calculated in the upper quarter plane passing through the axis. �z � �z(�y), �y � y/R, �z � z/R for multiple values of �ψ i4ψ i/αiR
4, �zM(�y).

Corresponds to the geometrical locus of the points of contact of the straight lines issued fromO and tangents to the streamlines. It is a quarter circle of radius R
��
2

√
/2. The

curve �zU(�y) is the geometrical locus of the points where the speed is minimum. (B) Stream function as a function of spherical coordinates θ, �r.

5u and v were noted vr and vθ in Section 2.1.2.
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T0 + T1 f0(ξ) � ∑∞

n�0αn Pn(ξ) [16]
With ξ � cos θ and the relation of orthogonality:

∫+1

ξ�−1
Pm(ξ)Pn(ξ)dξ �

⎧⎪⎨⎪⎩
0 for m ≠ n

2
2n + 1

for m � n
[17]

The temperature distribution inside the spherical drop is given by:

T(r, θ) � ∑∞

n�0αn(r
a
)n

Pn(cos θ) [18]

with coefficients αn checking:

αn � [T0 ∫+1

−1
Pn(ξ)dξ + T1 ∫+1

−1
f0(ξ)Pn(ξ)dξ] 2n + 1

2
[19]

In the case of a temperature at the surface of the form
T � T0 + T1R cos θ, we have α0 � T0, α1 � T1R, αn � 0 for n > 1

The temperature distribution inside the drop is then of the
form T(r, θ) � T0 + T1r cos θ, with:

∫+1

−1
P0(ξ)dξ � 2 and ∫+1

−1
Pn(ξ)dξ � 0 for n> 1, and∫+1

−1
ξPn(ξ)dξ

� { 2/3 for n � 1
0 for n> 1

One thus solves the equation �Δ�Δψ � 0 with the boundary
condition of interface in r = R:

τrθ � μ[r z

zr
(v
r
) + 1

r

zu

zθ
] � T1

a

∣∣∣∣∣∣∣dσdT
∣∣∣∣∣∣∣f0

′(ξ) sin θ [20]

and the fluxes cancellation conditions:

∫2π

0
∫a

0
v sin θ0rdϕdr − o, and∫π

0
∫2π

0
ur�r0r

2
0 sin θdϕdθ − 0 [21]

In the case of the linear axial temperature: T � T0 + T1R cos θ,
we find the stream function

ψ � (r, θ) � −T1R2

6μ

∣∣∣∣∣∣∣dσdT
∣∣∣∣∣∣∣[(rR)

2

− (r
R
)4]sin2 θ [22]

which corresponds to the case of the Hill vortex in Section 2.2.
Bauer also solves the problem in the case of an axial field of any

stationary temperature, or with a periodic dependence in time.

3.2 Thermo-Capillary Hill vortex
In the study by Bauer (1982), we notice that the solution obtained
in the case of a constant axial thermal gradient was a Hill vortex
with the same axis.6

The result can be obtained directly as follows. Consider a
spherical drop of liquid whose surface is a phase separation of
capillary tension σ. We assume that this surface tension is a linear
function of the temperature:

σ � σ0|σT(T T0 ) [23]
The motion of the liquid is organized in a Hill vortex, but if we

assume that the outer fluid is inviscid and incompressible, it is
at rest.

We can ask ourselves the following question: Which
temperature field is capable of generating a Hill vortex as a
result of the surface motion of the drop by thermo-capillary
effect?

To answer this question, we establish the conditions of
equilibrium to be verified between the capillary forces and the
viscous forces at the surface of the sphere.

At point M, the velocity vector is (Figures 2,3, with U∞ � V0

in the case of Section 2):

�vi − 3V0

2
y

R2
(y�i − z�k) − 3V0

2
[r2
R2

�t sin θ + (r2

R2
− 1)�n cos θ]

− 3V0

2
(vt�t + vn�n)

[24]
In p, that is to say for r = R, we have: �v � �U � −2αiR2 sin θ�e0 �

3V0
2
�t sin θ.
The balance of forces at a point on the capillary surface of the

spherical drop involves the calculation of the tangential strain
rate:

εtn � 1
2
(r z(Ut/r)

zr
+ 1
r

zUn

zθ
) [25]

which makes it possible7 to express the tangential stress τtn �
2μεtn.

One has: Uθ

r � 2αi
r (R2 − 2r2) sin θ, Ur � 2αi(r2 − R2) cos θ,

therefore:

τθr � τrθ � 6μRαi sin θ [26]
This tangential stress is equal to: δσδS � 1

R
δσ
δθ � δT

R
δT
δθ (Figure 6).

It follows that δT
δθ � 4μR2αi

σT
sin θ, either: T � T0 − 4μR2αi

σT
cos θ, or

again:

T � T0 − 4μRαi

σT
Z [27]

There is a constant gradient temperature field.
We can therefore give the following result:
A spherical liquid drop of constant density, subjected to a

uniform and constant temperature gradient �G � �∇T in an
atmosphere at rest, is animated by the internal motion
corresponding to the Hill vortex whose velocity of maximum
intensity is oriented in the opposite direction to �G (Figure 7):
USG � GσTR/2μ, G being the thermal gradient G � dT/dZ. Then
we have:

6Unlike Section 2, the spherical drop is not in the presence of a well-defined
external flow. This does not have a great importance if one neglects the interaction
between the drop and the possible motions in its exterior.

7The surface forces are calculated from the speed field of the Hill vortex by
introducing a viscosity, whereas this vortex is an inviscid fluid flow. This is not
contradictory if we admit that it is a local influence and that the bulk of the flow is
changed very little.
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Umax � 3V0/2 � GσTR/2μ [28]

3.3 Other Thermo-Capillary Flows
As indicated at the beginning of Section 3.1, Bauer also deals with
instabilities in cases other than that of the constant axial thermal
gradient.

In his 1985 paper, Bauer (ref.vi) studies the combined effects of
Marangoni convection induced by a temperature gradient
imposed on the free surface of a liquid sphere and natural
convection from the residual microgravity field existing in an
orbiting space laboratory. The case of a constant and linearly
dependent axial residual gravity field was considered, for which
the Stokes equation in the Boussinesq approximation was solved.

A dynamic Bond number derived from the ratio of the Grashof
number, and the Reynolds number based on the Marangoni flow is
introduced. It makes it possible to determine the predominance of the
Marangoni effect if Bo → 0 or of natural convection if Bo → ∞.

The combined effects of Marangoni and natural convection
are then studied. Streamlines, radial and angular velocity
distributions have been obtained analytically. On the other
hand, the isotherms are presented for different temperature
distributions imposed on the free surface of the liquid sphere.

The dynamic Bond number introduced is by definition:

~B0 � ρgβR2/|σT| [29]
It compares the buoyancy force to the surface tension.
The main gravitational influence is due to the

residual acceleration normal to the orbital path, in the
plane of the orbit. It is created by the centrifugal
acceleration of the space station in circular orbit and the
acceleration of Newton.

When g is constant, we write g � g0; for g variable, we have
g � Ω2

0R where Ω0 is the angular velocity of the center of mass
around the center of the earth. Eqs. 12–14 still apply, but Eq. 15 is
replaced by

�Δ[�Δψ − 1
v

z�ψ

dt
] � −3Ω

2
0β

v
[r2zT

zr
sin 0 cos 0 + r

zT

zθ
cos20] sin 0

[30]
where β is the coefficient of thermal expansion of the liquid.

We then use the recurrence formulas of Legendre functions. The
calculations lead to expressions of the stream function ψ(r, θ) and of
the components of the velocity vector u(r, θ), v(r, θ) according to
series expansions of P0

n(cos θ), and P1
n(cos θ).

The constants involved in these expressions are to be
determined according to the boundary conditions at the
surface of the liquid sphere.

In the absence of capillary effects, natural convection is
obtained due to the residual gravity present at the location of
the space station where the drop is located. We must then
distinguish the case where liquid is in a rigid container from
the case of the free surface ~B0 → ∞, where we can neglect the
thermo-capillary effects.

One also solves the situations where the internal motions of
the drop of thermo-capillary origin are important, and we can
thus predict the effects of residual gravity on these movements.

With regard to the field of gravity two situations are examined
numerically: constant micro-gravity and linearly varying micro-
gravity.

As for the field of temperature the field is linear axisymmetric
T − T0 − T1 cos θ, or mixed linear-quadratic T � T0 + T1 cos θ +
T2 cos2 θ.

Results of the calculations carried out show in Figure 8 the
possibility of notable differences with Hill’s vortices. Two-ring
configurations of stream surfaces are observed (figures redrawn
from the 1985 Bauer article) with a variable residual gravity field
and quadratic temperature fields for T2/T1 − 2 with ~B0 −
0, 10, 100.

Another figure of the cited article also shows a case with two
tore surfaces with a constant residual gravity field, the same
quadratic temperature field and ~B0 �� 10.

FIGURE 6 | Forces at the surface of the liquid. S � Rδθ, F viscous
friction force.

FIGURE 7 | Hill vortex generated by a thermal gradient.
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4 CONCLUSION

We have presented Hill’s vortex as a structure that can appear
inside liquid drops under two circumstances: infinitely uniform
external fluid flow, thermal gradient along an axial direction. In
both cases the speed of the fluid at the level of the surface of the
drop is found to be proportional to the distance from the axis of
symmetry.

The physical assumptions were:

1) The sphericity of the drop of constant radius.
2) The liquid: incompressible, expandable, or not, viscous but

animated by a rotational motion of inviscid fluid in stationary
regime.

3) The external fluid: at rest or animated by a uniformmotion far
away, inviscid irrotational or locally viscous.

4) Concerning the external liquid fluid interface:
o Simple contact surface or sliding surface,
o Identity of speeds: fluids-surface or only liquid-surface,
o With or without surface tension depending on the
temperature. We took care to situate the case of the Hill

vortex as a particular case of analysis by series of Legendre
functions.

Outlook:
On the Hill vortex, it will be necessary to conclude on the birth

and dissipation of this vortex by providing characteristic times
(Gharib et al., 1998), (Chung, 1982).

On the Marangoni instability in a drop subjected to a radial
thermal field with spherical symmetry, we will have to refine our
formulation of the problem in spherical coordinates using the
articles of Hoefsloot et al. (Hoefsloot et al., 1990), (Hoefsloot et al.,
1992).

It would be interesting to study the effect of the thermo-
capillary vortex on the evaporation of the drop (Shih and
Megaridis, 1995), (Shih and Megaridis, 1996), in particular in
the presence of thermal radiation (Niazmand and Ambarsooz,
2009) or acoustic excitation as we have done with other
phenomena (Mauriot and Prud’homme, 2014).

Researchers are already interested in pursuing investigations
on the subject8.
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GLOSSARY

D flow rate of a source

( �er, �eθ, �eϕ)9 unit basic vectors

K intensity of a doublet

�n unit normal

p, p∞ pressure, p at infinite

Pl,m legendre polynomial

r, θ, ϕ spherical coordinates

R gas constant, radius of a sphere

s curvilinear abscissa

S surface

T absolute temperature

�t unit tangent

U, U∞ velocity at surface, velocity at infinity

�v, v � | �v| velocity vector, velocity modulus

(u, v) or (vr, vθ) components of the velocity vector

(x, y, z) (x1, x2, x3) cartesian coordinates

Ym
l (θ, ϕ) spherical harmonic

α, αe, αi stream function coefficients

ε deformation rate

Γ intensity of an irrotational vortex

ξ � cos θ intermediate variable

ρ volumic mass

σ surface tension

Ω rotation speed

�ω swirl vector

ψ stream fonction

i, e flow resp.internal external

t, n resp.tangent, normal to the sphere of radius r

r, θ resp.radial, tangential
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