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There is a need within human movement sciences for a markerless motion capture

system, which is easy to use and sufficiently accurate to evaluate motor performance.

This study aims to develop a 3D markerless motion capture technique, using OpenPose

with multiple synchronized video cameras, and examine its accuracy in comparison with

optical marker-basedmotion capture. Participants performed three motor tasks (walking,

countermovement jumping, and ball throwing), and these movements measured using

both marker-based optical motion capture and OpenPose-based markerless motion

capture. The differences in corresponding joint positions, estimated from the two different

methods throughout the analysis, were presented as a mean absolute error (MAE). The

results demonstrated that, qualitatively, 3D pose estimation using markerless motion

capture could correctly reproduce the movements of participants. Quantitatively, of all

the mean absolute errors calculated, approximately 47% were <20 mm, and 80% were

<30 mm. However, 10% were >40 mm. The primary reason for mean absolute errors

exceeding 40 mm was that OpenPose failed to track the participant’s pose in 2D images

owing to failures, such as recognition of an object as a human body segment or replacing

one segment with another depending on the image of each frame. In conclusion, this

study demonstrates that, if an algorithm that corrects all apparently wrong tracking can

be incorporated into the system, OpenPose-based markerless motion capture can be

used for human movement science with an accuracy of 30 mm or less.

Keywords: openPose, markerless, motion capture, biomechanics, human movement

INTRODUCTION

Motion capture systems have been used extensively as a fundamental technology within
biomechanics research. However, traditional marker-based approaches have significant
environmental constraints. For example, measurements cannot be performed in environments
wherein wearing markers during the activity is difficult (such as sporting games). Markerless
measurements without such environmental constraints can facilitate new understanding about
human movements (Mündermann et al., 2006); however, complex information processing
technology is required to make an algorithm that recognizes human poses or skeletons from
images. Therefore, it is desirable to many biomechanics researchers to develop a markerless motion
capture that is easy to use for measurement.
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Recently, automatic human pose estimation using deep
learning techniques have attracted attention amongst computer
vision researchers. Most of these algorithms train the neural
network using manually labeled image data and then estimate
the human posture, such as joint centers and skeletons, when
the user inputs the images or videos to the trained network.
When compared to the approach using RGB-Depth cameras
such as Kinect (Clark et al., 2012; Pfister et al., 2014; Schmitz
et al., 2014; Gao et al., 2015), a deep-learning-based approach
has less constraints on the distance between the camera and
the target to be measured as well as the sampling rate of video
recording. Deep-learning-based approaches have begun with
2D pose estimation, which automatically estimates human joint
centers from 2D RGB images, outputting the 2D coordinates
in the images (Toshev and Szegedy, 2014; Wei et al., 2016;
Papandreou et al., 2018). Additionally, it is possible to identify
the 3D human joint locations in the global coordinate system
using the 2D human joint locations in synchronized multi-
view video camera images following the same procedure as
a marker-based motion capture system. More recently, deep-
learning-based computer vision studies have been working on
3D pose estimation, which estimates the 3D human joint
locations directly using a single algorithm. There have been
studies of 3D pose estimation using a single-view camera
image (Chen and Ramanan, 2017; Pavlakos et al., 2018; Moon
et al., 2019) or multi-view camera images (Rhodin et al., 2018;
Iskakov et al., 2019; Pavllo et al., 2019) as input of the pose
estimation algorithm.

However, biomechanics researchers require ease of use and
sufficient accuracy to achieve the aims of motion analysis.
Seethapathi et al. (2019) reviewed pose tracking studies from
the perspective of movement science and pointed out that
deep-learning-based human pose tracking algorithms did not
prioritize the quantities that matter for movement science. It
remains unclear whether the accuracy of the deep-learning-
based 3D markerless motion capture is appropriate for
human movement studies such as sports biomechanics or
clinical biomechanics.

Although computer-vision researchers are working to
improve the deep-learning-based pose estimation algorithms
(e.g., calculation speed and/or correct tracking rate),
development of these algorithms is outside the scope of
general biomechanics research that investigate the functional
mechanisms, injury prevention, rehabilitation, and motor
control of human movements. Thus, biomechanics researchers
should utilize a combination of publicly available deep-learning-
based software and the principles of conventional motion
capture systems such as camera calibration or kinematic data
processing techniques. OpenPose is one of the most popular
open-source pose estimation technologies (Cao et al., 2018) and
is deemed easy to use for biomechanics researchers. Therefore,
the aim of this study was to develop a 3D markerless motion
capture using OpenPose with multiple synchronized video
cameras and then assess the accuracy of the 3D markerless
motion capture by comparing with an optical marker-based
motion capture.

MATERIALS AND METHODS

Participants
Two healthy male volunteers participated in this experiment.
The mean age, height, and body mass of the participants were
22.0 years, 173.5 cm, and 69.5 kg, respectively. The participants
provided written informed consent prior to the commencement
of the study, and the experimental procedure used in this study
was approved by the Ethics Committee of the university with
which the authors were affiliated.

Overview of Data Collection
Participants performed three motor tasks in the order of walking,
countermovement jumping, and ball throwing. These motor
tasks were chosen to include different levels of degrees of freedom
and speeds of movement; a walking task is a 2D slow movement,
a jumping task is a 2D quick movement, and a throwing task
is a 3D quick movement. These movements were measured
using both a marker-based optical motion capture and a video
camera-based (markerless) motion capture. A light was used
to synchronize the data obtained from all the video cameras
and the two different measurement systems as follows. A light
turned on at the center of the measurement space when it
was switched on by an experimenter before and after a single
trial. The switching on of the light before and after a single
trial was recorded by each video camera. The light switch-
on frame in a video was manually detected for each camera
using Adobe Premiere Pro (Adobe Inc, San Jose, CA, USA).
The synchronization frame was determined as one of the start
or end frames, depending on the trial, because sometimes one
of the start or end frames could not be seen from all camera
views. After the synchronization frame was determined, the total
number of frames for each video camera was set to be equal.
In addition, the light switch-on frame in the analog signals for
the marker-based optical motion capture was detected. Finally,
marker-based motion capture data was down-sampled to the
same sampling frequency as that of the markerless motion
capture data.

Marker-Based Motion Capture
Forty-eight reflective markers were attached onto body
landmarks, as described in our previous study (Kimura et al.,
2019). The coordinates of these reflective markers upon the
participants’ bodies were recorded using a 16-camera motion
capture system (Motion Analysis Corp, Santa Rosa, CA, USA)
at a sampling rate of 200 Hz. The elbow, wrist, knee, and
ankle joint centers were assigned to the mid-points of the
lateral and medial markers, while the shoulder joint centers
were assigned to the mid-points of the anterior and posterior
shoulder markers. The hip joint centers were estimated using the
method described by Harrington et al. (2007). The raw kinematic
data was smoothed using a zero-lag fourth order Butterworth
low-pass filter. The cut-off frequency of the filter was determined
using a residual analysis (Winter, 2009). Data analysis was
performed using MATLAB (v2019a, MathWorks, Inc., Natick,
MA, USA).
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Markerless Motion Capture
The experimental setup and overview of the markerless
motion capture are shown in Figure 1. The definition of
the coordinate system is as follows that X is lateral/medial,
Y is anterior/posterior, and Z is inferior/superior. The
markerless motion capture consisted of five video cameras (GZ-
RY980, JVCKENWOOD Corp, Yokohama, Kanagawa, Japan).
Two measurement conditions, i.e., combinations of video

camera resolutions and sampling frequencies, were implemented:
1, 920 × 1, 080 pixels at 120 Hz (1K condition) and 3, 840 ×

2, 160 pixels at 30 Hz (4K condition). OpenPose (version 1.4.0)
was installed from GitHub (CMU-Perceptual-Computing-Lab,
2017) and run with GPU (GEFORCE RTX 2080 Ti, Nvidia
Corp, Santa Clara, CA, USA) under default settings. Twenty-
five keypoints (Figure 1) of the participant’s body were outputted
independently for each frame via OpenPose execution (for

FIGURE 1 | Experimental setup and overview of the markerless motion capture.
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details, see CMU-Perceptual-Computing-Lab, 2017). The control
points, at which 3D global coordinates could be identified, were
measured using the video cameras with use of a calibration
pole. The 2D video camera coordinates obtained from OpenPose
were transformed to 3D global coordinates using a direct linear
transformation (DLT) method (Miller et al., 1980). The raw
kinematic data was smoothed using a zero-lag fourth order
Butterworth low-pass filter. The cut-off frequency of the filter was
determined using residual analysis (Winter, 2009), and the ranges
were 5–8 and 2–3 Hz in the 1K and 4K conditions, respectively.

Data Analysis
The position data obtained using the marker-based motion
capture was downsampled using the spline function to alter the
number of frames such that they were the same as those obtained
using markerless motion capture. The analysis period durations
were defined for each individual motor task: from the second
step heel contact to the next heel contact of the same leg in
a walking task, from the start of the squatting motion to the
recovery of the initial upright stance in a jumping task, and
from the toe-off on the opposite side of the throwing arm to
the end of the arm-swing in a throwing task. The differences in
the corresponding joint positions that were estimated from the
two different motion captures throughout the analysis durations
were calculated. Mean absolute error (MAE) of the two time-
series data during the analysis period durations was used as the
indicator of the difference as described by Equation (1), where, n
is the number of frames, xm and xo are the positions estimated by
the marker-based and OpenPose-based approaches, respectively.
It should be noted that the positions of the landmarks that
are tracked by OpenPose do not necessarily correspond to
the points estimated by the marker-based approach. Therefore,
to evaluate the accuracy of markerless motion capture, we
compared the corresponding positions of the shoulder, elbow,
wrist, hip, knee, and ankle joints, which can be estimated by two
motion captures.

RESULTS

Examples of the 3D pose estimations obtained by the two
different motion captures are depicted in Figure 2A. In
addition, video examples that show the participant’s pose during
movements are provided as Supplementary Materials to this
paper. The representative time-series profiles of joint positions
estimated by both themarker-basedmotion capture (Mocap) and
the OpenPose-based markerless motion capture (OpenPose) can
be seen in Figure 3. Here, the X, Y, and Z positions of the ankle
joint for throwing under the 1K condition, the knee joint for
jumping under the 1K condition, the elbow joint for throwing
under the 1K condition, and the ankle joint for walking under the
4K condition are shown as representative plots. The MAE of the
two plots throughout the duration of analysis is shown in each
panel. Qualitatively, the shapes of the time-series profiles were
found to be approximately the same.

Quantitatively, the MAE of joint positions in Figures 3A,B

were <20 mm; however, the MAEs of joint positions in
Figures 3C,D were >40 mm. The absolute errors were

particularly large at specific moments within the analysis
duration (i.e., approximately 45 and 80% of the time in
Figure 3C, as described in Figures 2A1–3). The MAEs of the
corresponding joint positions, estimated from the two different
motion captures for all trials, are presented in Table 1. Of these
MAEs in Table 1, approximately 47% are <20 mm, 80% are <30
mm, and 10% are >40 mm.

The accuracy of the 3D pose estimation using the markerless
motion capture depends on 2D pose tracking by OpenPose.
Because the algorithm that tracks the human pose was applied to
each frame of the video independently, within a single trial, there
are frames where the participant’s pose was well tracked, whereas
in others the participant’s pose was not well tracked. Examples
of pose estimation successes and failures using OpenPose are
depicted in Figure 2B. Based on our visual inspection, we defined
the apparently incorrect position tracking as failures and the
remaining as successes.

DISCUSSION

This study aimed to examine the accuracy of 3D markerless
motion capture using OpenPose with multiple video
cameras through comparison with an optical marker-based
motion capture. Qualitatively, 3D pose estimation using
the markerless motion capture approach can correctly
reproduce the movements of participants (Figure 2A and
Supplementary Videos). The MAE in 80% of all trials conducted
was found to be <30 mm. This relatively small error may be due
to the shortcomings in the OpenPose tracking precision. Because
the majority of computer vision-based pose tracking algorithms,
including OpenPose, are based on the supervised learning using
manually labeled data, it is inevitable that small errors in 3D pose
are caused by inherent noise in the training data.

Relatively large MAEs exceeding 40 mm were observed in
certain cases (Figure 3). Observing the estimated pose during
movements reveals that the correct joint positions (including
noises) are estimated in the trial, including a relatively small
error that is<30mm (e.g., Figures 2A1-1, A1-2, A1-4); however,
apparently incorrect joint positions are estimated in the trial
including relatively large errors that are more than 40 mm (e.g.,
Figure 2A1-3). The primary reason for estimating apparently
incorrect 3D positions is that OpenPose failed to track the
participant’s pose depending on the image of each individual
frame (Figure 2B). Due to the 2D tracking failures, correction
of such failures is required to achieve a more accurate 3D
pose estimation. Within this study, for example, the interchange
of the left and right segments was retrospectively corrected
because, without this correction, the 3D pose was completely
different from the human shape. However, recognizing an object
as a human body segment (e.g., failures in Figure 2B) was
not corrected because it may have required manual tracking;
moreover, without the correction, the 3D pose accuracy could
be evaluated. Therefore, to use the OpenPose-based markerless
motion capture in human movement science studies, it is
considered necessary to incorporate algorithms that can correct
all such tracking failures.
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FIGURE 2 | (A) Examples of participant’s pose estimated by the marker-based motion capture (Mocap) and by the OpenPose-based markerless motion capture

(OpenPose); (B) Examples of 2D pose tracking success and failure during a (1) ball throwing task and (2) walking task. We defined the apparently incorrect position

tracking as failures and defined the others as success based on our visual inspection.
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FIGURE 3 | Time series profiles of joint positions estimated by the marker-based motion capture (Mocap) and by the markerless motion capture using OpenPose

(OpenPose). Here, the X, Y, and Z positions of (A) the ankle joint for throwing under the 1K condition, (B) the knee joint for jumping under the 1K condition, (C) the

elbow joint for throwing under the 1K condition, and (D) the ankle joint for walking under the 4K condition are shown as representative plots. The mean absolute error

(MAE) through analysis duration is shown in each panel. Also, 1K and 4K represent that the task was recorded under 1K (1, 920× 1, 080 pixels at 120 Hz) and 4K

(3, 840× 2, 160 pixels at 30 Hz) conditions when using video-camera-based motion capture, respectively. X is lateral/medial, Y is anterior/posterior, and Z is

inferior/superior direction.
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TABLE 1 | The MAEs (mm) as the differences of corresponding joint positions

estimated from the two different motion captures.

Walk1K Walk4K Jump1K Jump4K Throw1K Throw4K

X 28.4 24.6 27.1 20.9 21.7 19.3

ShoulderR Y 17.0 49.7 12.5 11.9 27.7 32.5

Z 17.9 16.5 29.5 30.8 15.8 13.9

X 4.32 6.96 9.36 8.25 47.3 45.2

ElbowR Y 37.0 66.8 27.0 20.5 28.7 35.1

Z 21.7 22.2 26.9 35.3 38.0 38.9

X 5.78 7.52 8.96 8.31 40.6 47.5

WristR Y 19.0 44.2 13.2 20.6 28.7 40.3

Z 15.7 16.8 23.8 38.9 24.7 26.7

X 9.65 7.67 8.77 6.01 29.5 25.0

HipR Y 21.3 49.4 15.0 14.2 13.5 20.8

Z 24.4 20.6 31.0 32.1 27.2 23.5

X 6.41 4.09 7.74 6.47 15.2 13.1

KneeR Y 25.9 48.2 8.48 18.3 13.8 19.1

Z 10.1 11.4 14.8 20.9 24.4 20.4

X 9.68 8.73 9.82 6.67 12.3 19.1

AnkleR Y 28.6 58.1 9.31 11.0 17.7 22.2

Z 11.7 20.7 20.6 27.9 12.4 20.3

Also, 1K and 4K represent that the task was recorded under 1K (1,920 × 1,080 pixels at

120 Hz) and 4K (3,840 × 2,160 pixels at 30 Hz) conditions when using video-camera-

based motion capture, respectively. X is lateral/medial, Y is anterior/posterior, and Z is

inferior/superior direction.

There are several methods for fixing the tracking failures.
One approach is to use the same procedure as that used in
the software to operate the traditional marker-based motion
capture system in which the errors can be fixed by using the
temporal continuity of a point trajectory, assuming rigid bodies
of participants’ segments, and manually digitizing the correct
position. This method may be appropriate for biomechanics
researchers because the principles used are similar to those of the
traditional marker-based approach. Another approach is to refine
the neural network in the deep-learning algorithm. For example,
in DeepLabCut (Nath et al., 2019), users evaluated the tracking
results outputted from the first-trained neural network and
perform secondary-training of the neural network to improve
the performance of the algorithm. This method is appropriate for
computer vision andmachine learning researchers. Therefore, we
utilized the first method to correct the tracking failure.

Other sources of error may be data processing, such as time
synchronization. The error in the movement direction (i.e., Y
direction for walking task and Z direction for jumping task),
especially in the 30 Hz measurement (4K condition), tends to
be large (Table 1). Within the time series profiles, the timing of
synchronization appears to affect to the error of the two motion
captures (Figure 3D). However, because this is a problem caused
by the process of comparing the twomotion captures, the effect of
this error on the accuracy of the markerless system measurement
should be relatively small.

We used the 1K (1, 920 × 1, 080 pixels at 120 Hz) and
4K (3, 840 × 2, 160 pixels at 30 Hz) conditions when using

video-camera-based motion capture, which have lower sampling
rates than those of the marker-based motion capture system.
However, computer-vision-based pose estimation algorithms
have the potential to extend the possibilities of measurement at
high sampling rates exceeding 1,000 Hz. When measuring with
current marker-based motion capture cameras at a sampling rate
of 1,000 Hz or more, the angle of the camera view becomes very
small, making it difficult to measure fast movements. Because
a computer-vision-based pose estimation algorithm, such as
OpenPose, can be applied to high-speed camera images, it is
expected to overcome the difficulty.

Furthermore, we used five video cameras for markerless
motion capture. Because, in the DLT method, the 3D position
coordinates were calculated using the least squares method based
on the joint coordinates in each camera coordinate system,
the stability of the estimated 3D joint position improves as
the number of cameras increases (i.e., the robustness against
the probabilistic perturbation of the estimated joint position
increases). In addition, if the number of cameras is sufficiently
large, the camera that produces large tracking errors in a
frame can be excluded from the 3D pose calculation. However,
when manual processing is required for camera images, the
processing cost increases proportionally with the number of
cameras. Therefore, if a researcher increases the number of video
cameras for a markerless motion capture, it is better to use
the devices and programs that can automatically process most
of the data.

In this study, we evaluated the accuracy of markerless
motion capture through comparison with an optical marker-
based motion capture. However, the marker-based system also
has errors, which are mainly due to the skin artifact, (i.e., an
error of joint position owing to the deformation of the skin on
which the markers were attached on). The errors of the marker-
based system can affect the validity of accuracy evaluation of
markerless motion capture. Despite this limitation, the marker-
based system has been recognized as the gold standard in the field
of biomechanics. In addition, it is also difficult to make a similar
comparison using a skinless cadaver because the cadaveric-based
evaluation has limitations in movement. Therefore, our method
for evaluating a markerless motion capture can be considered to
be reasonable.

This study is preliminary work and thus requires further
examination. Two perspectives may be important as a next
step. First, the accuracy of joint positions could be improved
so that other biomechanical parameters such as joint angle,
joint angular velocity, and joint torque can be used. Thereafter,
the accuracy of these biomechanical parameters should be
investigated. Second, the task and aim of the study could be
chosen so that the analysis can be performed within the accuracy
of the current measurement system. Even if the accuracy of
a markerless measurement is lower than that of the marker-
based system, the markerless system has the advantage of
environmental constraints. While limitations still exist, deep-
learning-based markerless motion capture is expected to be
applied in the future to sporting games and rehabilitations, which
are considered to be difficult to measure with marker-based
motion capture.
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