
Single-event upset simulation and
detection in configuration
memory

Hezekiah Austin1*, Chris Major1,2, Colter Barney1,
Justin Williams1, Zachary Becker1, Mackenzie Smith1 and
Brock LaMeres1,2

1Radiation Tolerant Computing Laboratory, Electrical and Computer Engineering Department, Montana
State University, Bozeman, MT, United States, 2Research and Development Department, Resilient
Computing, Bozeman, MT, United States

Single-event upsets (SEUs) from radiation strikes in configuration memory are
potentially catastrophic due to their widespread effects. For field-programmable
gate arrays (FPGAs), faults in configuration memory propagate into the
implemented logic design at the hardware interconnection level, leading to
unpredictable results. Two payloads consisting of a pair of quad modular
redundant (QMR) FPGA-based processor were deployed to the International
Space Station (ISS) for 13months. During operation, these payloads experienced a
number of faults from radiation, including one payload that experienced a rare
multi-core fault. Investigation suggested that the multi-core fault was the result
of a single-event effect (SEE), either directly in a voter on the logic design or as an
SEE in the FPGA configuration memory changing the implemented logic. An
injection procedure for the FPGA’s configuration memory was developed to
simulate radiation strikes and test fault detection. The injection procedure was
paired with theQMRprocessor. This provided a full configurationmemory testing
environment, where the implemented logic design was capable of detecting
faults propagating from the FPGA’s configuration memory. Injection throughout
the configuration memory was used to create a map of particularly vulnerable
locations in configuration memory and the implemented logic design. Testing
with injected faults produced similar results to the multi-core fault observed in
orbit on the payload. The testing procedure provides a comprehensive testing
strategy, which pairs systematic injection in configuration memory with a logic
design capable of detecting the induced errors to localize the propagating fault in
the design.

KEYWORDS

configuration memory, radiation tolerance, FPGA, SEE, softcore, QMR, fault simulation

1 Introduction

Aerospace computers operating in a harsh radiation environment generally require
extensive protection and recovery methods to survive radiation strikes. The increasing
number of satellites and the expense of standard protection methods, such as radiation
hardening, have led to the development of low-cost alternatives. These alternatives trade
protection for lower cost, power, and mass requirements. Aerospace computers are
increasingly using commercial off-the-shelf (COTS) parts, particularly computer
systems for low-power (< 2W), low-mass (< 4kg), and low-volume (≤U) small

OPEN ACCESS

EDITED BY

Changqing Xu,
Xidian University, China

REVIEWED BY

Augusta Sophy Beulet P.,
VIT University, India
Chang Cai,
Guangzhou University, China
Tong Ye,
Nanjing Vocationl University of Industry
Technology, China
Gongzhe Qiao,
Nanjing University of Information Science and
Technology, China

*CORRESPONDENCE

Hezekiah Austin,
hezekiah.austin@resilient-computing.com

RECEIVED 12 April 2025
ACCEPTED 30 June 2025
PUBLISHED 29 July 2025

CITATION

Austin H, Major C, Barney C, Williams J,
Becker Z, Smith M and LaMeres B (2025) Single-
event upset simulation and detection in
configuration memory.
Front. Space Technol. 6:1610424.
doi: 10.3389/frspt.2025.1610424

COPYRIGHT

© 2025 Austin, Major, Barney, Williams, Becker,
Smith and LaMeres. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Space Technologies frontiersin.org01

TYPE Original Research
PUBLISHED 29 July 2025
DOI 10.3389/frspt.2025.1610424

https://www.frontiersin.org/articles/10.3389/frspt.2025.1610424/full
https://www.frontiersin.org/articles/10.3389/frspt.2025.1610424/full
https://www.frontiersin.org/articles/10.3389/frspt.2025.1610424/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frspt.2025.1610424&domain=pdf&date_stamp=2025-07-29
mailto:hezekiah.austin@resilient-computing.com
mailto:hezekiah.austin@resilient-computing.com
https://doi.org/10.3389/frspt.2025.1610424
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org/journals/space-technologies#editorial-board
https://www.frontiersin.org/journals/space-technologies#editorial-board
https://doi.org/10.3389/frspt.2025.1610424

satellites. Combined with a modular redundant system, periodic
resets, memory scrubbers, and selective hardening, computer
systems built with COTS parts are able to offset their inherently
higher radiation vulnerability (Joseph, 1967). The demand for
increased reliability of COTS components is driven by the greater
complexity of semiconductor-based computers and the increased
vulnerability to certain types of radiation strikes during operations
in space (Barillo and Calvel, 1996; Ecoffet, 2013; Bedingfield et al.,
1996). Low-power aerospace computers, in particular, have focused
on implementing field-programmable gate arrays (FPGAs) as flight
processors or coprocessors. These designs combine the lower cost of
COTS parts with the FPGA’s reconfigurable hardware, which
induces new vulnerabilities. This combination allows hardware
designs to be created and implemented at a lower cost in terms
of time, personnel, and resources than building hardware from
scratch. A printed circuit board (PCB) with a single FPGA is
usable on multiple different missions by FPGA’s logic design
being updated with a new configuration. This provides clear
advantages in terms of costs and time. Although the
reconfigurable hardware of FPGAs introduces unique
vulnerabilities to radiation strikes in the configuration memory,
faults in the configuration memory can propagate into the
implemented logic design and effectively change the hardware.

2 Background, materials, and methods

2.1 Background

2.1.1 Radiation effects
Inside harsh radiation environments, computer systems are

bombarded with both low-energy and high-energy electrons,
protons, and heavy ions, resulting in material damage and
faulted logic values (Barth et al., 2003; Johnston, 1998).
Radiation-induced faults in aerospace computers fall into two
general categories: total ionizing dose (TID) and single-event
effects (SEEs). A TID is caused by lower-energy particles
depositing charge inside the semiconductor’s installation layers
(Hughes and Benedetto, 2003). An SEE occurs when a high-
energy particle or heavy ion strikes the device, causes a logic-
level transition, and the transition is captured. TIDs are generally

a gradual failure due to the cumulative effects of lower-energy
particle strikes, and SEEs are generally a temporary failure due to
the immediate effects of high-energy particle strikes (Claeys and
Simoen, 2002). The effects of TIDs and SEEs in a complementary
metal-oxide-semiconductor (CMOS) device are shown in Figure 1.

Modern semiconductors have an increased resistance to TID
and are inherently more vulnerable to SEEs. The current design size
of semiconductor transistors (<65 nm) makes TID statistically
unlikely due to reduced feature sizes (Liu et al., 2017; Zhang
et al., 2017; Zhang et al., 2016). These smaller features decrease
the likelihood of low-energy particles being trapped in the insulating
regions of the devices (Barnaby, 2006). The vulnerability to SEEs is
increased as the smaller feature sizes make particle strikes more
likely to be captured, especially in combinational logic circuits
(Benedetto et al., 2006). The implemented logic designs on
FPGAs are primarily combinational logic circuits, making FPGAs
vulnerable to SEEs during space operations. Single-event upsets,
where a radiation strike flips a bit in memory, are particularly
vulnerable as FPGA-implemented logic designs depend on
configuration memory (Jing et al., 2012).

2.1.2 FPGA configuration memory
FPGAs have emerged as a technology capable of supporting fault

recovery procedures and delivering high performance in inexpensive
COTS packages. The radiation tolerance techniques used for FPGA-
based, aerospace computers include system redundancy, voters,
error correction codes (ECCs), cyclic redundancy check (CRC),
and memory scrubbing (Yarzada et al., 2022). Combining these
techniques allows for an FPGA-based computer architecture to meet
the demand for radiation-tolerant, low-power, high-performance,
and relatively inexpensive computers in space. A weakness of this
approach is that the FPGA’s configuration memory is a single point
of failure for the whole system. Within an FPGA, the configuration
memory actively controls the implementation of the logic design in
real time. Changes in the configuration memory immediately
cascade into the logic design and induce errors. These errors fall
into three categories: detectable and repairable, detectable and
unrepairable, and undetectable. Detectable errors cause changes
in the outputs of the logic design. Depending on the recovery
techniques integrated into the system, it will either detect the
errors and repair them during operation or require a full

FIGURE 1
Effects of TIDs and SEEs in CMOS cross section (LaMeres, 2012).

Frontiers in Space Technologies frontiersin.org02

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

reconfiguration to clear out the issue. Detectable errors are generally
caused by faults in the area of configuration memory used by the
logic design. Rare cases outside the used area occur when elements
outside the logic design are connected to the design by a fault.
Undetectable errors are outside the used configuration memory area
and result in isolated modifications on the FPGA fabric that do not
connect with the implemented design. As FPGAs have millions of
locations in configuration memory, the majority of faults are of this
type. Furthermore, the implemented design’s response to all possible
faults in the configuration memory vs. faults in the logic design is
generally not tested due to time and cost constraints.

For space operations, this lack of information on the computer’s
response to faults in the configuration memory makes it difficult to
verify the causes of a fault during space operations. Systematic
testing of this configuration memory represents an important
method of verification between ground and space results.
Radiation chamber testing is generally too expensive for FPGA
design verification and does not ensure that every location in the
configuration memory will be faulted by a radiation strike.
Furthermore, FPGA designs are created using hardware
description languages (HDLs) and are easily modifiable. Modern
synthesis tools automatically convert the HDL into logic circuitry
and map it into the resources of the FPGA. The designer has little
control over how the logic is ultimately assigned, which poses a
challenge for developing a consistent verification strategy. Slight
changes in the HDL can cause an FPGA design to be implemented
with a completely different placement on the board. The lack of a
consistent verification strategy causes a major bottleneck in
development due to the time and resources required for repeated,
expensive testing. Therefore, FPGA-based aerospace computer
development needs a fault injection system capable of injecting
faults into every bit of an FPGA’s configuration memory and
monitoring the resulting failures.

2.1.3 Research focus
In this paper, we propose and detail a fault injection system to

stress-test an FPGA-based computer’s configuration memory
scrubber and to monitor the resulting faults in the computer
architecture. This procedure is specifically designed for the Xilinx
Artrix 7 FPGA and the RadPC RISC-V computer architecture, and
focuses on single-event upsets in the FPGA configuration memory
that affect the implemented logic design. The proposed strategy has
two major prerequisites: the FPGA configuration memory needs to
be accessible for the fault injection, recovery, and reporting; and the
logic design must support locating and reporting errors propagating
from configuration memory into the logic design.

The injections were performed on the RadPC, an FPGA-based
computer developed for aerospace application. This computer
architecture utilizes COTS components on a small-form-factor
PCB. RadPC implements a quad modular redundant (QMR)
system using four softcores: CRCs and ECCs for memory
checking, a data memory scrubber, and a configuration memory
scrubber. Two payloads were deployed to the International Space
Station (ISS) as part of overall testing for this RadPC FPGA-based
computer. Additionally, an identical payload was tested on the
ground under laboratory conditions. The purpose of this testing
is to confirm the scrubber’s detection/recovery capabilities for the
FPGA’s distributed configuration memory and provide a

comparison point for the results from RadPC payloads deployed
to space. This testing serves to identify critical injection locations
that cause detectable and unrepairable faults in RadPC’s
implemented logic. These critical injection locations allow for
precise stress testing of specific components in the logic circuit
design. The injection testing in the laboratory was analyzed and
compared to the data from the two ISS payloads to identify potential
faults in configuration memory due to radiation strikes.

This approach relies heavily on the Xilinx Soft Error Mitigation
(SEM) Controller to inject faults into the FPGA’s configuration
memory. The primary advantage of this system is the development
of a foundation for integrating configuration memory monitoring
and testing into the RadPC computer architecture. This will allow
future development to integrate configuration memory reporting
into a recovery method for the overall system.

2.2 Materials: payload design

The radiation-tolerant single-board computer was used in both
the configurationmemory experiment and the ISS mission payloads.
The experiment andmission occurred in parallel. Experiment results
were used to categorize mission data. Additionally, the experiment
setup was used to extensively test the FPGA configuration memory
and develop a new systematic testing strategy for future missions.

2.2.1 ISS payload mission
The ISS mission consisted of two payloads designed to test the

RadPC computer architecture under space radiation conditions.
These payloads were developed in partnership with Stottler
Henke Associates, Inc (Stottler-Henke). For the experiment,
Stottler-Henke developed the algorithm, and Montana State
University (MSU) developed and provided the RadPC computer
architecture for implementation. NanoRacks also provided the
liaison with NASA for the payload launch, deployment to the
ISS, and return to Earth. Payloads 1 and 2 were deployed to the
ISS and remained aboard for 5 months and 13 months, respectively.
The installation of payload 2 by US Astronaut Kayla Barron on
22 February 2023 is shown in Figure 2.

The objectives of the ISS project were four-fold. The first
objective was testing the latest iteration of the RadPC computer
architecture in a natural space radiation environment. This objective
was accomplished with the deployment of the first and second
payloads on the ISS. Analysis of the data and the results are included
in the following sections.

The second objective was coding and executing an algorithm on
the RadPC computer that utilized both inputs and outputs.
Partnering with an external company for the algorithm
development allowed the RadPC computer to be tested for ease
of use. This objective was accomplished by a partnership with
Stottler-Henke for the development of an algorithm and testing
the ease of programming of the RadPC computer. Stottler-Henke
developed the algorithm run on the RadPC Rev. 4 PCB, as shown in
Figure 3a, for both payloads, and the MSU team used the level of
support required for algorithm development and Stottler-Henke’s
feedback to evaluate RadPC’s ease of programming.

The third objective of the ISS project was to develop a reusable
design to interface with NanoRacks’ ISS internal payload system.

Frontiers in Space Technologies frontiersin.org03

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

This objective was accomplished with the design of a PCB, which
provides power regulation and communication with the NanoRacks’
internal payload system on the ISS. The PCB for this interface will
allow future projects to focus more on experiment development
instead of interface development.

2.2.1.1 1U case shielding and ISS radiation environment
The PCB stack was encased in a 1U NanoLab’s aluminum case,

with anodized sides and 3D printed endcaps. This provided the
mechanical support for the PCB stacks, and the bottom endcap
included power and data plugins for the payload. The aluminum
case increased the amount of shielding on the payload. However,
SEEs are caused by high-energy particles which are capable of
passing through the space station, aluminum case, and the
integrated circuit. The radiations which primarily cause
SEEs—gamma rays, X-rays, and neutron rays—are all capable of
penetrating aluminum. As aluminum is the main material used for
the ISS’ hull, the NanoRacks’ internal payload case, and the 1U
NanoLab payload case, the shielding can only reduce the radiation
by a small amount.

The radiation environments for the ISS was modeled using the
Cosmic Ray Effects on Micro-Electronics code (CREME96), the
dimensions of the Artix-7 XC7A35T chip, and the Vivado software
suite’s essential bit count for RadPC as shown in Table 1. (Major
et al., 2021). Payload operation on the ISS occurred during a quiet
solar cycle. Although deployment of the experiment to the ISS
during this quiet solar cycle is not ideal, essential bit flips would
still average 8.7 per device per day.

Not all essential bit flips will trigger a softcore tile fault. However,
RadPC is estimated to have approximately three to four softcore tile
faults per device per day during payload operation.

2.2.1.2 Design of RadPC
The RadPC computer architecture was developed by Montana

State University for aerospace applications. It consists of an FPGA
with a QMR computer architecture that implements a juggling
architecture, memory scrubbers to recover from SEEs, and a

microcontroller to control data transmission, resets, FPGA
reconfiguration, etc. The firmware implemented on the FPGA for
the ISS payloads represented the latest iteration of the RadPC
computer architecture as of September 2021. The development
objective of RadPC is to provide radiation tolerance using off-
the-shelf components via redundancy, scrubbing, and a recovery
system. RadPC’s computer architecture utilizes redundant,
synchronized cores, with an output voter, a data memory
scrubber, and a configuration memory monitor. This computer
architecture uses a QMR computer system implemented on an
FPGA. The inherent resistance to TID in modern FPGAs from
the circuit design size allows RadPC to focus mainly on detection
and recovery from SEEs. The architecture of RadPC combines the
strategies of a juggling architecture with an expansion of TMR and
the implementation of memory scrubbing on an FPGA (Major et al.,
2021).With TMR, the individual system is triplicated and the output
is voted on with the majority of vote passing through as the overall
system output. However, the TMR approach is not sufficient to
effectively mitigate the effects of radiation on an FPGA’s
implemented logic circuit or configuration memory (Sterpone
and Violante, 2005). RadPC counters the vulnerability of TMR
and expands on it by adding a fourth tile for QMR. Figure 4
shows the block diagram of RadPC at the board level.

The four tiles are implemented on a Xilinx FPGA. Each tile is a
MicroBlaze Softcore, which is a black box processor developed by
Xilinx for their FPGAs. The inclusion of the fourth tile increases the
likelihood of recovery in the event of multiple SEEs in two separate
tiles occurring simultaneously or successively during voting. An
MSP430 microcontroller functions as the micro-controller unit
(MCU) of the board. The MCU controls the serial flash memory
chips containing the bitstreams and the telemetry data
packet storage.

A voter is used to implement the QMR system to ensure the
computer is operating with a minimal of a TMR system even during
recovery. Upon reaching a software checkpoint, the voter pauses the
tiles, compares the tile outputs, and votes for the majority. If a tile
disagrees with the majority, recovery procedures are started. The

FIGURE 2
Payload 2 installation on ISS (LaMeres, 2023).

Frontiers in Space Technologies frontiersin.org04

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

juggling architecture uses the undamaged tiles to reset the faulted tile
(Garvie and Thompson, 2004). Depending on the number of tiles
being faulted, the voter triggers partial reconfiguration (PR) and
memory scrubbing, or full reconfiguration (FR). Table 2 shows the
recovery procedures for all possible voted tile outputs.

The following paragraph outlines RadPC’s response for each
case in the above table. Figure 3b provides a visual block diagram of

tiles and components triggering and undergoing recovery
procedures.

In the first case given in the table, all tile outputs agree, and the
voter achieves a majority. There is no fault to recover from, and the
voter allows the tiles to resume operation. In the second case, three
tile outputs agree, and the voter achieves a majority with the fourth
tile undergoing recovery procedures. This consists of the SEM
controller for the configuration memory being paused, the
faulted tile being partially reconfigured, and the data memory
scrubber checking the data memory of all four tiles. For PR, the
voter sends a request to the MCU to rebuild the faulted tile. The
MCU pulls the tile’s partial bitstream from the serial flash memory
chip and loads it into the configuration memory. Once in the
configuration memory, the current logic architecture of the
FPGA is wiped, including the tile’s data memory, and the new
architecture described by the partial bitstream is implemented. The
data memory scrubber sits outside the tile alongside the voter. Each
individual tile has its own data memory implemented inside the
FPGA’s memory blocks. To bring the faulted tile back into
synchronization with the other tiles, the data memory scrubber
compares the data memory from each tile, votes for a majority, and
overwrites incorrect entries with entries from the memory of a
correct tile. The data memory scrubber walks through all memory
addresses until the data memories of all tiles match. Once the
memory recovery is completed, the voter allows the tiles to
resume operation. For the third case, two tile outputs agree, and
the voter achieves a majority with those tiles. The other two tiles
disagree with both each other and the majority. These tiles undergo
the same recovery procedures outlined in the second case for the
faulted tile. In all other cases, the voter is not able to determine which
tiles are faulted and triggers an FR of the FPGA. This follows the
same procedure as PR with a request being sent to the MCU for an
FR. The primary difference is that a PR uses the data memory
scrubber to bring a faulted tile up to speed, ensuring that no data are
lost during recovery. An FR forces any program running on RadPC-
Lunar on the FPGA to completely restart.

A key point is that RadPC has twomemory scrubbers: one that is
part of the tile recovery procedures and another for the FPGA’s
configuration memory. The data memory scrubber is an integrated
part of the voter and is only operational during recovery procedures
after a PR. The second memory scrubber is the SEM controller,
which is completely separate from the voter and scrubs only the
configuration memory on the FPGA. The SEM controller is
continuously operational, except during the PR and FR recovery
procedures. During PR and FR, the SEM controller is paused for the
duration to avoid write/read conflicts between the SEM controller
and MCU. The MCU will write either a full or a partial bitstream of
the serial flash memory chip to the configuration memory. The
configuration memory of the FPGA is used to hold the full bitstream
for RadPC and partial bitstreams for individual tiles. During normal
operations, the SEM controller scans the configuration memory,
repairs faulted bits, and injects a fault into the
configuration memory.

2.2.1.3 PCB stack
The hardware for the ISS project was a PCB stack consisting of

three boards: Interface Board, Lunar Board, and Stottler Board, as
shown in Figure 5b. Within this PCB stack, each board focused on

FIGURE 3
RadPC hardware and computer architecture: (a) RadPC Rev.
4 PCB and (b) RadPC: computer architecture.

Frontiers in Space Technologies frontiersin.org05

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

one or more of the three major objectives for the ISS project. The
Lunar Board focused on the implementation and testing of the latest
firmware of the RadPC computer architecture in a natural space
radiation environment. This firmware consisted of the latest VHSIC
Hardware Description Language (VHDL) design for RadPC as of

September 2021, named RadPC-Lunar. The Stottler Board focused
on the implementation of the Stottler-Henke-developed algorithm
for RadPC. This software algorithm was a C program developed to
run on a modified version of the RadPC-Lunar firmware, named
RadPC-AI. Onboard the ISS, RadPC-AI was used to test the RadPC

FIGURE 4
RadPC: individual tile (LaMeres, 2012).

TABLE 1 CREME96 modeling of ISS-orbit radiation environments 30% microprocessor derating (Major et al., 2021).

Essential bit analysis (2,793,730) Total bit analysis (14,663,584)

Solar radiation conditions Device/day Solar radiation conditions Device/day

Stormy solar average 353.910 Average 1,857.690

Stormy solar peak 669.849 Peak 3,516.510

Quiet solar average 8.714 Average 45.741

Quiet solar peak 24.809 Peak 130.233

Worst-case scenario week 2,981.997 Worst week 15,654.750

Worst-case scenario day 16,313.250 Worst day 85,640.400

Worst-case scenario 5 min 62,247.000 Worst 5 min 326,781.000

Frontiers in Space Technologies frontiersin.org06

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

computer architecture’s capability to function in a radiation
environment while executing a complex algorithm to be tested.
Finally, the Interface Board focused on power regulation and
communication with the NanoRacks’ internal payload system on
the ISS. Communication was handled by a Raspberry Pi Zero
mounted on the Interface Board. Power regulation was handled
by a circuit using three buck-boost switching regulators to provide
2.5 V, 3.3 V, and 5.0 V to the Raspberry Pi and RadPC PCBs.

The innermost PCB of the stack is Lunar Board, labeled as
RadPC_std (Lunar) in Figure 5b. The hardware for this board is the
RadPC Rev. 4 PCB. It utilizes the RadPC-Lunar computer
architecture written in VHDL for its firmware. The software for
this board is a counter program written in the C programming
language. RadPC-Lunar was used in the ISS project as a method of
both developing VHDL for the RadPC computer architecture and
providing real-world testing of both the RadPC Rev.4 PCB and
RadPC-Lunar computer architecture. During operation, the Lunar
Board runs the counter program and builds data packets which are
transmitted to the Stottler Board for analysis. The primary purpose
of the Lunar Board was to test the latest iteration of the RadPC
computer architecture in a space radiation environment.

The center PCB of the stack is the Stottler Board. This board uses
the same RadPC Rev. 4 PCB, a modified version of the RadPC-Lunar
firmware, and a C program developed by Stottler-Henke for its
software. The only difference between RadPC-Stottler and RadPC-
Lunar is that the RadPC-Stottler’s board was changed to allow the
telemetry data packets to be received from the Lunar Board, the
enforcement of software checkpoints for synchronization, and the
limitation of no serial communications. This allowed the algorithm
to run on the RadPC-Lunar with the full QMR system and tile
software checkpoints while receiving data from the Lunar Board.
During operation on the ISS, the Stottler Board used its algorithm to
evaluate the Lunar Board’s data packets and appended the result to
the data packet before passing data on to the Interface Board. The
PCB stack is shown in Figure 5a.

The Interface Board controls power regulation and data storage
for the payload as a whole. It functions as the interface among the
experiment portion of the payloads, the Lunar and Stottler boards,
and the NanoRacks ISS internal payload system. Interfacing with
NanoRacks was accomplished with a power regulation circuit and a
Raspberry Pi Zero mounted on a PCB. The power regulation circuit
provided protection against voltage or current spikes and regulated
the incoming power supplied by the NanoRacks’ internal payload
system to a clean 5 V for the RadPC boards and the Raspberry Pi
Zero. This Raspberry Pi Zero functioned as a data storage and

TABLE 2 Recovery procedures for voted outputs.

Agree Disagree Majority PR Scrub FR

4 0 ✓ X X X

3 1 ✓ ✓ ✓ X

2 1–1 ✓ ✓ ✓ X

Anything else X X X ✓

FIGURE 5
ISS payload model and diagram: (a) ISS engineering model and
(b) ISS payload PCB stack diagram.

Frontiers in Space Technologies frontiersin.org07

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

communication node between the experiment and NanoRacks’
systems. For the Stottler Board, the Raspberry Pi Zero functioned
as a serial port using the Serial Peripheral Interface (SPI) protocol.
To the ISS NanoRacks’ system, the Raspberry Pi Zero functioned as
a USB flash drive, which would update itself with new data files on a
daily basis.

2.2.2 Mission overview
The mission consisted of two payloads delivered to the ISS for

testing in a space radiation environment. An engineering model of
the completed payloads with a 3D-printed case standing in for the
aluminum shell is shown in Figure 5a. This project was made
possible through the collaborations and contributions of three
partners: MSU, NanoRacks Inc (NanoRacks), and Stottler-Henke.
The payloads were developed in a 1UCubeSat size for deployment in
NanoLab on the ISS. Each payload consisted of two radiation-
tolerant single-board computers: one running a counter program
and the second running power analysis on the other board, and an
interface board connecting with the NanoLab control computer.

2.3 Methods: configuration memory testing

On an FPGA, slight modifications in the logic design lead to
large alterations in the configurationmemory upon implementation.
Even minor changes such as routing between components or
moving components require that a completely new bitstream be
generated and loaded into the configuration memory. Compared to
the previous bitstream, the new bitstream would have different
essential bits, which actually cause changes in the implemented
logic design. The locations of critical bits, essential bits that cause
detectable faults in the implemented RadPC-Lunar computer
architecture, are also altered with a new bitstream. Overall,
RadPC requires a more robust fault injection system for
simulating SEEs in the FPGA’s configuration memory. Using the
SEM controller, RadPC requires a systematic way of testing the
configuration memory for critical locations that lead to tile output
errors in an FPGA’s implemented logic design. Furthermore, this

testing method should be repeatable for future iterations of RadPC.
The development of this testing method is the memory project.

2.3.1 Experiment design
The RadPC Rev.4 PCB (RadPC PCB) was used as the basis for

this experiment. Configuration memory testing was conducted
using AMD Xilinx’s SEM controller on an Artrix-7 FPGA, with
the RadPC-Lunar computer architecture implemented. The block
diagram of the testing setup is shown in Figure 6.

Simulation of radiation-induced faults was conducted via the
SEM controller used by Xilinx FPGAs. This system injects faults by
executing a NOT operation on a single bit in configuration memory.
Changes in the configuration memory propagate to the
implemented computer architecture on the FPGA. This makes
the configuration memory particularly vulnerable to SEEs as a
single-bit flip can completely change a logic circuit on the FPGA
fabric. Four test cases were conducted based on possible errors and
errors detected during operation on the ISS. The first and most
common case is an SEU in configuration memory that does not
affect the implemented logic design. The second case is a SEU
causing a fault that is detected in the implemented logic design. The
third case is one or multiple SEUs in configuration memory which
causes faults in two different subsystems on the same voter. The
fourth case is a triple-system fault where either the voter or three out
of the four tiles are affected and multiple subsystem repair attempts
have failed.

During normal operation, the SEM controller is continuously
scanning the ECC and CRC codes for the configuration memory.
Sets of memory addresses in the configuration memory are divided
into frames with an ECC. This allows the SEM controller to find and
repair frames that have suffered faults. In addition to the ECC on the
frames, CRC codes are implemented on arrays of frames. This allows
the SEM controller to identify and rapidly repair faults that cross
frame boundaries. A block diagram of the SEM controller and its
interaction with the FPGA fabric is shown in Figure 7. For
conceptual purposes, the configuration memory, logic elements,
DSP elements, and BRAM memory of the FPGA are shown as
blocks. On the hardware, these elements are physically scattered

FIGURE 6
Block diagram of the experiment setup.

Frontiers in Space Technologies frontiersin.org08

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

across the FPGA. The purpose of this distribution is due to signal
path integration and time constraints. As configuration memory is
the largest element and most physically distributed element on the
FPGA, it is more susceptible to radiation-induced faults.

During fault injections, the SEM controller flips a bit in the
FPGA configuration memory. For the ISS payloads, the bit was
arbitrarily selected, Linear Frame Address 0x0000011, and the
injection operated on a cadence of an injection every 10 s. After
the injection, the SEM controller scans the ECC and CRC to find the
fault. Upon the fault being found, the SEM controller attempts to
correct the error using algorithmic methods (sem, 2022). This
involves an active partial reconfiguration by the SEM controller
on the frame containing the fault to rewrite it with the
correct contents.

A Lander Analog Telemetry Test Emulator (LATTE) provided
the user interface for sending commands and retrieving data packets
from RadPC PCB. On RadPC PCB, the MSP430 microcontroller
functioning as the MCU received commands from the LATTE and
would execute those commands. On RadPC PCB, RadPC-Lunar was
implemented on the FPGA, and its voter tracked tile outputs. A
picture of the testing setup is shown in Figure 8. The
MSP430 Launchpad and Xilinx Platform Cable, which are used
to program the MCU and FPGA, respectively, are presented at the
bottom of the picture. With this testing setup, the LATTE controlled
the timing between injections and total number of injections per
run. The MCU controlled the locations of the injections via
addressing in the SEM controller’s linear-frame addressing
system. The MCU also controlled packet generation for both
regular data packets used in the ISS Project, labeled as FPGA,
and data packets for the SEM controller’s report, labeled as SEM.
On the FPGA, the SEM controller controlled the actual fault
injection upon command from the MCU. Depending on the
injected fault type, the SEM controller scanned the configuration
memory after an injection and generated an error report that was
returned to the MCU for SEM data packet generation. Moreover, on

the FPGA, RadPC-Lunar was under normal operation. The voter in
RadPC-Lunar was used to detect and report faults that propagated
from the configuration memory into the implemented logic design.
This setup allowed essential bits that caused changes in implemented
logic to be differentiated from critical bits that caused detectable
faults in the implemented logic design.

2.3.2 Error types
Two types of errors were injected during testing. The first type

was designed to simulate radiation-induced faults inside the

FIGURE 7
SEM controller: injection into configuration memory.

FIGURE 8
Configuration memory injection testing setup.

Frontiers in Space Technologies frontiersin.org09

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

configuration memory. Single-location injections performed a
bitflip at a single-address simulate radiation strikes that only
acted on a single bit. The diagram of a single-fault injection for
linear frame addressing is shown in Figure 9.

After an injection, the SEM controller is set to the Observation
mode to detect and repair any faults in the configuration memory.
The SEM controller is capable of finding, repairing, and reporting
faults within a maximum of 150 milliseconds from the start of the

FIGURE 9
Single-fault injection.

FIGURE 10
Continuous-fault injection.

Frontiers in Space Technologies frontiersin.org10

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

scan for a fault (sem, 2022). With the single-bit fault, the SEM
controller is capable of an average of 23 milliseconds depending on
the fault location. This particular type of fault, where only a single bit
is changed, is the most likely occurrence in space operations.

The second fault type is continuous adjacent injection, as shown
in Figure 10. This type of fault is unlikely to occur during space
operations and was not used for simulating radiation-induced faults
in the configuration memory. The purpose is to deliberately
overload the configuration memory with faults, which will
propagate to the implemented logic design. By comparing the
locations of the continuous injections and the tile output faults
from RadPC-Lunar, the general location of critical fault addresses
can be found. As previously discussed in double-adjacent faults, the
SEM controller is not capable of more than a single injection at a
time. Between injections, the SEM controller was placed in the Idle
mode to avoid it scrubbing the configuration memory and detecting
the injected faults. During the time between injections, the MCU
would also build data packets, indicating whether the latest
continuous injection had triggered a detectable fault in
RadPC-Lunar.

2.3.3 Procedure for error injections
Injection consisted of the following steps. The number, type, and

timing of injections were set by the user on the external test unit, the
LATTE. The fault injection addresses are set by the MCU on the
RadPC Rev 4.0 board. Found in the UART_A0_driver.c file, this
code controls the fault injection addresses in linear frame
addressing, the injection type, and the SEM controller’s state, and
processes the SEM injection report returned by the FPGA into a
packet. Addresses are incremented by either bits or linear frame
addresses. The bits option injects at every bit location of the
implemented logic system and is used for completeness in
testing. The linear frame address option injects faults at the least
significant bit (LSB) of each frame in the implemented logic system
and is used for faster testing. After the FPGA receives the fault
injection command from the MCU, it passes the command to its
internal SEM controller. The SEM controller injects the fault into
configuration memory via a bitflip at the given address. This fault in
the configuration memory determines the behavior of the design. It
describes function block behavior and function block connectivity
(sem, 2022). Fifth, the SEM controller is set to either Idle or
Observation. In Idle, the SEM controller allows the fault to
remain in the configuration memory, thereby changing the logic
system implemented on the FPGA fabric. Depending on the location
of the injection, this fault can induce errors in the output of the logic
system. InObservation, the SEM controller can check the ECC of the
frames and the CRC codes of the arrays of frames for errors. If a fault
is found, the SEM controller repairs it and returns an SEM injection
report up the communication chain to the MCU, where it is stored
until requested by the LATTE.

An example of a fault injection command is “IN C000000000O.”
This example would inject a single fault at linear frame address
“0000000,” place the SEM controller in the Observation mode to
detect the fault, and have the SEM controller repair any detected
errors in the FPGA’s configuration memory. After the repair, the
SEM controller would generate an SEM injection report listing the
classified errors by linear and physical frame addressing. This can
simulate a single-event upset in configuration memory for a single

bit, and delaying the SEM controller allows the length of time until a
fault is repaired to be controlled.

2.3.4 Frame addressing for injections
There are two addressing schemes for fault injection into the

configuration memory, namely, linear frame addressing and
physical frame addressing. Linear frame addressing utilizes
arbitrary addresses from 0x0000 to 0x11B6, which are mapped to
the physical frame addressing of the implemented logic system.

The format for linear frame addressing is shown in Table 3. “SS”
represents the hardware super logic region (SLR) number and set to
“00,” and “LLLLLLLLLLLLLLLLL” represents the linear frame
address (17-bit) (sem, 2022). “W W W WW WW” and “BBBBB”
represent the word address (7-bit) and bit address (5-bit),
respectively. The word and bit addresses are the same between
linear and physical frame addressing.

Physical frame addressing utilizes the actual addresses of the
implemented logic system in the FPGA’s configuration memory and
is shown in Table 4. “TT” represents the block type (2-bit), “H” is the
half address (1-bit), “RRRRR” is the row address (5-bit),
“CCCCCCCCCC” is the column address (10-bit), and
“MMMMMMM” is the minor address (7-bit) (sem, 2022).
Physical frame addresses provide information on the type and
physical location but are scattered across the configuration
memory space to match with their physical locations in the
FPGA fabric. Linear frame addressing is simpler to implement;
however, the addresses do not provide type and physical location of
the frame under test (sem, 2022). For the testing of the configuration
memory, all addresses for the SEM injections utilize linear frame
addressing. Physical frame addressing covers the entire FPGA’s
configuration memory including the unutilized parts. A
simulated fault may be injected into implemented elements or
the unutilized FPGA elements, and Xilinx suggests using linear
frame addressing for this reason (sem, 2016). As the total number of
unutilized FPGA elements is approximately 33%, testing needs to be
focused for time constraints. Runtimes for the SEM injections over
the entire mapped linear frame addresses required 7 days at one
injection per 0.25 s. Injecting over the entire memory space would
require 10.5 days of runtime. As multiple runs were required for
each type of fault injection, linear frame addressing was chosen for
its relative speed and focused on the implemented design.
Additionally, this addressing mode maps the linear frame
addressing to the utilized physical frame addresses. The results
pertain to simulated errors inside the design implemented on the
FPGA. The physical frame address is returned within the SEM
injection report for a linear frame address injection that was
successfully detected and repaired. This allows physical and
linear frame addresses to be cross-referenced for analysis. As the
purpose of this research was to observe the effects of simulated
errors inside the implemented design, only linear frame addressing
was used. Physical frame addressing and testing the effects of fault
injection on the entire configuration memory space are left to
future research.

2.3.5 Limitations of error injection
When interpreting the results from this experiment, there are a

few key considerations. Xilinx does not support analysis of any
specific customer design (sem, 2022). Tracing the fault location back

Frontiers in Space Technologies frontiersin.org11

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

to the design is not supported nor are physical locations in
configuration memory matched to components in the logic
design. Furthermore, Xilinx specifically states that configuration
memory injection can cause the implemented logic design to behave
in unpredictable ways (sem, 2016). Correlation between the SEM
controller’s injections and faults in the logic design are dependent on
the voter detecting the fault. As the voter is a part of the logic design,
it shares the same vulnerability to configuration memory injections
as the remaining RadPC-Lunar. Injections into the configuration
memory defining the voter cause unpredictable multiple-tile faults.

Furthermore, injections might not be detected because many of
the configuration bit locations are masked or do not exist in the actual
configuration memory. For example, with RadPC-Lunar, the linear
frame addresses 0x00000028 to 0x00000029 do not correspond to a
valid injection address within the configurationmemory. As shown in
Table 5, these linear frame addresses are missing from the linear to
physical address mapping. Injections at these locations return invalid
injection reports. This gap appears at the edges of blocks in the
configuration memory. The utilized configuration memory is divided
into blocks in both linear and physical frame addressing, and the gaps
appear between these blocks. The final limitation is specific tomultiple
bit injections. There is an undocumented time delay between injection
and propagation from configuration memory to the FPGA fabric. In
single-bit and double-bit injections, this is not an issue as the
injections are physically close together and the fault is localized.
Multiple-bit injections, such as those used for the continuous
injection testing, can trigger short cascades of fault detection and

correction. During these cascades, the SEM controller is continuously
detecting, repairing, and reporting faults, only for the sequence to
restart with new fault detection. These appear after a long series of
injections and last for the next four or five reports. After this, the SEM
controller recovers and continues normal operation. The current
theory states that the SEM controller has an upper limit on the
number of faults per report. On reaching that limit, the SEM
controller sends the report and starts building another report as
quickly as possible. As the SEM controller’s programming is
proprietary, this theory has not been verified.

3 Results

Overall, RadPC-Lunar is very resistant to injections into the
configuration memory. A total of 2,213,130 valid single-bit
injections were performed on RadPC-Lunar over 4 months of
testing, as shown in Figure 11a. Only 2.25% of these injections
caused a detectable fault in the tile outputs. All the detectable errors
were recoverable either through a partial reconfiguration of the
faulted tile or a full reconfiguration of the whole RadPC-
Lunar system.

The total number of continuous injections is also shown in
Figure 11a. For this type of injection, RadPC-Lunar suffered errors
for 59.52% of the total number of injections. Figure 11b shows a
subset of the data from Figure 11a, where the injections resulted in
errors being detected in the implemented logic design. As shown in
Figure 11b, the continuous injection was more successful in causing
errors in the implemented logic design. This percentage was
expected as the continuous injections were specifically developed
to fault RadPC-Lunar across as many components as possible.

3.1 Single-bit fault injections

In the case of single injection, the SEM controller can usually
find, scrub, and report a fault without any of the tiles or voter being
damaged. Table 6 shows the tile outputs and voted output of four
sequential FPGA data packets. An injection was done before each of
these packets was generated. The injection had no effect on the tile

TABLE 3 Error injection command using linear frame addressing (sem, 2022).

Bit # 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20

Input 1 1 0 0 0 0 0 0 0 S S L L L L L L L L L

Bit # 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input L L L L L L L L W W W W W W W B B B B B

TABLE 4 Error injection command using linear frame addressing (sem, 2022).

Bit # 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20

Input 0 S S T T H R R R R R C C C C C C C C C

Bit # 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Input C M M M M M M M W W W W W W W B B B B B

TABLE 5 Invalid linear frame addresses.

Validity Linear frame address Physical address

Valid 00000026 00000026

Valid 00000026 00000027

Invalid

Invalid

Valid 0000002A 00000080

Valid 0000002B 00000081

Frontiers in Space Technologies frontiersin.org12

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

outputs and was either repaired before it could damage the logic
design or occurred at a nonessential bit.

The most common fault for single-injection testing is a single tile
fault. As testing was conducted incrementally from the linear
address 0x0000000 upward, the tile faults tended to cluster in
tiles 0 and 1 as lower addresses received more coverage.

An example of a single tile fault is shown in Table 7, where Tile 1 is
faulted. This error was repaired by partial reconfiguration on Tile 1.
The most severe fault suffered during single-bit injection testing was a
propagating double error, as shown in Table 8. This fault was
originally a single fault for Tile 1, which the SEM controller
successfully found and repaired. However, the following injection
on the next address in the configuration memory triggered a double
fault in tiles 0 and 3. As RadPC-Lunar was unable to determine which
set of tiles was correct, the entire system was fully reconfigured and all
tile outputs reset to zero. This error is reproducible with single
injections around linear frame address 0x00001E2.

For single-bit injections, the SEM controller coupled with
RadPC-Lunar’s voter system was able to recover from the
majority of faults through partial reconfiguration while
maintaining operation. The remaining faults triggered a full
reconfiguration to effectively restart the FPGA.

3.1.1 Continuous adjacent bit fault injection
This method of injection is an extreme test case used to identify

critical bit addresses and build a linear frame address to physical frame
address mapping for the entire FPGA configuration memory. An
example of the linear to physical mapping is shown in Table 9. As
linear frame addressing does not provide information on the physical
location of logic design components, themapping is used to convert to
the physical frame. As discussed in Experiment Design, the purpose of
this type of injection is not to test RadPC’s recovery capability.
Instead, this injection method is designed to overwhelm the SEM
controller and force repeated faults in RadPC-Lunar. These faults are

FIGURE 11
Total injections vs. total induced errors: (a) Total single and continuous injections and (b) total single and continuous errors.

TABLE 6 Single-tile injection: normal operation.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

TABLE 7 Single injection: repairable single error.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

f e f f bf

f e f f bf

f e f f bf

f e f f bf

Frontiers in Space Technologies frontiersin.org13

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

biased toward the start of the address space. Continuous injections
tend to cause faults at lower address numbers as entire blocks of
configuration memory are overwritten.

Approximately 40% of injections using the continuous injection
type did not cause faults. RadPC-Lunar maintained its normal
operations during continuous injection testing. An example of
normal tile outputs during continuous injection testing is shown
in Table 10. The counter program is on its 15th loop, incrementing
from 0 to F.

In the event of a single-tile fault caused by continuous injection,
RadPC-Lunar was able to recover via partial reconfiguration of the
affected tile. An example of faulted Tile 0 undergoing partial
reconfiguration and being synchronized with the other tiles is
shown in Table 11. This fault was caused by a single injection at
linear frame address 0x000089E.

An example of a single propagating error is shown in Table 12.
This fault was caused by an injection at linear frame address
0x0000326. The fault propagated for 160 data packets and
12 counter increments before being detected by the voter and
corrected via partial reconfiguration of Tile 0. Correlating Tile
0 output faults with the injected faults and using the linear to
physical address mapping put Tile 0 between physical frame
addresses 0x00000980 and 0x00020D9D in the configuration
memory. Injections inside this range cause faults within Tile 0.

The final result found using continuous injections was a multiple
tile fault. This triple-tile fault requires multiple, simultaneous faults at
specific locations in configuration memory to trigger three
simultaneous tile faults in RadPC-Lunar. The likelihood of natural
radiation bombardment causing the precise conditions required for
this triple-tile fault is extremely low. Given the unlikelihood of the fault
occurring under natural radiation bombardment, RadPC-Lunar is not
designed to recognize these types of faults. However, the fault in
Table 13 was confirmed as a triple-tile fault by cross-checking that Tile
0 was partially reconfigured and the error persisted. As a partial
reconfiguration retrieves a partial bitstream from a memory chip
external to the FPGA, the bitstream cannot have been altered by

the SEM controller’s injections. As part of the partial reconfiguration
process, the data memory scrubber uses the other three tiles’ data
memory to synchronize the partial reconfigured tile. After partial
reconfiguration, Tile 0 should have fully recovered. Yet on the next
count, the output of Tile 0 disagrees with the other three tiles. Another
partial reconfiguration is triggered. This pattern suggests that the tiles
being reconfigured were actually correct, and this was a triple-tile fault.

This cycle continued until the system underwent full
reconfiguration and was restarted. The fault was caused by an
injection, which affected the voter inputs received from tiles 1, 2,
and 3. As the voter was unable to recognize a triple-tile fault, it
treated this fault as a single-tile fault and partially reconfigured the
uncompromised tile. The cycle described was also detected in the
orbital data from the ISS, where tiles 0, 1, and 2 were all shown as
correct and tile 0 was repeatedly repaired without fixing the fault.

4 Discussion

This study showed that the strategy of using Xilinx’s SEM and a
microcontroller for configuration memory fault injection is viable. A
number of changes are needed to meet the requirements of a
systematic, comprehensive, and quick testing procedure. Injection
locations need to be distributed across the entire FPGA
configuration memory for systematic testing. The SEM’s fault
recovery needs to be disabled during laboratory testing to allow
fault propagation to the implemented logic design for verifiable
results. A fault is considered to have propagated to the logic design if
it is detected by the recovery subsystems inside the implemented
logic design. Injection cadence needs to be reduced to allow the
propagating errors to be isolated to a single injected fault. Applying
these changes would allow for rapid, repeatable, and systematic
testing of a Xilinx FPGA’s configuration memory using the SEM and
a supervising microcontroller.

4.1 Potential radiation-induced faults in
configuration memory

As discussed in theMission Overview, RadPC functioned on the
ISS for a total of 13 months between two payloads. Six uncorrectable
faults were detected in the configuration memory of payload 1’s
lunar board. These faults did not affect the payload’s normal
operation and were removed by the next power cycle. The SEM
controller is known not to cause an uncorrectable fault with its
injections at linear frame address 0x0000011. The injected tile faults
inside the implemented logic are also known not to cause this type of

TABLE 8 Single injection: propagating double error.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

b a b b eb

b a b b eb

c b b c ec

c b b c ec

TABLE 9 Linear addresses to physical addresses.

Linear frame address Physical address

00000C3B 0040039F

00000C3C 004003A0

00000C3D 004003A1

00000C3E 004003A2

00000C3F 004003A3

Frontiers in Space Technologies frontiersin.org14

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

fault. This suggests that the six uncorrectable faults in the FPGA’s
configuration memory were radiation-induced faults. Memory
overwrites, serial communication issues, and frequent power
cycles make verification difficult. Additionally, verification of the
six faults being radiation-induced faults on the ground testing failed
as the configuration memory testing was unable to replicate this
uncorrectable fault.

4.2 Development of systematic
configuration memory injection

The testing on the ground was not able to replicate the
uncorrectable faults. Injections were done at all valid linear frame
addresses. None of these addresses triggered a similar SEM
uncorrectable fault. This suggests that the SEM uncorrectable faults
were caused by faults inside the configuration memory, but outside the

area, the SEM controller is allowed to inject. As Xilinx’s configuration
memory design is proprietary, this hypothesis cannot be tested.
However, the lack of a similar response to the permitted injections
suggests that the SEM uncorrectable faults were caused by radiation.
Furthermore, this research into the SEM uncorrectable faults leads to
the development of a systematic configuration memory injection
process for FPGA-based aerospace computers. The FPGA
configuration memory on RadPC can now be systematically tested.
Faults detected by the voter inside the implemented logic design can be
correlated to SEM injections in the configuration memory. This
development allows a new method of tile fault injection for RadPC.
Currently, two separate fault injectionmethods are used in RadPC: one
via the SEM controller for the configuration memory and another via
implemented logic on the FPGA. With a map of RadPC’s responses to
configuration memory injection locations, the two methods can be
combined. A single injection in the configuration memory can cause a
tile fault in the implemented logic design on the FPGA.

TABLE 12 Continuous injection: propagating single error.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

d 1 1 1 71

d 1 1 1 71

e 2 2 2 72

e 2 2 2 72

TABLE 13 Continuous injection: propagating triple error.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

e a a a 8a

f b b b 8b

f b b b 8b

0 0 0 0 0

TABLE 11 Continuous injection: repairable single error.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

f b b b 6b

f b b b 6b

c c c c 6c

c c c c 6c

TABLE 10 Continuous injection: normal operation.

Tile 0 result Tile 1 result Tile 2 result Tile 3 result Voted output

e e e e 4e

e e e e 4e

f f f f 4f

f f f f 4f

Frontiers in Space Technologies frontiersin.org15

Austin et al. 10.3389/frspt.2025.1610424

https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

4.3 Conclusions

In conclusion, the ISS project and memory project
successfully advanced the development of the RadPC
aerospace computer. Radiation tolerance is a major
consideration for the future of aerospace computers. RadPC
provides a cost-effective, radiation-resistant system for small-
satellite, data-processing applications. RadPC has been deployed
to the ISS for an on-orbit test mission with two payloads. On the
ISS, RadPC operated successfully for a total duration of 5 months
for payload 1 and 13 months for payload 2. A number of issues,
including memory overwrite, irregular communication glitches,
and SEM injection cadence, were identified and resolved for
future missions. Power supplies, RadPC’s recovery methods,
payload response to power cycles, and payload response to
natural radiation bombardment were successfully tested. At
the end of the mission, RadPC payloads 1 and 2 returned to
the Earth and was fully functional upon return. Furthermore,
data on the on-orbit missions motivated research that developed
a more robust fault injection system for configuration memory
testing. The configuration memory testing showed that key
components within the logic design, such as individual tiles
and the voter, are particularly vulnerable to faults in the
configuration memory. The voter is a particular point of
vulnerability. As all the tile outputs are channeled through the
voter, it is the single point of failure across the entire system. The
overall system was successful in the majority of cases. Single-tile
faults were successfully recovered, and propagating multiple-tile
faults were recoverable through full reconfiguration of the FPGA
upon MCU reset. Overall, this project successfully launched two
payloads into space, where they were deployed on the ISS. Data
from the ISS led to the development of a configuration memory
fault injection process for FPGA-based computers.

Data availability statement

The raw data supporting the conclusions of this article is
available by the authors from Montana State University at the
time of writing and publication.

Author contributions

HA: Formal Analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing – original draft, Writing – review
and editing. CM: Conceptualization, Investigation, Resources,
Software, Writing – review and editing. CB: Software,
Writing – review and editing. JW: Methodology, Software,
Writing – review and editing. ZB: Software, Writing – review and
editing. MS: Data curation, Software, Writing – review and editing. BL:
Conceptualization, Funding acquisition, Methodology, Project
administration, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was
supported in part by NASA under award/number 80NSSC19M0037.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

AdaptiveSoC&FPGASupport (2016). 66570 - UltraScale architecture Soft error
mitigation controller - guidance for testing with error injection. AMD Xilinx

Author Anonymous (2022). Soft error mitigation controller v4.1: LogiCORE IP
product guide. AMD Xilinx.

Barillo, C., and Calvel, P. (1996). Review of commercial spacecraft anomalies and
single-event-effect occurrences. IEEE Trans. Nucl. Sci. 43, 453–460. doi:10.1109/23.
490914

Barnaby, H. J. (2006). Total-ionizing-dose effects in modern cmos technologies. IEEE
Trans. Nucl. Sci. 53, 3103–3121. doi:10.1109/TNS.2006.885952

Barth, J., Dyer, C., and Stassinopoulos, E. (2003). Space, atmospheric, and terrestrial
radiation environments. IEEE Trans. Nucl. Sci. 50, 466–482. doi:10.1109/TNS.2003.
813131

Bedingfield, K. L., Leach, R. D., and Alexander, M. B. (1996). Spacecraft system failures
and anomalies attributed to the natural space environment. NASA Reference
Publication, 1390.

Benedetto, J. M., Eaton, P. H., Mavis, D. G., Gadlage, M., and Turflinger, T. (2006).
Digital single event transient trends with technology node scaling. IEEE Trans. Nucl. Sci.
53, 3462–3465. doi:10.1109/TNS.2006.886044

Claeys, C., and Simoen, E. (2002). Radiation effects in advanced semiconductor materials
and devices. 1 edn. Berlin, Heidelberg: Springer. doi:10.1007/978-3-662-04974-7

Ecoffet, R. (2013). Overview of in-orbit radiation induced spacecraft anomalies. IEEE
Trans. Nucl. Sci. 60, 1791–1815. doi:10.1109/tns.2013.2262002

Garvie, M., and Thompson, A. (2004). “Scrubbing away transients and jiggling around the
permanent: long survival of fpga systems through evolutionary self-repair,” in Proceedings.
10th IEEE international on-line testing symposium, 155–160. doi:10.1109/OLT.2004.1319674

Hughes, H. L., and Benedetto, J. M. (2003). Radiation effects and hardening of mos
technology: devices and circuits. IEEE Trans. Nucl. Sci. 50, 500–521. doi:10.1109/tns.
2003.812928

Jing, Z., Zengrong, L., Lei, C., Shuo, W., Zhiping, W., Lishuai, W., et al. (2012). “Study
of an automated precise seu fault injection technique,” in 2012 IEEE 26th international

Frontiers in Space Technologies frontiersin.org16

Austin et al. 10.3389/frspt.2025.1610424

https://doi.org/10.1109/23.490914
https://doi.org/10.1109/23.490914
https://doi.org/10.1109/TNS.2006.885952
https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1109/TNS.2003.813131
https://doi.org/10.1109/TNS.2006.886044
https://doi.org/10.1007/978-3-662-04974-7
https://doi.org/10.1109/tns.2013.2262002
https://doi.org/10.1109/OLT.2004.1319674
https://doi.org/10.1109/tns.2003.812928
https://doi.org/10.1109/tns.2003.812928
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

parallel and distributed processing symposium workshops and PhD forum, 277–281.
doi:10.1109/IPDPSW.2012.32

Johnston, A. (1998). Radiation effects in advanced microelectronics technologies.
IEEE Trans. Nucl. Sci. 45, 1339–1354. doi:10.1109/23.685206

Joseph, E. C. (1967). Impact of large scale integration on aerospace computers. IEEE
Trans. Electron. Comput. EC- 16, 558–561. doi:10.1109/PGEC.1967.264741

LaMeres, B. J. (2012). Fpga-based radiation tolerant computing. J. Aerosp. Inf. Syst.

LaMeres, B. J. (2023). Highly integrateable AI modules for planning, scheduling,
characterization, and diagnosis (ISS payload installation). Montana State University.

Liu, R., Evans, A., Chen, L., Li, Y., Glorieux, M., Wong, R., et al. (2017). Single event
transient and tid study in 28 nm utbb fdsoi technology. IEEE Trans. Nucl. Sci. 64,
113–118. doi:10.1109/TNS.2016.2627015

Major, C. M., Bachman, A., Barney, C., Tamke, S., and LaMeres, B. J. (2021). Radpc: a
novel single-event upset mitigation strategy for field programmable gate array–based
space computing. J. Aerosp. Inf. Syst. 18, 280–288. doi:10.2514/1.I010859

Sterpone, L., and Violante, M. (2005). Analysis of the robustness of the tmr
architecture in sram-based fpgas. IEEE Trans. Nucl. Sci. 52, 1545–1549. doi:10.1109/
TNS.2005.856543

Yarzada, R., Singh, D., and Al-Asaad, H. (2022). “A brief survey of fault tolerant
techniques for field programmable gate arrays,” in 2022 IEEE 12th annual computing
and communication workshop and conference CCWC, 0823–0828. doi:10.1109/
CCWC54503.2022.9720746

Zhang, C. -M., Jazaeri, F., Pezzotta, A., Bruschini, C., Borghello, G., Faccio, F., et al.
(2016). “Gigarad total ionizing dose and post-irradiation effects on 28 nm bulk
mosfets,” in 2016 IEEE nuclear science symposium, medical imaging conference and
room-temperature semiconductor detector workshop (NSS/MIC/RTSD), 1–4. doi:10.
1109/NSSMIC.2016.8069869

Zhang, C. -M., Jazaeri, F., Pezzotta, A., Bruschini, C., Borghello, G., Mattiazzo, S., et al.
(2017). “Total ionizing dose effects on analog performance of 28 nm bulk mosfets,” in
2017 47th European solid-state device research conference (ESSDERC), 30–33. doi:10.
1109/ESSDERC.2017.8066584

Frontiers in Space Technologies frontiersin.org17

Austin et al. 10.3389/frspt.2025.1610424

https://doi.org/10.1109/IPDPSW.2012.32
https://doi.org/10.1109/23.685206
https://doi.org/10.1109/PGEC.1967.264741
https://doi.org/10.1109/TNS.2016.2627015
https://doi.org/10.2514/1.I010859
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/CCWC54503.2022.9720746
https://doi.org/10.1109/CCWC54503.2022.9720746
https://doi.org/10.1109/NSSMIC.2016.8069869
https://doi.org/10.1109/NSSMIC.2016.8069869
https://doi.org/10.1109/ESSDERC.2017.8066584
https://doi.org/10.1109/ESSDERC.2017.8066584
https://www.frontiersin.org/journals/space-technologies
https://www.frontiersin.org
https://doi.org/10.3389/frspt.2025.1610424

	Single-event upset simulation and detection in configuration memory
	1 Introduction
	2 Background, materials, and methods
	2.1 Background
	2.1.1 Radiation effects
	2.1.2 FPGA configuration memory
	2.1.3 Research focus

	2.2 Materials: payload design
	2.2.1 ISS payload mission
	2.2.1.1 1U case shielding and ISS radiation environment
	2.2.1.2 Design of RadPC
	2.2.1.3 PCB stack
	2.2.2 Mission overview

	2.3 Methods: configuration memory testing
	2.3.1 Experiment design
	2.3.2 Error types
	2.3.3 Procedure for error injections
	2.3.4 Frame addressing for injections
	2.3.5 Limitations of error injection

	3 Results
	3.1 Single-bit fault injections
	3.1.1 Continuous adjacent bit fault injection

	4 Discussion
	4.1 Potential radiation-induced faults in configuration memory
	4.2 Development of systematic configuration memory injection
	4.3 Conclusions

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

