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In space medicine, the definition of “health” is considered as the ability of a crew

member to carry out a high-quality space mission program and at the same time retain

enough functional reserves for readaptation to earth conditions after it is completed

(Baevsky et al., 2013).

Professional space crews are formed from specially selected, practically healthy people

trained to work in changed conditions and under constant stress (Kovacs and Shadden,

2017). Monitoring of their functional state is based on the assessment of changes within

the physiological norm, where the main ones are shifts (reorganizations) occurring in the

mechanisms of regulation and developing at the information-temporal or information-

energy levels of the body (Baevsky et al., 2011). In this sense, the individual approach of

space medicine to health assessment can be seen as a prerequisite for modern personalized

medicine (Dietrich et al., 2018; Pavez Loriè et al., 2021).

On the one hand, the structural elements of the human body are a system of

independent components, on the other hand, they are characterized by complex

interactions (Burggren and Monticino, 2005; Grenfell et al., 2006), therefore, the

creation of a unified concept of health in space medicine is an integrative task that

can be solved from the standpoint of systems biology.

The totality of space flight factors requires the human body to exert constant tension

on its regulatory systems to maintain homeostasis (Baevsky et al., 2014). The complex

impact of stress factors leads to the fact that ever-higher levels of control over the

physiological functions of the body are involved in the adaptation process (Baevsky et al.,

2007; Baevsky et al., 2009). This ensures the necessary coordination of various systems

and processes within the framework of a single goal—balancing the body with the

environment (Baevsky and Chernikova, 2016).

One of the characteristics of a system that ensures the quality of its functioning is

plasticity, which allows it to quickly cope with the challenges of a changing environment

(Goldberger, 1991; Beckers et al., 2006; McCraty et al., 2009; Smith et al., 2017). First of all,

this is due to the ability of neurons, neural structures, and neural networks of the brain to

dynamically change structural and functional characteristics and modify response

patterns in response to changes in external conditions and afferent stimuli (Slenzka,

2003; Pearson-Fuhrhop and Crame, 2006).
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In this regard, neuroimaging is an important tool for

studying the plasticity of the brain in space flight, as well as

the dynamic structural and functional networks that connect the

body and brain in the process of adaptive changes.

Studies of structural changes in the brain after spaceflight

appear compression of the gyri, narrowing of the calcarine and

central sulcus, supravermian cistern, expansion of the cerebral

ventricles with extensive redistribution of cerebrospinal fluid,

and, in general, an upward displacement of the brain inside the

skull. These changes were directly related to the duration of the

mission and persisted for some time after the end of the mission

(Roberts et al., 2017; Van Ombergen et al., 2018; Van Ombergen

et al., 2019; Kramer et al., 2020).

In addition, microstructural changes occurring during a

space mission in sensorimotor pathways, including tracts

connecting the cerebellum, as well as within the corpus

callosum, inferior fronto-occipital, and arcuate fascicles, may

reflect various sources of space flight effects on the brain,

including fluid displacement effects, structural brain changes

and neuroplasticity (Doroshin et al., 2022).

In a study by Barisano et al. (2019) an increase in the lateral

ventricles and a decrease in the subarachnoid space in the vertex

region were found, which correlated with an increase in the

volume of the perivascular space of the basal ganglia and the

perivascular space of the white matter after space flight.

It seems to us that the plasticity of nervous structures

underlies successful adaptive reactions that maintain

homeostasis at an adequate level. In addition, it provides a

transition between the functional states associated with

autonomous control. Neuroplasticity induces adaptive changes

or predisposes functional systems to adaptive plasticity.

Weightlessness, as a condition of existence atypical for an

organism, models the specific relationship between the brain and

the heart. This process is based on structural and functional

networks dynamically changing in time and space, which provide

multilevel interactions in the whole organism (Ivanov et al.,

2016). The dynamic network approach to defining states has

revealed new aspects of the connections between the heart and

brain (Valenza et al., 2016). CAN include structures that

modulate autonomic balance brain stem nuclei that directly

regulate the functioning of the heart, solitary tract,

hypothalamus, and amygdala, as well as areas of the

prefrontal cortex (Benarroch, 1993; Beissner et al., 2013;

Dampney, 2015; Shoemaker and Goswami, 2015). Piper et al.

(2014) to study the dynamics of the central autonomic network

(CAN), which controls the cardiovascular and cardiorespiratory

systems, used time-varying coherence analysis to quantify the

role of neural networks in the sympathetic control of the heart.

According to the “neurovisceral integration” model (Thayer

and Lane, 2000; Thayer and Lane, 2009), CAN neural structures

interact with each other as a “supersystem” that provides

adaptive regulation. An integrative characteristic that reflects

the level of functioning of this system is heart rate variability

(HRV) since it reflects the degree of functional integration

between areas of the prefrontal cortex, the brain stem, and the

peripheral nervous system. The hypothesis is that HRV is not

only an indicator of cardiac function but also an indicator of

adaptive regulation and brain plasticity (Thayer et al., 2012). This

is consistent with the concept of functional state analysis used to

evaluate adaptation processes in space flight (Baevsky et al., 2011;

Baevsky and Chernikova, 2016).

Neuroimaging studies have demonstrated links between

HRV and specific brain regions (Thayer et al., 2012). Evidence

suggests that the medial prefrontal cortex and adjacent anterior

cingulate cortex are associated with HRV modulation (Sakaki

et al., 2016). The dynamics of these associations are related to sex

and age (Koenig and Thayer, 2016; Kumral et al., 2019).

External conditions model the dynamic relationship between

the brain and the heart. In a situation of high stress, the degree of

synchronization between the prefrontal cortex and the heart can

change (Chand et al., 2020). This flexibility determines the

transition between functional states mediated by the

autonomic nervous system (Baevsky and Chernikova, 2017).

HRV may be one of the complex markers of stress, as it is

associated not only with dynamic modulation of vagal control of

heart rate (Author Anonymous, 1996) but also through putative

connections with neural structures involved in threat and safety

assessment (Sakaki et al., 2016), can characterize the level of

functional state, as well as individual signs associated with

physical and mental health (Holzman and Bridgett, 2017).

The current theoretical foundations of HRV suggest that it

reflects the ability to self-regulate (the ability to regulate

behavioral, cognitive, and emotional processes) and, therefore,

can be used as a biomarker of the circulatory system and complex

mental and behavioral processes (Porges and Furman, 2011;

Oken et al., 2015; Crestani 2016; Walker et al., 2017).

HRV gives an idea of the adaptation processes to the

conditions of the space environment due to the integration of

the brain and vegetative processes and the activation of higher

vegetative centers, which ultimately determines the health level of

a space mission participant (Baevsky et al., 2014).

To maintain cardiovascular homeostasis at an optimal level,

active restructuring of regulatory mechanisms is necessary. At

different stages of adaptation of the body to microgravity

conditions, the degree of tension of regulatory systems and

their functional reserves change, and the adaptation process

itself is associated with a gradual increase in the influence of

higher levels of regulation (Baevsky et al., 1998, 2013). At the

same time, the reaction of regulatory mechanisms depends on

individual characteristics that persist during repeated flights after

several years (Baevsky et al., 2014).

Links between brain functional networks and HRV have been

analyzed in studies by Otsuka et al. In one of them, the authors

report that space missions lasting 6 months improve HRV

(Otsuka et al., 2019). Another study documented an increase

in the circadian periodicity of HRV, an improvement in sleep
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quality, and an increase in parasympathetic modulating

influences at night (Otsuka et al., 2021). According to the

authors, these data indicate an unconscious activation of the

functional network of the brain during long-term space travel

and contribute to slowing down the aging of regulatory

mechanisms.

Changes in brain function reflected in HRV may explain the

fact that the process of neural adaptation improves with the

increase in the number of missions since neuroplasticity refers to

the ability of the nervous system to change its activity in response

to internal or external stimuli by reorganizing its structure,

functions or connections (Demertzi et al., 2016; Pechenkova

et al., 2019).

Perhaps the reorganization of the brain in repeated space

missions is associated with countermeasures implemented on

board the International Space Station (ISS). In the previously

mentioned study and Barisano et al. (2019) differences in the

reorganization of the brain of NASA astronauts, the European

Space Agency, and Roscosmos cosmonauts were revealed. The

authors have suggested that this is due to differences in the use of

countermeasures and high-resistance exercise regimens, which

may affect the redistribution of cerebral fluid, since age, mission

duration, and environmental conditions on the ISS were

identical.

Physical exercise has a positive effect on the functional

connectivity of the brain and can act as neuroenhancers. In a

study by Schneider et al. (2013), in a 520-day isolation

experiment simulating a flight to Mars, it was shown that

post-exercise cortical activity was most pronounced after

endurance-oriented protocols using an active treadmill. In

another analog space mission with 120-days of isolation,

simulating a flight to the Moon and a stay in lunar orbit, it

was demonstrated that individual aerobic running training

induces responses that maintain brain plasticity (Abeln et al.,

2022).

In our opinion, the study of the structural and functional

effects that occur in the central nervous system in

weightlessness will open up possibilities for understanding

the body functions associated with the adaptation and health

of space travelers. The theoretical assumption is that due to the

interaction of neural networks consisting of nerve centers

dynamically located at all levels of the brain and controlling

HRV, it is this integral characteristic that reflects brain plasticity as a

possible mechanism for adaptation to microgravity conditions.

Undoubtedly, this thesis requires experimental confirmation and,

nowadays has serious limitations associated with the insufficiency of

repeated long-term spacemissions. In addition, the complexity of the

mechanisms of neuronal cardiovascular integration requires their

clearer differentiation, which is the subject of further research.

However, understanding the impact of weightlessness on the

processes of reorganization of the human brain and identifying

possible markers of this process is important for developing an

adequate strategy of countermeasures to maintain the health and

performance of space crews, which will ultimately determine the

success and safety of future long-term space missions to distant

planets.
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