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Prolonged periods in space have potentially deleterious physiological and

psychological effects. Ensuring the physical health and mental well-being of

astronauts will inevitably supersede the need for technological innovation, as

the major challenge in long-duration space travel. We propose a role for

psychedelics (psychoactive fungal, plant, and animal molecules that cause

alterations in perception, mood, behavior, and consciousness) and in

particular psychedelic mushrooms to facilitate extended sojourns in space.

Psychedelics research is in the midst of a renaissance and psychedelics are

being explored not only for their therapeutic potential in psychiatry but also for

their ability to promote neuroplasticity, modulate the immune system and

reduce inflammation. Psychedelics may be to long-duration space travel in

the 21st century, what citrus fruits were to long-distance sea travel in the 18th

century—breakthrough and facilitatory. The human intergalactic experience is

just beginning and it would be wise to consider the benefits of ensuring that

astronauts undertaking potentially perilous space voyages benefit from our

planet’s rich psychedelic heritage. There is also some justification for

considering the application of psychedelics in the processing and integration

of the profound and spiritual experience of deep space travel.
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Introduction

In the light of the growing interest in exploring and exploiting the resources of other

planets within our solar system (Buchanan, 2017), the success of publicly and privately

funded space initiatives (Seedhouse, 2016) and a consensus that long-distance space travel

has become technologically feasible (Biswal et al., 2022), the next frontier in space travel is

ensuring the health and wellbeing of astronauts on long-duration space missions.

Sojourns in space are a source of environmental (radiation and zero-gravity effects)

(Young and Sutton, 2021), physiological (energy balance changes, bone mass loss, gut

dysbiosis, and micronutrient deficiency) (Bergouignan et al., 2016), and psychological

(isolation, confinement, and existential distress) stress (Bergouignan et al., 2016). NASA

research highlights over 30 health risks to humans in space (Patel et al., 2020) and the

unifying framework that reflects the interaction of all space-related stressors has been

defined as the space exposome (Czupalla et al., 2004; Wild, 2012).
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Extended space station missions have yielded a wealth of data

on the effects of sojourns in space on the human organism and

raise to date largely only partially answered questions related to

the best approach to ensuring the health and wellbeing of long-

duration space travelers (Young and Sutton, 2021). Research on

polar exploration, submarines, solitary confinement, undersea

habitats, and space simulations provides a wealth of evidence that

humans are indeed eminently sensitive to isolation and

confinement, manifesting neurocognitive changes, fatigue,

misaligned circadian rhythms, sleep disorders, altered stress

hormone levels, and immune system dysfunction (Cruces

et al., 2014; Pagel and Choukèr, 2016; Sandal et al., 2018;

Alfano et al., 2021). Space station astronauts have suffered

transient, reactive psychological distress causing sometimes

critical lapses in attention, sleep disorders, emotional lability,

psychosomatic symptoms, irritability towards fellow crew

members and mission control staff, a decline in vigor and

motivation, and possibly increased risk of anxiety, depression

and psychosis, psychosomatic symptoms, emotional problems,

and post-mission personality changes (KanasPsychological,

1990; Kanas et al., 2009). Spaceflight also has immune system

effects through a range of mechanisms including the action of

stress hormones and long sojourns in space suppress general

immunity and cause an increase in blood inflammation markers

(Crucian et al., 2018).

Until the late 1700s, scurvy (a debilitating condition caused

by vitamin C deficiency) was a common and dreaded

accompaniment to long-duration sea travel. Scurvy, which

resulted in mortality rates of almost 50% among sailors, was

attributed to improper diet, poor ventilation, and confinement

and was responsible for the failure of numerous exploration and

trade expeditions (Carpenter, 1988). In 1747, the Scottish

physician James Lind conducted what is regarded as the

world’s first comparative clinical trial, proving the efficacy of

lemons and oranges for the prevention of scurvy (Lind, 1757).

While the health impacts of space travel can certainly not be

directly compared to scurvy, the search has commenced for

solutions that could play a pivotal role not only in the

prevention of the negative physical and psychological

outcomes related to long sojourns in deep space but also to

improve physical and cognitive performance in what is the

harshest of environments to which our species has ever been

exposed.

NASA, through its various space nutrition programs, is

increasingly prioritizing the well-being of astronauts (NASA’s

Centennial Challenges Program, 2022). There is a general

acceptance that functional nutrition can play an important

role in ensuring optimal health and wellbeing (Platkin et al.,

2020) and NASA’s current focus relates to high-potential, but not

fully proven terrestrial nutritional technologies such as

controlled environment agriculture (CEA) including vertical

farming (VF), algae and mushroom culture, cultivation of bio-

active or functional foods and cellular agriculture for the

production of cultured meat (Benjaminson et al., 2002;

Niederwieser et al., 2018; Cortesão et al., 2020; Mortimer and

Gilliham, 2022). While there is a growing recognition of the

important role that optimized nutrition plays in ensuring the

success of long-distance space missions (Zwart et al., 2021), this

heartening trend towards prevention should be juxtaposed

against the current continued predominance of diagnostic and

curative technologies in space medicine and popular space

culture (Clément, 2011; Lasbury, 2017).

We present the case for a primary prevention-focused

approach to ensuring the health and wellbeing of long-

duration space travelers through the potential application of

psychedelics (psychoactive substances that induce alterations

in perception, mood, consciousness, cognition, or behavior,

which when used for the purposes of engendering spiritual

development, that in sacred contexts are also called

entheogens (Ruck et al., 1979)), and in particular psychedelic

mushrooms (mushrooms containing the indoleamine psilocybin

molecule). While accepting that there is no direct experimental

evidence to support the role of psychedelic mushroom

consumption during space missions, our viewpoint is

supported by the eminent mycologist Paul Stamets1: “I say

this with great sincerity: NASA and anyone else working and

looking at the settlement of space, you should consider that

psilocybin (psychedelic) mushrooms should be an essential part

of your psychological tool kit for astronauts to be able to endure

the solitude and the challenges of space and isolation” (Scientific

American, 2021).

Psychedelics and neuroplasticity—A
possible role in facilitating long-
duration space travel?

Psychedelics are drugs that alter emotions, mood, and

perception without generally impairing higher functions such

as memory (Nichols, 2016). The paradigmatic “classical”

psychedelic is lysergic acid diethylamide (LSD) and to be

regarded as a psychedelic, a drug needs to have an “LSD-like”

effect (inducing an altered state of consciousness and

hallucinogenic manifestations) mediated through activation of

the brain’s 5HT2A receptor system. LSD-like psychedelics include

natural products such as the tryptamines, N,Nʹ-

dimethyltryptamine (DMT), 4-phosphoryloxy-N,N-

dimethyltryptamine (psilocybin or “psychedelic or magic

mushrooms”), and 5-methoxy-N,N, dimethyltryptamine (5-

MeO-DMT) and the phenethylamine 3,4,5-

1 Paul Stamets also has a popular culture link with space travel. In the Star
Trek series, the character Lieutenant Commander Paul Stamets is the
astromycologist and Starfleet officer responsible for the Starship
Enterprise spore drive propulsion system.
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trimethoxyphenethylamine (mescaline) (McClure-Begley and

Roth, 2022). Other “non-classical” psychedelics include the

dissociative anesthetic ketamine (Bennett et al., 2022) and the

entactogens, (psychoactive drugs that result in emotional effects

of empathy, sympathy and community such as 3,4-methyl

enedioxy methamphetamine (MDMA)) (Vollenweider, 2022).

There is evidence that psychedelic mushrooms were used for

entheogenic and medicinal purposes across Mesoamerica from

the early 16th century (Van Court et al., 2022). From the 1960s,

psychedelics were extensively used as recreational drugs and by

the early 1970s, global repressive policies and laws largely stifled

research in this field (Coppola et al., 2022). Over the past decade,

there has been a resurgence of research into the therapeutic

applications of psychedelics, particularly in psychiatry (Nutt and

Carhart-Harris, 2021; Phelps et al., 2022). A growing number of

clinical trials are underway to test psychedelics in the treatment

of conditions including depression, PTSD, addiction, eating

disorders, and end-of-life care (Siegel et al., 2021). Some

American cities are decriminalizing the personal use of

psychedelic mushrooms and plants in the light of their low

addictive potential and generally benign toxicity profiles (Nutt

et al., 2010; Schlag et al., 2022) and positive media coverage is

transforming the public perception of psychedelics (Matzopoulos

et al., 2022). We recognize that there are still substantial gaps in

the biomedical science supporting the generalized preventive and

therapeutic application of psychedelics, while noting that

psilocybin (for depression) and MDMA (for PTSD) are in

advanced clinical development with potential FDA approvals

from 2024, and that ketamine (delivered via a nasal spray) is

already approved for the treatment of depression (An et al., 2021;

Carhart-Harris et al., 2021; Mitchell et al., 2021).

There is still considerable debate on the therapeutic

mechanism of action of psychedelics. The profound

experience or “trip” associated with psychedelics may improve

responses to psychotherapeutic interventions and there is a

strong placebo effect (Yaden and Griffiths, 2020). Psychedelics

also promote neuroplasticity (the capability of the brain to alter

its structure or function in response to exposure to new stimuli,

insults, or environments) mainly in the prefrontal cortex,

possibly repairing neural circuits that are dysfunctional in

conditions including depression and PTSD (Olson, 2022).

Deleterious effects of sojourns in space on the brain include

changes in motor function and reduction in cognitive reserve,

making it important that innovative approaches to enhancing

neuroplasticity be developed (Svenska, 2003; Van Ombergen

et al., 2017; Roy-O’Reilly et al., 2021). Current research

indicates that the action of psychedelics is mainly mediated

through effects on the serotonergic (mainly 5-HT2A and 5-

HT1A) receptor system enhancing neuroplasticity (including

dendritic spine formation, axon branching, and synaptic

density) in key brain regions (Ly et al., 2018; Inserra et al.,

2021). Psilocybin and other psychedelics increase synaptic

density and neurogenesis and these neuroplastic effects are

thought to be an important component of their therapeutic

mechanism of action (Lima da Cruz et al., 2018; Hutten et al.,

2020; Olson, 2020; Raval et al., 2021).

Psychedelics, nutrition, and the
microbiome—Maintaining wellness in
space

Psychedelic molecules are produced by plants and fungi as

secondary metabolites for protection against predators and

infections. Animals generally avoid these potentially toxic

molecules but in the case of our hominid ancestors it is

possible that rather than avoidance they may have elected to

consume these secondary metabolites as means of

complementing tryptamine levels thereby accelerating the

socio-cognitive development of our species (Forbey et al.,

2009; Friedman, 2018). Indeed, the so-called “Stoned Ape

Theory” was originally proposed by Terence McKenna, who

speculated that psilocybin mushrooms were an evolutionary

catalyst for the emergence of certain higher cognitive faculties

of early hominids (McKenna, 1992).

Psychedelics can form part of a health-promoting diet, as

demonstrated by the application of psychoactive plants in

Peruvian-Amazonian traditional healing (Berlowitz et al.,

2022). These entheogenic wellness practices are largely

undertaken with natural products derived from fungi, plants,

or animals (mainly amphibians), as opposed to synthetic

molecules. A diet that includes psychedelic biomass may not

only be healthier but also has the potential to complement

strategies to reduce dependence on high protein foods and

cell-based animal meat, thereby saving energy and resources

on a lengthy space mission. In order to avoid any neurocognitive

effects of ingesting psychoactive substances, it may be possible to

grow mycelial biomass that contains only trace amounts of

psilocybin or grow genetically engineered “psychedelic

mushrooms” that do not produce psilocybin. Over the last

decade, “microdosing” or sub-psychedelic, small and regular

dosing of psychedelics, has attracted a significant amount of

public interest with anecdotal reports of positive socio-affective,

cognitive, and physical outcomes. However, it should also be

noted that the current, peer-reviewed evidence-base does not

provide sufficient support for the application of microdosing as a

health and wellness promotion strategy in long-duration space

travel (Cameron et al., 2020; Cavanna et al., 2022).

To provide a sustainable psychedelic biomass source for

long-duration space travel, it may be possible to integrate

psychedelics cultivation into a bioregenerative food system

using microalgae, fungi, plant, and animal cells (Figure 1)

(Hendrickx et al., 2006; Mapstone et al., 2022). Components

of such a system include green fractionation, extraction, and

purification (Chemat et al., 2012), application of microalgae

metabolites for VF (Varia et al., 2022) and the production of
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cultured meat (Tuomisto and Teixeira de Mattos, 2011).

Combinations of these technologies would be required to

produce functional and psychedelic fungi and psychoactive

molecules from animal cells, for example, the cell-based

synthesis of 5-MeO-DMT, using immortalized cells of Incilius

alvarius (Lerer et al., 2021). Moreover, process streams from

bacterial anaerobic digestion of food waste (Hendrickx et al.,

2006) can be utilized for functional and psychedelic fungi

cultivation through submerged culture (Musatti et al., 2017)

and for photo-autotrophic algae cultivation (Kisielewska et al.,

2022).

Healthy humans exist in a symbiosis with commensal

microbes in the nose, mouth, lungs, and epithelial surfaces

with microbial concentrations ranging up to 10 (Kanas et al.,

2009) in the gastrointestinal tract (Wilson, 2005). This

microbiome directly influences our well-being and is our first

line of resistance to various diseases (Shreiner et al., 2015). The

gut microbiome can produce (and metabolize)

neurotransmitters, including dopamine, serotonin, or gamma-

aminobutyric acid (GABA) (Strandwitz, 2018) and this could be

the mechanism whereby the gut microbiome plays some

pathophysiological role in conditions including autism

spectrum disorder, anxiety, depression, and chronic pain

(Mayer et al., 2014). The gut microbiome of astronauts has

been monitored since the 1970s and studies have highlighted

that long stays in space impact the microbiome, reducing

microbial richness and diversity and increasing levels of

pathogenic bacteria (Shreiner et al., 2015; Tesei et al., 2022).

The bidirectional communication between the central and

the enteric nervous system links the emotional and cognitive

centers of the brain with peripheral intestinal function playing a

role in our adaptation to a range of stressors (Kostic et al., 2013).

Beyond the effects of cosmic radiation, zero-gravity and

psychological stress, sojourns in space expose the gut to a

semi-sterile environment limiting both the diversity and

density of gut microbiota and it is indeed possible that the

reduced prevalence of certain bacteria negatively impacts the

cardiovascular and immune systems (Marques et al., 2016;

Verhaar et al., 2020). The link between the gut microbiome

and nervous system inflammatory pathways provides limited

support for considering that psychedelics may exert some of their

positive effects through indirect modulation of the gut-brain axis

(Kuypers et al., 2019; Cerletti et al., 2021).

Psychedelics to support cognition,
empathy, and transcendence in space

The evolution of our species over the past 2.5 million years,

has seen a tripling in encephalization and unprecedented

intellectual achievements (Whiten and Erdal, 2012). Some

believe that the ingestion of psychedelic mushrooms collected

from the dung of roaming animals was a key step in the evolution

of the early hominid brain, catalyzing the emergence of self-

reflection, communal consciousness, and language skills

(Rodríguez Arce and Winkelman, 2021). Moreover, the

FIGURE 1
A circular and sustainable bioregenerative functional food production model in space.
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neuroplastic and empathogenic properties of psychedelic

mushrooms may have had direct effects on the adaptation of

early humans to their environment, enhancing their ability to live

in highly social, cooperative communities and participate in

collaborative activities with shared goals and intentions

(Rodríguez Arce and Winkelman, 2021). The recent

renaissance of psychedelic science has advanced our

understanding of the phenomenology and physiology of the

altered states of consciousness induced by psychedelics and

their therapeutic utility in psychiatric conditions (Carhart-

Harris and Goodwin, 2017; Millière et al., 2018; Olson, 2021).

In addition to the challenges to individual physical and

psychological health, long sojourns in space may result in

strained interpersonal relationships and disruptions to group

cohesion (Kanas et al., 2009; Sandal and Bye, 2015). Individual

behavior adjustment, interpersonal conflict and group

performance effectiveness are inevitably difficult to manage in

isolated and confined groups and successful long-duration space

travel will require that crew members establish and maintain

effective, stable interactions between individuals in small groups

for prolonged periods (Clément, 2005). Given the psychological

pressures of long-duration space travel at an individual and

group level, it is useful to consider the potential positive,

adaptive effects of the psychedelic experience that include

enriched states of consciousness, enhanced cognitive flexibility,

heightened creativity, enhanced ability to attribute meaning and

value, empathy, enhanced insightfulness, and self-awareness

(Rodríguez Arce and Winkelman, 2021). Some astronauts

have reported transcendental experiences, religious insights, or

a sense of unity with humankind to some extent attributed to

viewing the Earth below and the cosmos beyond (Yaden et al.,

2016). This profound, personal experience with possible effects

on personal beliefs about the universe and consciousness, is

largely akin to the experience of many psychedelic users

(Timmermann et al., 2021). The feeling of spiritual

transcendence and interconnection with fellow humans and

the universe, and the depth of the emotional experience

linked to the separation from earth mirrors the noetic (a

perceived, deeper understanding of space or time),

empathogenic and mystical experience associated with

psychedelics (Sagan, 1997; Cole-Turner, 2021; Nayak and

Griffiths, 2022). The vast majority of psychedelic experiences

are indeed regarded as positive and given that there is a strong,

positive association between various forms of spirituality and

wellbeing, the combination of psychedelics with meditation and

group therapy may offer a way to improve psychosocial

functioning during long space missions (Móró et al., 2011;

Smigielski et al., 2019; Bożek et al., 2020).

Long-distance space travelers may encounter other forms of

life. Experience with DMT may provide some limited familiarity

to experiences of transcendence, out-of-body experiences, entry

into other realms or dimensions or the afterlife, and meetings

with other presences or entities (Bilton, 2018; Timmermann

et al., 2018). As we journey farther and farther from the earth

and stretch technological limits, it is important to consider that

space travelers may be faced with a situation where return to

earth is impossible and death in space is inevitable. There is some

archaeological data supporting the use of psychedelics to

ameliorate mental states at the end of life (Socha et al., 2022)

and evidence of the utility of psychedelics in the management of

depression and existential distress associated with end-stage

cancer and in assisting with the acceptance of death in

terminal care (Leung et al., 2006; Zimmermann, 2012;

Blinderman, 2016).

A role for psychedelics in long-
duration space travel?

There is a growing body of research, mostly from non-human

studies indicating that psychedelics enhance neuroplasticity

(structural and functional) and have utility in the treatment of

psychiatric conditions (Hibicke et al., 2020; Shao et al., 2021;

Thomas et al., 2022). Psychedelics exert significant modulatory

effects on immune responses by altering signaling pathways

involved in inflammation, cellular proliferation, and cell

survival with some of this activity being mediated through the

5-HT receptors (Szabo, 2015; Nkadimeng et al., 2020; Meade

et al., 2022). Psychedelics, and psychedelic mushrooms in

particular, could play a role in supporting human adaption to

space through the promotion of neuroplasticity, modulation of

inflammatory pathways, and in improving general wellbeing. It is

indeed possible that enhanced neuroplasticity may be a potential

facilitator of successful long-duration space missions and future

human settlement on other planets (Rappaport et al., 2020). The

growing public interest in psychedelics can be seen in the context

of the search by many in our modern world for mindfulness,

spirituality, healing, and meaning. Given the proliferation of

retreats and clinics providing psychedelic experiences and

therapy, it may indeed be possible that, once space tourism

becomes well established, psychedelic space wellness packages

will one day be on offer

Even though our understanding of human space physiology

has improved substantially, ensuring astronaut wellness, and

building medical care capabilities for space exploration remain

daunting challenges (Tran et al., 2022). The safe use of

psychedelics in a high-risk space environment requires careful

consideration, given the duration, intensity and potential

negative outcomes of the psychedelic experience or “trip”

(e.g., dissociation, paranoia, hallucinogenic phenomena, and

confusion). To date, very few adverse events have been

reported in clinical trials with psilocybin and other

psychedelics (Rossi et al., 2022). Clinical studies and rigorous

hazard analysis in controlled environments, including the

International Space Station, are required before psychedelics

can be used in deep space. Additional risk-reduction
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technologies, including telemedicine, AI-monitoring, sub-

psychedelic dosing schedules, pharmacogenetic identification

of susceptibility to adverse events, drugs to “reverse” or

neutralize subjective psychedelic effects and non-psychedelic

drug analogs, also require testing. Astronauts could also be

trained to use safety protocols that have been developed for

psychedelics-assisted psychotherapy, benefiting from the

growing body experience on the safe and effective deployment

of psychedelics in terrestrial therapeutic settings. Ensuring the

safety of astronauts who have ingested psychedelics, during

emergencies such as an onboard fire, also needs to be

seriously considered. By the time psychedelics are indeed

deployed for medical and wellbeing purposes on long-

duration space missions, it may be possible to avoid the

psychedelic experience or trip while still leveraging their

neuroplastic benefits. It would also be prudent to consider the

first applications of psychedelics in long-duration space travel for

the general improvement of wellbeing, rather than the

management of serious psychiatric conditions, with a focus on

dosing and scheduling to ensure maximum safety and security on

the spacecraft.

There is a growing body of evidence that psychedelics are

indeed good potential therapeutic options for conditions such as

treatment-resistant depression and PTSD, and despite the

exuberance related to the “psychedelics renaissance”, it is clear

that psychedelic science is at an early stage of development.

While there is no empirical evidence to support the application of

psychedelics in space exploration, we should be aware that our

species has a longstanding history of using psychedelics to

explore the fluid interface between our inner space (including

our consciousness) and the universe or outer space (Schultes,

1979; Strassman et al., 2008). Even though the potential

preventative and therapeutic role of psychedelics in the

advancement of space exploration remains unclear, it is

indeed interesting to consider that deep space is a propitious

setting for reflection on the nature of consciousness and the

enigmas of the cosmos itself (Hartogsohn, 2018; Millière et al.,

2018; Smigielski et al., 2019), and that such reflection could be

conducted with or without the aid of psychedelics.
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