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Deep reinforcement learning (DRL) has shown promise for spacecraft planning
and scheduling due to the lack of constraints on model representation, the ability
of trained policies to achieve optimal performance with respect to a reward
function, and fast execution times of the policies after training. Past work
investigates various problem formulations, algorithms, and safety
methodologies, but a comprehensive comparison between different DRL
methods and problem formulations has not been performed for spacecraft
scheduling problems. This work formulates two Earth-observing satellite (EOS)
scheduling problems with resource constraints regarding power, reaction wheel
speeds, and on-board data storage. The environments provide both simple and
complex scheduling challenges for benchmarking DRL performance. Policy
gradient and value-based reinforcement learning algorithms are trained for
each environment and are compared on the basis of performance,
performance variance between different seeds, and wall clock time. Advantage
actor-critic (A2C), deep Q-networks (DQN), proximal policy optimization (PPO),
shielded proximal policy optimization (SPPO) and aMonte Carlo tree search based
training-pipeline (MCTS-Train) are applied to each EOS scheduling problem.
Hyperparameter tuning is performed for each method, and the best
performing hyperparameters are selected for comparison. Each DRL algorithm
is also compared to a genetic algorithm, which provides a point of comparison
outside the field of DRL. PPO and SPPO are shown to be the most stable
algorithms, converging quickly to high-performing policies between different
experiments. A2C and DQN are typically able to produce high-performing
policies, but with relatively high variance across the selected hyperparameters.
MCTS-Train is capable of producing high-performing policies for most problems,
but struggles when long planning horizons are utilized. The results of this work
provide a basis for selecting reinforcement learning algorithms for spacecraft
planning and scheduling problems. The algorithms and environments used in this
work are provided in a Python package called bsk_rl to facilitate future research in
this area.
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1 Introduction

The need for spacecraft autonomy is growing as missions
become more ambitious and the number of space-based assets
grows, which places a burden on spacecraft operators and
increases operational costs. In particular, autonomous on-board
planning and scheduling capabilities offer promise due to their
ability to plan in a closed-loop fashion, responding to off-
nominal conditions or opportunistic science events without
intervention from the ground. The first example of such a system
is the Remote Agent, which was used on board NASA’s Deep Space
One spacecraft to demonstrate goal-based commanding, on-board
planning, robust execution, and fault protection (Bernard et al.,
1998; Muscettola et al., 1998; Bernard et al., 1999). The Automated
Scheduling/Planning Environment (ASPEN) is a ground-based tool
used for a number of missions that can autonomously generate a
plan (Fukunaga et al., 1997). The Continuous Activity Scheduling
Planning Execution and Replanning (CASPER) tool can be used in
conjunction with ASPEN to modify and repair these plans on board
real spacecraft (Knight et al., 2001). ASPEN and CASPER have been
utilized in the Earth-Observing 1 (Chien et al., 2005; Chien et al.,
2019; Chien et al., 2020) and IPEX (Chien et al., 2016) missions for
autonomous planing and replanning, increasing science return and
reducing operational costs. The success of these tools demonstrates
the need for on-board planning and scheduling capabilities.

Reinforcement learning has emerged as a potential method for
increasing autonomy in a variety of spacecraft decision-making
domains, such as guidance, navigation, and control (GNC) and
planning and scheduling due to its inherent closed-loop planning
nature. The objective of reinforcement learning is to learn a policy
that maps states to actions to maximize a numerical reward function
(Sutton and Barto, 2018). The policy may be represented in tabular
form or with a neural network, which can be executed on-board in
milliseconds. References (Blacker et al., 2019; Dunkel et al., 2022)
demonstrate the execution of neural networks on flight processors
(or processors currently undergoing validation for flight), ranging
from milliseconds to seconds of execution time. Due to fast
execution times, a low memory footprint, and the potential for
optimal policies with respect to the reward function, reinforcement
learning is an excellent candidate for both low- and high-level
spacecraft autonomy.

Reinforcement learning has been used for planetary landing
(Gaudet et al., 2020a; Gaudet et al., 2020b; Furfaro et al., 2020;
Scorsoglio et al., 2022), small body proximity operations (Gaudet
et al., 2020c; Gaudet et al., 2020d; Federici et al., 2022a; Takahashi
and Scheeres, 2022), and spacecraft rendezvous, proximity
operations, and docking (RPOD) (Fed et al., 2021; Hovell and
Ulrich, 2021; Oe et al., 2021; Federici et al., 2022b; Hovell and
Ulrich, 2022; Dunlap et al., 2023). Proximal policy optimization
(PPO), a policy-based deep reinforcement learning algorithm, is the
most popular reinforcement learning algorithm in the surveyed
works, likely due to its stable convergence properties and ease of
implementation. To handle partial observability (e.g., thruster
failures), many of the cited works utilize a recurrent policy
version of PPO, which uses a recurrent neural network in the
policy to learn from a sequence of observations as opposed to a
single observation or a stack of observations. In addition to partial
observability, treatment of safety constraints is a constant challenge

when using reinforcement learning for spacecraft decision-making
problems. The simplest and most popular approach is to add the
safety constraints to the reward function in the form of a failure
penalty. However, constraint violation penalties in the reward
function does not mean they will not be violated. Dunlap et al.
address system safety with run time assurance (RTA) integrated into
training in Dunlap et al. (2023), which guarantees the policy will not
take unsafe actions.

In addition to solving GNC problems, reinforcement learning
has been applied to many Earth-observing satellite (EOS) scheduling
problems. However, each paper solves a different problem using a
different algorithm, such as asynchronous advantage actor-critic
(A3C) (Haijiao et al., 2019), REINFORCE (Zhao et al., 2020), and
deep Q-networks (DQN) (He et al., 2020). Furthermore, these works
often insufficiently model resources such as battery charge, data
storage availability, and reaction wheel speeds, as well as their
impact on the EOS scheduling problem. Harris et al. demonstrate
utilizing shielded PPO (SPPO) for EOS scheduling with battery and
reaction wheel speed constraints. SPPO bounds the decision-making
agent’s actions during training and deployment such that only safe
actions are taken (Harris et al., 2021). Shielded deep reinforcement
learning utilizes a linear temporal logic specification to monitor the
actions output by the policy, overriding the actions if they violate the
LTL specification (Alshiekh et al., 2018). Herrmann and Schaub
utilize a similar technique, using an extension of the safety shield
developed by Harris and Schaub as a rollout policy inside of Monte
Carlo tree search (MCTS) (Herrmann and Schaub, 2021; Herrmann
and Schaub, 2023a) for EOS scheduling problems that include
battery, reaction wheel speeds, and on-board data resource
constraints. MCTS is used to generate training data, which is
regressed over using artificial neural networks to produce a
generalized state-action value function, which may be executed
on-board the spacecraft in seconds. This training pipeline is
referred to as MCTS-Train. Eddy and Kochenderfer also apply
MCTS to a semi-Markov Decision Process (SMDP) formulation
of the EOS scheduling problem with resource constraints regarding
power and data storage, demonstrating near-optimal performance
compared to a mixed integer programming formulation and
solution (Eddy and Kochenderfer, 2020). While each of the
aforementioned works provide novel contributions to the field of
EOS scheduling, they do not compare reinforcement learning
algorithms to one another in a comprehensive way. In addition
to these gaps in the literature, the relationship between the different
RL algorithms, their hyperparameters, and performance variance
between different initial seeds is not well documented.

To address these issues, this work provides a comprehensive
comparison, complete with hyperparameter searches, between
various reinforcement learning algorithms for two EOS
scheduling problems. Of interest is how efficient and robust five
DRL methods are in training a neural network to do autonomous
on-board spacecraft scheduling. The neural networks are tested for a
simple and complex benchmark spacecraft environments to assess
their performance, robustness, and training time. The paper is
organized as follows. First, each EOS scheduling problem is
described: a multi-sensor EOS scheduling problem and an agile
EOS scheduling problem. The simulation architecture and Markov
decision process formulation of each problem is described. Then, the
methods used to solve each problem are presented. This work
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implements Proximal policy optimization, shielded proximal policy
optimization, advantage actor-critic (A2C), MCTS-Train, and deep
Q-networks to solve each scheduling problem. Hyperparameter
searches are shown for each algorithm, and each algorithm is
compared on the basis of performance across various
hyperparameters, performance variance between training seeds,
and wall clock time. Each algorithm is also compared to a
genetic algorithm, a common algorithm used for comparisons in
work using RL for EOS scheduling due to the ease of using the
simulator and reward function as the evaluation function.

2 Problem statement

In the Earth-observing satellite scheduling problem, one or more
satellites attempt to maximize the amount of science data collected over
some planning horizon. Depending on the problem formulation, data
downlink and resource constraints may also be considered.
Furthermore, several science objectives such as agile imaging, area
coverage, etc., may be considered. For this comparison work, two
versions of the Earth-observing satellite scheduling problem are
considered. The first EOS scheduling problem, the multi-sensor EOS
scheduling problem, is meant to be the simpler of the two environments
as the satellite only needs to collect images (not downlink) to get positive
reward and only needs to manage two resources: battery and reaction
wheel speeds. The second EOS scheduling problem, the agile EOS
scheduling problem, is meant to be more challenging as the satellite
must manage battery, reaction wheel speeds, and data storage.
Furthermore, the satellite has individual imaging targets available to
it that it must collect and then downlink to receive reward.

For each problem, a satellite in low Earth orbit images ground
targets while managing power and reaction wheel speed constraints.
Power is generated by the solar panels and stored within a battery.

Power is consumed by instruments, transmitters, and reaction wheels.
The reaction wheels are used to control the attitude of the spacecraft as
attitude references are switched between during mode switching, and
momentum is built up within the reaction wheels using a disturbance
torque. The satellites perform their science objectives and manage their
resources by entering into various operational modes such as imaging,
downlink, charging, and desaturation. Conceptfigures for each problem
are provided in Figure 1. The details regarding the agile EOS andmulti-
sensor EOS MDP formulations are provided in References 33 and 35,
respectively. Furthermore, the simulators used for each problemmay be
found on the develop branch of the bsk_rl Python library1. However, a
summary regarding eachMarkov decision process will be provided here
for reference.

Each EOS scheduling problem is formulated as a Markov
decision process (MDP). An MDP is a decision-making problem
in which an agent takes an action ai in a state si following some
policy, π: S → A, which is a mapping from states to actions. The
objective is to solve for the policy that maximizes a numerical reward
function, R (si, ai). The reward function is used to encode the desired
outcomes of the decision-making agent, i.e., what tasks it should
perform and what areas of the state it should enter into or avoid.
The decision-making agent receives a reward at each step based
on this reward function, ri = R (si, ai). Following each action,
the decision-making agent transitions to a new state following
some transition function. MDPs adhere to what is known as
the Markov assumption, which states that the next state is
conditionally dependent only on the current state and action.
Explicit representations of the transition function are often
represented with a conditional probability distribution, T (si+1|si, ai).

FIGURE 1
Earth-observing satellite scheduling problems. (A): Multi-sensor EOS scheduling problem. Reproducedwith permission fromHerrmann and Schaub
(Herrmann and Schaub, 2023b). (B): Agile EOS scheduling problem. Reproduced with permission from Herrmann and Schaub (Herrmann and Schaub,
2023a).

1 https://github.com/AVSLab/bsk_rl
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However, real world problems are often difficult to cast as conditional
probability distributions. Generative transition functions that utilize
the known dynamics of the system or sample from complicated
underlying distributions are often more appropriate. These are
represented with si+1, ri ~ G (si, ai).

2.1 Multi-sensor EOS scheduling problem

In the multi-sensor EOS scheduling problem, a nadir-pointing
satellite attempts to maximize the sum of imaging targets collected
with one of two sensor types, A or B, while managing power and
reaction wheel speeds. The set of all imaging targets is referred to as
T. The satellite only ever considers the next upcoming target. The
planning horizon, which is the total length of time considered for
planning and scheduling, is broken into a number of equal length
decision-making intervals. This set of intervals is referred to as I.
This work explores two separate planning horizon lengths: 45 and
90 decision-making intervals, which has a large impact on the
problem complexity. Each decision-making interval lasts for
3 minutes.

2.1.1 State space
Selecting the state space for any realistic decision-making

problem is a challenging endeavor. The state space must contain
all information relevant to the decision-making problem that
ensures the Markov assumption is satisfied. For the EOS
scheduling problem, this is difficult to completely satisfy due to
the complexity of the problem, which requires a massive state space
to fully capture. Therefore, the state space is selected to contain the
information that is most relevant to the decision-making problem.

The state space for the multi-sensor EOS scheduling problem is
defined as:

S � Ssat × Stargets, (1)
where state space of the satellite is defined as:

Ssat � Spos × Svel × Satt × Swheels × Spower × Seclipse. (2)

The state returned to the decision-making agent at decision
interval i is defined as si ∈ S:

si � SEZr, SEZv, ‖σB/R‖, ‖BωB/N ‖, ‖Ω‖, battery, access, sensor, eclipse( ).
(3)

The position and velocity, SEZr and SEZv, of the satellite are
expressed in the topocentric horizon coordinate system, or SEZ
frame. This coordinate system is defined relative to the imaging
target and is selected to ensure the policy is target agnostic.
Attitude information is provided in the form of spacecraft
attitude, angular velocity, and reaction wheel speeds. The
attitude of the satellite is provided as the magnitude of the
modified Rodriguez parameters (MRP), (Schaub and Junkins,
2018), σB/R, which is the rotation from the reference frame to the
body frame. The magnitude of the angular velocity of the
satellite, BωB/N , is provided in the body frame. The
magnitude of the reaction wheel speeds is given by Ω. Several
states are also included for the purposes of power management.
The percent charge of the battery is provided using the battery

variable, and the eclipse variable is a binary variable that
indicates whether the satellite is in eclipse. The last few states
deal with target access and which type of sensor the target shall
be imaged with to receive reward. The access variable is a binary
variable that indicates whether the satellite has access to the next
upcoming imaging target, and the sensor variable is a binary
variable that indicates which type of sensor the satellite shall
image the upcoming target with.

2.1.2 Action space
Like the state space, the action space is designed to fulfill the

science objectives and manage the resource constraints. Each action
represents a distinct spacecraft mode. Descriptions of each are
provided below.

1. Charge
• The satellite turns off its imager and transmitter and points its
solar panels at the Sun to charge the battery.

2. Desaturate
• The satellite turns off its imager and transmitter and points its
solar panels at the Sun. Reaction wheel momentum is mapped
to thrust commands, which are executed to remove
momentum from the wheels.

3. Image with sensor A
• The satellite turns on imager A, and points it in the nadir
direction. An image is taken when requirements are met.

4. Image with sensor B
• The satellite turns on imager B, and points it in the nadir
direction. An image is taken when requirements are met.

In the imaging mode, the satellite uses an MRP feedback control
law and its reaction wheels to point the instrument in the nadir
direction and collect an image of the target when the satellite meets
the elevation requirement of 60°. Unlike the agile EOS scheduling
problem, the spacecraft does not point its instrument directly at the
ground target in the multi-sensor EOS scheduling problem.
However, the spacecraft must use the correct sensor type to
collect an image.

2.1.3 Reward function
A piecewise reward function is developed to mathematically

formalize the objectives of the multi-sensor EOS scheduling
problem. The first condition checked for is failure. Failure is true
only if the reaction wheels exceed their maximum speed or if the
batteries are empty. If failure does not occur, the imaging mode is
checked next. If the satellite images the next upcoming target with the
correct sensor type, a small reward bonus is returned. This reward
bonus is equal to one 1 divided by the product of the total number of
targets (50 for the multi-sensor EOS problem) and the summation of
1 and the square of the attitude error. The component due to imaging
has a maximum reward of 1, which assumes the satellite images every
target with the correct sensor type and zero attitude error.

R si, ai, si+1( ) �
−1 if failure

1
|T| 1 + ϵ2att( ) if elsc > elmin and ai is preferred

0 otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4)
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2.1.4 Gymnasium environment
The generative transition function si+1, ri ~ G (si, ai) is modeled

using a high-fidelity astrodynamics simulation framework, Basilisk2

(Kenneally et al., 2020). Basilisk implements simulation and flight
software code in C/C++, but provides a Python interface for
scripting. The Basilisk simulation is wrapped within a
Gymnasium3 environment, which provides a standard interface
that allows reinforcement learning libraries to interact with the
simulation. The agent passes actions to the Gymnasium
environment, which turns certain Basilisk modules on or off. The
simulation is integrated forwards in time for 6 minutes at a 1-s
integration time step. The environment constructs the observation
and reward, which is returned to the decision-making agent. This
process is demonstrated in Figure 2. For the multi-sensor EOS
scheduling problem, Basilisk simulates a satellite in low Earth orbit
complete with an attitude control system and power system.

Depending on the action taken, a new reference frame for attitude
pointing is set. The attitude control systemutilizes amodified Rodriguez
parameter (MRP) feedback control law for pointing, sending torque
commands to the reaction wheels, which align the spacecraft attitude
with the desired reference. This feedback control law is active regardless
of the satellite mode taken, but the attitude reference changes.
Desaturation is performed by mapping the wheel momentum to
thruster on-time commands.

A power system is also modeled in Basilisk. A battery is used to
store the power generated by solar panels, which generate power
based on the efficiency of the panels and incidence angle of the Sun.
Several power sinks are also modeled, such as the instruments and
the reaction wheels. These all consume power stored within the
battery.

2.2 Agile EOS scheduling problem

In the agile EOS scheduling problem, a satellite with three-axis
attitude control capabilities attempts to image ground targets with a
single imaging sensor and downlink them to ground stations located
on the surface of the Earth. The set of all imaging targets is referred
to as T, and a subset of T that contains the next J upcoming,

unimaged targets is referred to as U. Each target within U is referred
to as cj. This set is defined with Eq. 5, where D is the set of imaged or
passed targets.

U � cj ∈ T −D( ) | ∀ j ∈ 0, J[ ){ } (5)

At each decision-making interval, the satellite only considers the targets
in the subset U for imaging. This is done to reduce the size of the action
space to somenumber of upcoming targets that are available for imaging,
not the entire global set T. For this work, |U| = J = 3 and |T| = 135. Past
work has shown that increasing the size of U past three targets only
results in marginal performance improvements for this target density
(Herrmann and Schaub, 2023a).

The satellite has a data buffer in which the collected images are
stored. The data buffer has a maximum capacity, and the satellite must
downlink the collected images to various ground stations on the surface
of the Earth to avoid overfilling the data buffer. The satellite has a power
system with a battery, solar panels, and various power sinks such as the
imager, transmitter, and reaction wheels. The reaction wheels have a
maximum speed constraint, and thrusters on board the satellite are used
to remove momentum from the thrusters.

2.2.1 State space
The state space for the multi-sensor EOS scheduling problem is

defined as:

S � Ssat × Sground stations × Stargets, (6)
where state space of the satellite is defined as:

Ssat � Spos × Svel × Satt × Swheels × Spower × Sbuffer × Seclipse. (7)
The state returned to the decision-making agent at decision

interval i is defined as si ∈ S:

si � Er, Ev, Hr1, p1, / , Hrj, pj, ‖σB/R‖, ‖BωB/N ‖, Ω,(
battery, buffer, downlinked, eclipse). (8)

The Earth-centered, Earth-fixed reference frame is denoted with E,
the spacecraft Hill frame is denoted with H, and the spacecraft body
frame is denotedwithB. The position and velocity of the satellite provide
the geometric information relevant to the access to the ground stations,
which are fixed in the ECEF frame. The position of the ground targets in
the Hill frame, Hrj, and their associated priorities, pj, provide the
necessary information regarding the upcoming targets. The attitude
of the satellite is represented with σB/R, and the angular velocity of the
satellite is represented with BωB/N . The reaction wheel speeds are
represented withΩ. The battery state, data buffer state, and downlinked
state are represented with the variables battery, buffer, and downlinked,
respectively. The battery and buffer variables are the percent fill of each
resource. The downlinked state represents how much data was
downlinked over the last decision-making interval. The eclipse state
is represented with the binary eclipse variable, which is 1 if the satellite is
in eclipse and 0 otherwise. Note that each state is feature engineered such
that they are approximately in the range of [-1, 1]. This is done to
improve the learning performance of the agent.

2.2.2 Action space
Like the state, the actions are designed to fulfill the science

objectives and manage the resource constraints. Each action

FIGURE 2
Agent-environment interface.

2 https://hanspeterschaub.info/basilisk

3 https://gymnasium.farama.org/
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represents a distinct spacecraft mode. Descriptions of each are
provided below.

1. Charge
• The satellite turns off its imager and transmitter and points its
solar panels at the Sun to charge the battery.

2. Desaturate
• The satellite turns off its imager and transmitter and points its
solar panels at the Sun. Reaction wheel momentum is mapped
to thrust commands, which are executed to remove
momentum from the wheels.

3. Downlink
• The satellite turns off its imager and turns on the transmitter.
Data is downlinked to ground stations as they come into view
of the satellite.

4. Image target c0 ∈ U
..
.

6. Image target c2 ∈ U
• The satellite turns of its transmitter and turns on the imager.
The satellite points the imager at the associated ground target
and takes an image when requirements are met. The image is
saved in the data buffer.

2.2.3 Reward function
A piecewise reward function is developed based on the objectives

of the agile EOS scheduling problem. This reward function is
provided in Eq. 9. The first condition checked for is failure,
which is true if the satellite overfills the data buffer, exceeds the
maximum reaction wheel speeds, or empties the battery. If a failure
does not occur and a downlink mode is initiated, the ground targets
in T are looped through to check if they were downlinked for the first
time or not. Each target is checked using the downlinked indicator,
dj, input into the function in Eq. 10, which returns one over the
target priority if the target was not downlinked at decision-making
interval i and was downlinked at decision-making interval i + 1. For
each target downlinked for the first time, one divided by the priority
of the target and the number of decision-making intervals is
returned. This component is formulated such that the maximum
reward from downlink is 1. If failure is not true and the imaging
mode is initiated, that target is checked to determine if it was imaged
for the first time or not. If so, 0.1 divided by the target priority and
number of decision-making intervals is returned. This component is
formulated such that the total possible reward from imaging is 0.1.
Finally, if none of these conditions are true, 0 reward is returned.

R si, ai, si+1( ) �

−1 if failure
1
|I|∑|T|

j
H dj( ) if ¬ failure ∧ ai is downlink

0.1
|I| H wj( ) if ¬ failure ∧ ai is image cj

0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(9)

H xj( ) � 1/pj( ) if ¬ xji ∧ xji+1 (10)

2.2.4 Gymnasium environment
The generative transition function for the agile EOS

scheduling problem is also modeled using a Basilisk

Gymnasium environment. The simulator is more complicated
than that of the multi-sensor EOS scheduling problem. An
attitude control system, power system, and data storage
system are modeled. The imager takes an image once the
attitude reference is below the desired threshold and target
access constraints are met. The attitude error threshold is
ϵatt = 0.1 rad and the target access elevation constraint is 45°.
This image is stored in a simulated data buffer. The images
contained within the data buffer are downlinked to simulated
ground stations if the transmitter is active and access
requirements are met (a minimum elevation of 10°). The
physical ground station locations are modeled in Basilisk, and
the access is computed according to the location of the spacecraft
and ground station in question. Power sinks are added to the
power system for the transmitter.

3 Methods

Deep reinforcement learning aims to solve reinforcement
learning problems by learning a parameterized policy πθ(a|s),
a parameterized value function Vθ(s), or a parameterized state-
action value function Qθ(s, a) (Sutton and Barto, 2018). The
policy is a probability distribution over actions conditioned on
the state. The value function associated with a policy is the
expected return from a given state following that policy. The
optimal value function, i.e., the value function associated with the
optimal policy, can be defined recursively using the Bellman
optimality equation:

V* s( ) � max
a

∑
si+1∈S

T si+1|si, a( ) R si, a( ) + γV* si+1( )[ ] (11)

The optimal state-action value function is the expected return
from taking an action in a state following the optimal policy. Like the
optimal value function, the optimal state-action value function can
be defined recursively using the Bellman optimality equation:

Q* s, a( ) � ∑
si+1∈S

T si+1|si, a( )[R si, a( ) + γmax
ai+1

Q* si+1, ai+1( )] (12)

Deep reinforcement learning attempts to learn either the
optimal policy, value function, or state-action value function
using an artificial neural network. A dataset of state transitions is
collected by interacting with the environment, and the parameters of
the neural network are updated to minimize some loss function,
which is dependent on the DRL algorithm used.

3.1 Deep q-networks

One of the first deep reinforcement learning algorithms is deep
Q-learning, which learns a parameterized state-action value function
Qθ(s, a) referred to as a deep Q-network (DQN) (Mnih et al., 2015).
To stabilize the performance of deep Q-learning by removing
correlations in observation sequences, an experience replay buffer
D is used to store previous state transitions. A target network
Q̂θ−(s, a) is also used to compute the target value for the loss
function, which also stabilizes performance by ensuring the
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policy does not change too quickly and decorrelates the target values.
The weights and biases θ− are updated periodically to match those of
Qθ(s, a).

The full algorithm for deepQ-learning is provided inAlgorithm 1.
The algorithm in Reference (Mnih et al., 2015) is modified slightly
here to allow forM actors in parallel to interact with the environment,
which is common in practice. The version of DQN utilized within this
work is provided using the stable-baselines34 (SB3) Python package.
The code that benchmarks the SB3 version of DQN for each EOS
scheduling problem is provided in bsk_rl. The algorithm begins by
initializing the replay buffer, state-action value function, and a target
state-action value function. Then, for each iteration, each actor
interacts with the environment by selecting an action following an
epsilon-greedy policy and storing the transition in the replay buffer for
the set of decision-making intervals I. |I| refers to the maximum
number of decision-making intervals. After each step, a gradient
descent step is performed on the value function using minibatches
sampled from the replay buffer. The target network is updated
periodically to match the value function. In the parallel
implementation, each actor steps forward once at the same time
and the gradient descent step is performed after all agents have
stepped forward.

1: Initialize replay buffer D

2: Initialize state-action value function Qθ(s, a)

with random weights and biases θ

3: Initialize target state-action value function

Q̂θ− (s,a) with weights and biases θ− = θ

4: for iteration 1: N

5: for i = 1: |I|

6: for actor 1: M

7: ai = arg maxaQθ(si, a) with probability 1 − ϵ,
otherwise select random action

8: si+1, ri ~ G (si, ai)

9: Store transition (si, ai, ri, si+1) in D

10: Sample random minibatch of transitions (sj, aj,

rj, sj+1) from D

11: yj � rj ifsj+1 isterminal
rj + γmaxa′Q̂θ− (sj+1,a′) otherwise

{
12: Perform gradient descent step on (yj − Qθ(sj ,aj))2

wrt θ

13: Periodically reset Q̂θ− � Qθ

Algorithm 1. Deep Q-learning.

3.2 A2C

Policy gradient algorithms use the policy gradient theorem
to compute the gradient of the expected return with respect to
the policy parameters θ without knowing how changes to the
policy affects the state distributions (Sutton and Barto, 2018).
The policy gradient theorem provides an expression for the

gradient of performance with respect to the policy parameters
and is given by:

∇θJ θ( ) � ∑
s

μ s( )∑
a

∇θπθ a|s( )Qπθ s, a( ), (13)

where μ(s) is a weighting over the state space denoting the
probability of being in state s under the policy πθ(a|s) and
Qπθ(s, a) is the state-action value function for the policy πθ(a|s).

Actor-critic methods use a learned value function Vθ(s) to
perform the policy update, which provides both a baseline to
reduce variance in the policy update and a critic to assess the
subsequent return of an action. It is for this reason that the
actor-critic methods are called actor-critic methods, as they use
both an actor (policy) and a critic (value function). The advantage
actor-critic (A2C) algorithm is provided in Algorithm 2. This
algorithm is similar to the asynchronous advantage actor-critic
(A3C) algorithm (Mnih et al., 2016). The A3C algorithm uses
multiple actors to collect experience and update the policy and
value function asynchronously. A2C does this synchronously. The
version of A2C utilized within this work is provided using the stable-
baselines35 (SB3) Python package.

1: Initialize policy πθ(s) and value function Vθv(s)
with parameters θ and θv

2: for iteration 1: N

3: for actor 1: M

4: for i = 1: |I|

5: ai ~ πθ(ai|si)

6: si+1, ri ~ G (si, ai)

7: Store si, ai, ri
8: if si+1 is terminal

9: break

10: R � 0 ifsi+1 is terminal
Vθv(si+1) otherwise

{
11: for j = |I|: 1

12: R = rj + γR

13: Compute advantage estimate Âj � R − Vθv(sj)
14: Accumulate gradients wrt

θ: dθ ← dθ + ∇θ logπθ(aj|sj)Âj

15: Accumulate gradients wrt θv: dθv ← dθv + ∇θv Â
2
j

16: Perform gradient ascent step on θ and θv using dθ

and dθv

Algorithm 2. Advantage actor-critic algorithm.

3.3 Proximal policy optimization

While DQN, A2C, and many other methods have advanced the
state-of-the-art of reinforcement learning and demonstrated
excellent performance on a number of tasks, they are not without
their issues. None of these methods are particularly data efficient as
each sample is used only once for training (except for the case where
a given sample is used more than once in the DQN replay buffer).

4 https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html 5 https://stable-baselines3.readthedocs.io/en/master/modules/a2c.html
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Furthermore, these algorithms are not particularly robust or stable,
requiring careful hyperparameter tuning for each task.

Proximal policy optimization (PPO) is a reinforcement learning
algorithm that addresses these issues (Schulman et al., 2017). To
improve sample efficiency, PPO trains on the sampled data for
multiple epochs. To improve stability, PPO uses a clipped objective
function that ensures the size of the policy update is not too large.
The loss function for PPO is provided by:

LCLIP+VF+S
i θ( ) � Êi L

CLIP
i θ( ) − c1L

VF
i θ( ) + c2S πθ[ ] si( )[ ], (14)

where

LCLIP
i θ( ) � Êi min ri θ( )Âi, clip ri θ( ), 1 − ϵ, 1 + ϵ( )Âi( )[ ] (15)

LVF
i θ( ) � Êi Vθ si( ) − V( )2[ ], (16)

and S [πθ] is an entropy bonus and ri(θ) is the probability ratio:

ri θ( ) � πθ ai|si( )
πθ− ai|si( ) (17)

θ− represents the parameters of the policy before the update.
The algorithm for PPO is provided in Algorithm 3. Here we

assume that the parameters for the policy and value function are
shared. The version of proximal policy optimization utilized
within this work is provided using the stable-baselines36 (SB3)
Python package. A custom policy is implemented to allow for the
integration of the safety shield and more specific network
hyperparameter tuning that is not supported by SB3’s vanilla
PPO implementation.

1: Initialize policy πθ(s) and value function Vθ(s)

with parameters θ

2: Initialize policy πθ− (s) and value function Vθ− (s)
with parameters θ−

3: for iteration 1: N

4: for actor 1: M

5: for i = 1: |I|

6: ai ~ πθ− (ai|si)
7: si+1, ri ~ G (si, ai)

8: Store si, ai, ri
9: compute advantage estimates Â1/Â|I|
10: optimize L(θ) wrt θ, with K epochs and batch

size ≤ |I|
11: θ− ←θ

Algorithm 3. Proximal policy optimization algorithm.

3.4 Shielded PPO

3.4.1 Overview
While PPO is a robust and stable algorithm capable of

computing high performing policies for a number of RL
problems, PPO does not guarantee that unsafe actions will not
be taken and that resource constraint violations will not occur. In
fact, none of the aforementioned DRL algorithms do. Shielded

deep reinforcement learning offers a solution to this problem by
using a linear temporal logic specification to monitor the MDP
state and the actions output by the policy, overriding unsafe
actions if they violate the specification (Alshiekh et al., 2018).
Harris and Schaub utilize a safety shield within PPO, which is
shown to improve the speed of convergence and guarantee that
resource constraint violations do not occur. This algorithm is
referred to as SPPO (Harris, 2021; Harris et al., 2021). A
diagram of the safety shield augmented agent-environment
interface is provided in Figure 3.

3.4.2 Multi-sensor EOS shield
To create the shield, a safety MDP is derived as described by

Harris and Schaub (Harris, 2021; Harris et al., 2021). The safety
MDP discretizes the state space to reduce dimensionality to several
safety states. The state space of the safety MDP is defined as
follows:

Ssafety � Stumbling × Ssaturated × Slow power (18)

The safety states take a Boolean value of 0 or 1 on whether the
relevant resource state variables are above or below a safety limit.
When the safety MDP achieves a nominal state (si = (0, 0, 0)),
meaning that any action can be safely taken, or if the safety MDP
indicates the satellite is tumbling only (si = (1, 0, 0)), the action from
PPO is passed through. However, if the safety MDP is in any other
safety state, the action from PPO is overridden with a safe action.
The safety states are defined as follows:

stumbling � ‖BωB/N ‖≥ 1e − 2 rad/s (19)
ssaturated � ‖Ω‖/Ωmax ≥ 0.8 (20)

slow power � battery/max storage≤ 0.2 (21)

To ensure the safe action is taken, a policy is generated for the
safety MDP that guarantees a resource constraint failure does not
occur if the safe action is taken. The MDP safety limits and policy
actions are both hand tuned and benchmarked to ensure no failures
occur. The policy is provided in Table 1.

3.4.3 Agile EOS shield
A shield policy is developed for the agile EOS scheduling

problem following the same methodology. The key difference in
the agile EOS scheduling problem is the addition of the data buffer

FIGURE 3
Shielded agent-environment interface.

6 https://stable-baselines3.readthedocs.io/en/master/modules/ppo.html
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resource, which is now reflected in the safety MDP. The state space
of the safety MDP is defined as follows:

Ssafety � Stumbling × Ssaturated × Slow power × Sbuffer overflow (22)
The safety states are defined as follows:

stumbling � ‖BωB/N ‖≥ 1e − 2 rad/s (23)
ssaturated � ‖Ω‖/Ωmax ≥ 0.6 (24)

slow power � battery/max storage≤ 0.25 (25)
sbuffer overflow � buffer/max storage≥ 0.95 (26)

Some of the safety limits that are present for both the multi-
sensor EOS and agile EOS scheduling problems are different,
which is due to slightly different simulation parameters in the
Agile EOS scheduling problem. The policy is provided in
Table 2, and is identical to the one developed by Herrmann
and Schaub in Reference (Herrmann and Schaub, 2020).

3.5 MCTS-train

MCTS-Train is a reinforcement learning training pipeline
inspired by AlphaGo Zero (Silver et al., 2017). Instead of using an
artificial neural network to conduct or replace rollouts in MCTS,
MCTS-Train uses a high quality rollout policy within MCTS to
generate good estimates of the state-action value function, which
are regressed over to produce Qθ(s, a). The full algorithm for
MCTS-train may be found in Algorithm 4. MCTS-Train first
generates a training data set of state-action value estimates,
Q̂(s, a), by solving the EOS scheduling problem for hundreds
or thousands of unique initial conditions using Monte Carlo Tree
Search (Kochenderfer, 2015). For each unique initial condition,
MCTS builds a search tree by simulating hundreds of interactions
with the environment. A state-action value estimate is
maintained as MCTS steps through the environment, which is
exploited to select the next best action after a pre-determined
number of simulations have been executed. MCTS also utilizes a
rollout policy to help it find promising areas to search while
building the search tree. The shielded policies presented in Tables
1 and 2 are used as the rollout policies for the multi-sensor EOS
and agile EOS scheduling problems, respectively. However, when
the safety MDP achieves one of the nominal states, an imaging or
downlink mode is initiated instead, depending on the problem.

1: Initialize set of training data, Q

2: for iteration 1: N

3: for iteration 1: |I|

4: ai = MCTS.selectAction (si)

5: si+1, ri ~ G (si, ai)

6: Add Q̂(si ,ai) from MCTS to Q

7: Initialize set of hyperparameters

8: Initialize empty set of networks, Qθ
9: for hp ∈ hyperparameters

10: initialize Qθ with hp

11: Qθ.train (hp)

12: Qθ ∪ {Qθ}

13: for Qθ ∈ Qθ

14: reward_sum = 0

15: for iteration 1: |I|

16: ai � argmaxai Qθ(si, ai)

17: si+1, ri ~ G (si, ai)

18: reward_sum + = ri
19: Save performance metrics

Algorithm 4. MCTS-Train algorithm.

After the training data is generated, supervised learning is
applied over the training data set to generate a neural network
approximation of the state-action value function, Qθ(s, a).
Hyperparameters that relate to the activation function, width and
depth of the network, learning rate, number of training epochs, etc.,
can be input into the algorithm to produce a number of neural
networks. In this work, mean squared error is used for the loss
function,

L θ( ) � 1
|Q| ∑si∈Q Qθ si, ai( ) − Q̂ si, ai( )( )2, (27)

TABLE 1 Multi-Sensor EOS shield policy.

stumbling ssaturated slow power Action

1 1 1 Desat

1 1 0 Charge

1 0 1 Charge

1 0 0 –

0 1 1 Desat

0 1 0 Desat

0 0 1 Charge

0 0 0 –

TABLE 2 Agile EOS shield policy.

stumbling ssaturated slow power sbuffer overflow Action

1 1 1 1 Charge

1 1 1 0 Charge

1 1 0 1 Desat

1 1 0 0 Desat

1 0 1 1 Charge

1 0 1 0 Charge

1 0 0 1 Downlink

1 0 0 0 –

0 1 1 1 Desat

0 1 1 0 Desat

0 1 0 1 Desat

0 1 0 0 Desat

0 0 1 1 Charge

0 0 1 0 Charge

0 0 0 1 Downlink

0 0 0 0 –
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and the Adam optimizer is selected as the optimization algorithm to
update the weights of the network(s). After the neural networks are
trained, they are validated in the environment using the policy in Eq.
28. Each neural network is executed on the same set of 100 initial
conditions and performance metrics are gathered.

π s( ) � argmax
a

Qθ s, a( ) (28)

3.6 Genetic algorithm

The final method implemented in this work is the genetic algorithm
(GA). The purpose of the GA is to create a benchmark solution to
compare the reinforcement solutions against. GAs can be used to
schedule spacecraft tasks in an offline manner, but are too slow for
on-board implementation, especially if a complex simulator is used. The
genetic algorithm is not a reinforcement learning algorithm, but a meta-
heuristic optimization algorithm that can be applied to the EOS
scheduling problem. It is not guaranteed to solve for the globally
optimal solution, but in practice can be tuned to produce good
performance. The genetic algorithm is inspired by the biological
processes of evolution and natural selection. The genetic algorithm
begins by initializing a population of individuals, each of which is a
sequence of actions for the EOS scheduling problem. Each individual is
evaluated using a fitness function, which is simply the reward function of
the corresponding EOS scheduling problem. The population of
individuals then mates, and then their offspring are mutated. The
offspring are then added to the overall population, and a selection
operator is applied to select the best individuals within the population.
This process repeats for a specified number of generations. Due to the
nondeterministic nature of the genetic algorithm, the population size and
number of generations must be sized ensure that a good sample of initial
individuals is created and that these individuals have enough generations
to mate and mutate into good solutions. The pseudocode for the genetic
algorithm is provided in Algorithm 5.

1: Initialize population

2: Evaluate fitness of each individual in population

3: for generation 1: N

4: Generate offspring by mating and mutating

population

5: Evaluate offspring

6: Add offspring to population

7: Perform selection on population and offspring

Algorithm 5. Genetic algorithm.

The DEAP evolutionary computational framework is used to
implement the genetic algorithm7. The DEAP framework has a
number of pre-defined operators for selection, mating, and
mutation. A one point crossover with a probability of 0.25 is used
for mating. The selection operator utilized is the selection tournament
in which the best individual from three individuals is returned. The
population mates using a one point crossover operator, and the

population mutates using a uniform mutation operator where each
sequence has a 0.25 probability of mutating, and each attribute of a
mutating sequence has a 0.3 probability of mutating.

3.7 Basilisk reinforcement learning package

The environments, algorithms (i.e., MCTS-Train, rollout policies,
and shields), and algorithm interfaces (i.e., the scripts that setup and run
SB3 andDEAP algorithms) are all provided in the bsk_rl Python library8.
The environments are all contained within the env/ directory. Each
environment includes a Gymnasium interface file and a Basilisk
simulation file. The Gymnasium interface sends actions to the
Basilisk simulation, which turns on or off certain models and tasks.
Implementations ofMCTS, the genetic algorithm, and the rollout policies
are provided within the agents/ directory. Furthermore, the training/
directory includes the scripts that interface with the Stable-Baseline3
package to train PPO, SPPO, A2C, and DQN agents. Various examples
for each algorithm are contained within the examples/ directory, which
others may use as a starting point to implement and compare their own
reinforcement learning algorithms and spacecraft scheduling problems.
Finally, the utilities/ directory contains various utility functions that are
used throughout the library. Authors wishing to make contributions to
the bsk_rl library are encouraged to do so, and issues can be made
directly in the GitHub repository.

4 Results

In this section, each reinforcement learning algorithm is
benchmarked in each environment and compared to one another
on the basis of performance, performance variance, and wall clock
time. First, the hyperparameters of bothMonte Carlo tree search and
the genetic algorithm are tuned to ensure each of the algorithms are
performing well given the available computing power. These results
can also provide baseline performance metrics for the reinforcement
learning algorithms.

Past work tunes the hyperparameters regarding the activation
function, number of training epochs, learning rate, batch size,
dropout, loss function, and optimizer for the supervised learning
portion of MCTS-Train (Herrmann and Schaub, 2021; Herrmann
and Schaub, 2023a). The optimized hyperparameters are fixed in
each MCTS-Train experiment and are summarized in Table 3. The
Leaky ReLU activation function is used for each hidden layer. The
activation function is defined as follows:

Leaky ReLU x( ) � x if x≥ 0
αx otherwise

{ (29)

Each network is trained for a maximum of 10,000 epochs with a
batch size of 45,000 to ensure stable convergence. The Adam
optimizer with an initial learning rate of 1e-3 is utilized. The
mean squared error loss function is used to train each network.
Furthermore, a small amount of dropout is added to each hidden
layer to help prevent overfitting. The probability of dropout is 0.01.

7 https://deap.readthedocs.io/en/master/index.html 8 https://github.com/AVSLab/bsk_rl
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The hyperparameters of each SB3 algorithm (PPO, SPPO,
A2C, and DQN) are tuned using a two-step process. In the first
step, parameters such as the batch size, number of steps before an
update, number of training epochs, etc., are optimized for a
network with 4 hidden layers and 20 nodes per hidden layer.
The parameters are optimized for relatively small networks
because larger networks have a tendency to be quite forgiving
for some algorithms. The optimized hyperparameters are provided
in Table 4. For PPO and SPPO, a search is performed over the
batch size and number of training epochs, as these parameters
produce the largest changes in performance. Performance is most
dependent on the number of epochs (the number of times that each
data point is regressed over with the policy). More epochs typically
result in better performance, but this comes at a computational
cost. All other parameters are kept as the default parameters for
both PPO and SPPO. For A2C, a search is performed over the
learning rate and the number of steps before an update. Smaller
learning rates are preferred because larger learning rates result in
unstable performance. Furthermore, a smaller number of steps
before an update is also preferred. This is somewhat of a proxy for
PPO’s number of training epochs and the batch size. A smaller
number of steps before update means a smaller batch size andmore
opportunities to update the policy. For DQN, the batch size and
buffer size are tuned. These parameters are constant among each
problem. Each algorithm utilizes the Leaky ReLU activation
function with the same α parameter in Table 3. However, no
dropout is utilized for these algorithms. In the second step, these
optimized hyperparameters are deployed in a search over the
number of hidden layers and the number of nodes per hidden
layer. For PPO and shielded PPO, only one policy is trained for
each hyperparameter combination because the algorithms are
relatively stable. For A2C and DQN, five policies are trained
and evaluated because the performance of the algorithms can
vary widely between different seeds.

After the benchmarks are presented over the number of
hidden layers and nodes for MCTS-Train and the
SB3 algorithms, the optimized hyperparameters are selected
for each algorithm and the algorithms are benchmarked once
more. Five trials of training are performed for each algorithm.
The training curves with variance between trials are evaluated to
determine how quickly each algorithm converges and how much
the algorithms can vary in performance between seeds.

4.1 MCTS hyperparameter searches

Before MCTS can be used to generate training data, the
hyperparameters of MCTS must be tuned. The two tunable
hyperparameters of MCTS are the number of simulations-
per-step and the exploration constant. The number of
simulations-per-step is the number of simulations MCTS runs
per step through the environment. The more simulations-per-
step, the better the state-action value estimate. The exploration
constant is used to scale the exploration term in MCTS, which is
the square root of the log of the number of times a state has been
visited divided by the number of times the state-action pair has
been visited. The exploration constant is used to balance
exploration and exploitation. The higher the exploration
constant, the more exploration is favored.

For each EOS scheduling problem, each combination of [5, 10,
20, 40, 80] simulations-per-step and [0.1, 0.5, 1, 2, 4] exploration
constant are deployed for 30 trials. The results of the
hyperparameter search are shown in Figure 4, where the solid
line represents the average reward across the 30 trials and the
transparent highlighting represents the 95% confidence intervals.
For each EOS scheduling problem, higher exploration constants
result in higher rewards. The number of simulations-per-step also
has a significant effect on performance, but after a certain number
there are depreciating returns for adding more simulations. This is
especially true for the multi-sensor EOS scheduling problem with
45 decision-making intervals and the agile EOS scheduling problem,
which also has 45 decision-making intervals. Simulations beyond
20 or so simulations-per-steps adds little improvement. For the
multi-sensor EOS scheduling problem with 90 decision-making
intervals, this is not necessarily true. The large confidence
interval bounds and spread between the exploration constants
suggests that even more simulations-per-step could be beneficial.
However, the computational cost of running MCTS increases
linearly with the number of simulations-per-step, so additional
steps are not added.

The results in Figure 4 also provide an indication for the
performance that can be expected from the RL algorithms. The
multi-sensor EOS scheduling problem with 45 decision-making
intervals appears to have a maximum reward between 0.7–0.75.
The multi-sensor EOS scheduling problem with 90 decision-making
intervals appears to have a maximum reward between 0.6–0.7. The
same is true for the agile EOS scheduling problem.

4.2 Genetic algorithm hyperparameter
searches

The genetic algorithm is implemented for each EOS scheduling
problem and benchmarked for various population sizes and
generations to ensure the GA is correctly parameterized. A large
enough population size is required to increase the probability to
genetic algorithm will start with decent individuals that can then be
evolved over many generations to produce better offspring. These
hyperparameter searches are presented alongside the benchmarks of
the RL algorithms in Figures 6F, 7F, 8F, and discussed in relation to
the RL benchmarks in the corresponding sections. In comparison to
the MCTS benchmarks in Figure 4, the GA is able to match the

TABLE 3 Optimized hyperparameters for MCTS-Train.

Hyperparameter Value

Activation Function Leaky ReLU

α 0.1

Number of Training Epochs 1e4

Learning Rate 1e-3

Batch Size 4.5e4

Loss Function Mean Squared Error

Optimizer Adam

Dropout 0.01
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TABLE 4 Optimized hyperparameters for SB3 algorithms.

Multi-sensor EOS, |I| = 45 Multi-sensor EOS, |I| = 90 Agile EOS

PPO Batch size 2070 4140 4140

Epochs 50 50 100

LR 3e-4 3e-4 3e-4

SPPO Batch size 2070 1040 2070

Epochs 50 50 100

LR 3e-4 3e-4 3e-4

DQN Batch size 2070 2070 2070

Buffer size 5e4 5e4 5e4

LR 1e-4 1e-4 1e-4

A2C Steps before update 22 45 11

LR 7e-3 7e-3 3e-4

FIGURE 4
MCTS hyperparameter search results: average reward with 95% confidence intervals. (A): Multi-sensor EOS scheduling problem with 45 decision-
making intervals. (B): Multi-sensor EOS scheduling problem with 90 decision-making intervals. (D): Agile EOS scheduling problem.
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performance for the multi-sensor EOS scheduling problem. The GA
performs slightly worse than MCTS for the agile EOS scheduling
problem for the number of generations and population sizes
explored. More computation could close the performance gap,
but at a computational cost. These results highlight some of the
pitfalls of using a genetic algorithm for EOS scheduling. The
algorithm is not guaranteed to find a globally optimal solution,
and its stochastic nature necessitates a large population size and
number of generations to ensure a good solution is found.

An example convergence curve for the genetic algorithm is
provided in Figure 5. In this curve, a genetic algorithm with a
population size of 400 is run for 400 generations on the agile EOS
scheduling problem. The genetic algorithm converges to a good
solution in the first 50 generations, largely due to the large
population size. The genetic algorithm then continues to improve
the solution over the next 350 generations, but the improvement is
marginal.

4.3 Multi-sensor EOS benchmarks

Each algorithm described in Section 3 is benchmarked for two
versions of the multi-sensor EOS scheduling problem, one with
45 decision-making intervals (|I| = 45) and one with 90 decision-
making intervals (|I| = 90). In the former case, there are 25 total
targets in the set T. In the latter case, there are 50 total targets in the
set T. Multiple decision-making intervals are evaluated to determine
the effect on the trained policies for each algorithm.

4.3.1 45 decision-making intervals
The results for the hyperparameter searches of each algorithm

are presented in Figure 6. MCTS-Train is benchmarked for networks
with [1, 2, 4] hidden layers and [10, 20, 40, 80, 160, 320, 640] nodes
per hidden layer. The SB3 algorithms (PPO, SPPO, A2C, and DQN)
are benchmarked for networks with [1, 2, 4] hidden layers and [10,
20, 40, 80, 160] nodes per hidden layer because performance does
not tend to improve outside of these more limited parameters.
Conversely, MCTS-Train sometimes benefits from few hidden
layers but many nodes per hidden layer. Finally, the GA is

benchmarked for [100, 200, 400] generations and population
sizes of [100, 200, 400]. This range of parameters is sufficient to
provide a good benchmark.

After each policy is trained for MCTS-Train and the
SB3 algorithms, the performance of each is evaluated in the
environment with approximately 150 trials. The genetic
algorithm hyperparameter search is performed with only 20 trials
for each hyperparameter combination. In this case, the genetic
algorithm provides the upper bound on performance at around
0.8 average reward across all numbers of generations and population
size. Each of the other algorithms is able to compute policies that are
close to this upper bound. PPO is shown to be extremely stable over
the entire range of network size hyperparameters selected and
produces the best performance of all the RL algorithms across
the board. Shielded PPO is shown to be slightly less stable and
performant than PPO, but produces a policy that is close to the
upper bound that never violates the resource constraints due to the
shield. PPO itself is not guaranteed to never produce resource
constraint violations, but it is easier for the algorithm to find
high-performing policies. MCTS-Train, DQN, and A2C are
typically able to produce good performing policies, but are
shown to be less stable than PPO and shielded PPO.
Furthermore, MCTS-Train requires much larger network sizes to
produce high performing policies. The maximum number of nodes
evaluated for MCTS-Train is 640, compared to just 160 from the
other algorithms. At face value, this study would indicate that PPO is
marginally better than the other RL algorithms. However, the
number of decision-making intervals utilized in this experiment
is relatively small.

4.3.2 90 Decision-making intervals
An identical experiment is performed for the multi-sensor EOS

scheduling problem with 90 decision-making intervals. This
experiment is performed to determine how the size of the search
space impacts performance. The hyperparameters swept over in this
experiment are the exact same as those in the previous experiment
for each algorithm. However, there are slight differences in the
hyperparameters regarding batch size, epochs, etc. The results of this
search are presented in Figure 7.

In this case, both the genetic algorithm and MCTS-Train are
capable of producing good performance, but in general struggle to
match the performance of the other algorithms. MCTS-Train is only
able to find one policy that achieves more than 0.5 average reward.
The reason for this is that both of these algorithms are searching
over the action space to find optimal policies. The total number of
possible trajectories through the environment is |A||I|. 90 decision-
making intervals results in vastly more possible trajectories, which
makes it more difficult for these algorithms to find good solutions.
This indicates that the genetic algorithm and MCTS-Train may not
be well suited if a long planning horizon is desired, i.e., training for a
full day or a full week of operations. PPO, SPPO, and A2C are shown
to be the most stable and performant algorithms. They are all able to
produce good performing policies as they are optimizing over the
state space instead. Furthermore, these are all policy gradient
algorithms, which might also help explain why they perform
better. DQN’s performance is more on par with the genetic
algorithm or the best case scenario for MCTS-Train, but is
certainly worse than the performance of DQN on the

FIGURE 5
Example convergence curve for the genetic algorithm.
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45 decision-making interval version of the multi-sensor EOS
scheduling problem. Regardless of the degradation in
performance, DQN is fairly stable over the selected
hyperparameters, which MCTS-Train is not. MCTS-Train is
likely unstable for this problem because MCTS has not properly
converged, as demonstrated by the large confidence intervals and
spreads between hyperparameters in Figure 4B. Again, this indicates
that MCTS-Train may not work well for long planning horizons.
PPO, SPPO, A2C, and DQN could all be trained on even longer
decision-making intervals without much increase in computational
complexity provided that the same number of steps are used for
each. However, DQN is likely not a good candidate as the number of
decision-making intervals increases, as evidenced by the reduction
in performance in the 90 decision-making interval version of the
multi-sensor EOS scheduling problem.

4.4 Agile EOS benchmarks

A final hyperparameter experiment is performed for the agile
EOS scheduling problem. The results are presented in Figure 8. The
same MCTS-Train and genetic algorithm hyperparameter
combinations used in the last two experiments are again used in
this one. However, the sizes of the neural networks for the
SB3 algorithms are increased to ensure a large enough search

space is explored. The SB3 algorithms are benchmarked for [1, 2,
4] hidden layers and [10, 20, 40, 80, 160, 320, 640] nodes per hidden
layer.

In this case, only MCTS-Train and the genetic algorithm are
able to produce high-performing policies. Each of the other
algorithms converges to some locally maximal policy. PPO,
SPPO, and A2C are shown to be the most stable, while DQN
is shown to have large instability and poor robustness for neural
networks with more than 160 nodes per hidden layer. The reason
for the relatively poor performance of the SB3 algorithms is likely
due to the fact that the agile EOS scheduling problem is more
complex than the multi-sensor EOS scheduling problem in terms
of resource management and science objectives. The agile EOS
scheduling problem has a more complex reward function, an
additional resource constraint, more sparse reward, and a larger
action space. MCTS-Train is able to leverage its high quality
rollout policy, which initially finds a safe trajectory of actions that
MCTS can improve upon. The state-action value estimates
produced by MCTS are closer to the optimal state-action
value function, which are then regressed over using the
artificial neural networks. While a similar shield is used within
shielded PPO, shielded PPO ultimately bounds the decision-
making agent’s actions to the safety states. MCTS, however,
allows the agent to explore actions that may violate these
safety limits with exceeding the limits used within the reward

FIGURE 6
Multi-sensor EOS scheduling problem, |I| = 45. The average reward for each hyperparameter combination is displayed for each algorithm. (A):
MCTS-Train. (B): PPO. (C): SPPO. (D): A2C. (E): DQN. (F): GA.
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function. When this difference in performance is compared to the
multi-sensor EOS scheduling problem results, it is evident that
MCTS-Train may be an excellent choice of algorithm as long as
the number of decision-making intervals is not too large. A key
question that remains, however, is how the EOS scheduling
problems formulated in this work translate to real-world EOS
scheduling problems with larger data buffers and less aggressive
momentum buildup. If the problems can be scaled such that only
45 decision-making intervals are required to sufficiently model
the problem, MCTS-Train may make an excellent choice of
algorithm due to its ability to handle many resource
constraints and complex science objectives.

4.5 Performance variance

To evaluate the consistency of each algorithm between
different training runs and network initializations, a
performance variance experiment is performed. For PPO,
SPPO, A2C, and DQN the best performing hyperparameters
in step one of the optimization process are deployed for five
trials of training, each with different initial random seeds. The
number of hidden layers is set to 4, and the number of nodes per
hidden layer is set to 20. The rest of the hyperparameters are

provided in Table 4. For MCTS-Train, the best-performing
network hyperparameter combination is selected for the five
trials. The genetic algorithm is not considered in this experiment
as the results from the GA are not generalized with a neural
network. The average reward curves with 1σ standard deviation
for each algorithm and each problem are plotted in Figure 9.
PPO and SPPO are shown to produce the smallest standard
deviation between policies and converge the quickest. This result
is not necessarily surprising, as Reference (Schulman et al., 2017)
touts PPO as being a reliable algorithm needing little
hyperparameter tuning. This claim is also backed up with the
hyperparameter searches presented within this work that find
that vanilla PPO is extremely stable across the range of
hyperparameters. SPPO is not as stable as PPO over the
entire range of hyperparameters, but is found to be very
stable when a good hyperparameter combination is selected.
This is likely due to the fact that it is more difficult to find a high-
performing policy that avoids the limits of the safety MDP. A
fundamental trade-off exists between resource utilization and
science collection. In contrast to the other algorithms, A2C and
DQN are shown to be more unstable both across the entire range
of hyperparameters and between different runs of the same
hyperparameters, particularly for < 1e4 episodes. As a result,
they take longer to converge. In fact, the maximum number of

FIGURE 7
Multi-sensor EOS scheduling problem, |I| = 90. Average reward for the selected hyperparameters of each algorithm. (A): MCTS-Train. (B): PPO. (C):
SPPO. (D): A2C. (E): DQN. (F): GA.
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episodes in Figure 9 is primarily driven by these two algorithms.
Finally, MCTS-Train is shown to have a very small variance
between the different network seeds for the same
hyperparameters. While MCTS-Train can be relatively
unstable across the entire range of hyperparameters, it is on
par with PPO and SPPO in terms of stability when optimized
hyperparameters are utilized. When examining the performance
variance of each algorithm in addition to the performance across
the hyperparameters presented in the last section, it is evident
that PPO, SPPO, and MCTS-Train should be among the top
candidates for solving EOS scheduling problems. However,
MCTS-Train should only be used in cases where the number
of decision-making intervals is reasonable (i.e., |I| ≤ 45).

4.6 Wall clock time

The wall clock times for each algorithm using the
hyperparameters in Section 4.5 are displayed in Figure 10.
The computational experiments resulting in these wall clock
times were performed on an AMD 3960X Threadripper CPU
with 64 GB of RAM and an NVIDIA 3070 graphics card. The
wall clock times in Figure 10A are for the total number of

episodes for each algorithm, and the wall clock times in
Figure 10B are capped at 10,000 episodes. MCTS-Train is the
most computationally expensive algorithm because of the
amount of data generated and the number of neural networks
produced during the training process. Furthermore, MCTS
requires that the Basilisk simulation is rewound by stepping
through the trajectory of past actions to create a new child node
during the simulation step. This results in a lot of wasted
computation. On average, half of the trajectory of executed
actions during tree generation are wasted. If Basilisk
simulations can be deep copied at the Python level in the
future, which could be made possible by moving away from
SWIG, then this computational performance could be drastically
improved (likely at the cost of increased RAM utilization). Until
this happens, MCTS-Train should only be used for complex
problems that other algorithms struggle to generate high-
performing policies for. PPO, A2C, and DQN are typically in
the same ballpark computationally, with the relative
performance dependent on the specific problem. In
comparison to MCTS-Train, they are single trajectory
algorithms that do not rely on building a search tree, so they
do not suffer from the need to rewind the simulation in the same
manner. SPPO is the least computationally expensive algorithm.

FIGURE 8
Agile EOS scheduling problem. Average reward for the selected hyperparameters of each algorithm. (A): MCTS-Train. (B): PPO. (C): SPPO. (D): A2C.
(E): DQN. (F): GA.

Frontiers in Space Technologies frontiersin.org16

Herrmann and Schaub 10.3389/frspt.2023.1263489

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2023.1263489


The reason for this is that SPPO guarantees that resource
constraint violations do not occur during execution. When a
resource constraint violation occurs for any of the

SB3 algorithms, the simulation is reset, meaning that an
entire new target set must be generated by executing a
Basilisk simulation and computing access times to construct

FIGURE 9
Average reward and 1σ standard deviation across 5 trials using the optimized hyperparameters for each algorithm. (A): Multi-sensor EOS, |I| = 45. (B):
Multi-sensor EOS, |I| = 90. (D): Agile EOS.

FIGURE 10
Wall clock times associated with each algorithm. Times are displayed for all episodes used in Figure 9 and for 10,000 episodes. (A): All episodes. (B):
10,000 episodes.
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the list of targets. This is an expensive procedure. Because the
SB3 algorithms are synchronous implementations, all of the
workers must wait until the reset environment is ready to
step through the environment again before they can begin
stepping again. As a result, overall CPU utilization decreases
and wall clock time increases. Therefore, future works may want
to consider using asynchronous implementations of these
algorithms. The risk of this is potentially giving up the
performance and stability of the SB3 implementations.

5 Conclusion

This paper investigates the performance of different
reinforcement learning algorithms applied to EOS scheduling.
PPO and SPPO demonstrate exceptional stability and
performance, swiftly converging to superior policies in various
experiments. While A2C and DQN generally yield high-
performing policies, they exhibit considerable variations for
different seeds using the same set of hyperparameters. MCTS-
Train excels in generating effective policies for the majority of
problems, yet faces challenges when dealing with long planning
horizons. Furthermore, MCTS-Train is the most
computationally expensive algorithm benchmarked. The
outcomes of this study offer valuable insights for choosing
reinforcement learning algorithms for spacecraft planning and
scheduling problems with resource constraints. PPO and SPPO
are the recommended algorithms for simple EOS scheduling
problems due to their performance and stability across
hyperparameters and training runs. MCTS-Train is
recommended if challenging EOS scheduling problems are
pursued, like the agile EOS scheduling problem in this work.
However, this will come at a high computational cost, especially if
the simulator cannot be saved off in memory and copied during
branching. Future work should investigate how the problems in
this work can be deployed in longer operational scenarios with
more realistic rates and limits for resource constraint
consumption. The algorithms and environments used within
this work may be found on the develop branch of the bsk_rl
library. We hope other authors will use this library to benchmark
their own algorithms and environments, expanding on these
comparisons to further the field of reinforcement learning for
spacecraft planning and scheduling in a more standardized way.
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