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As gait adaptation is vital for successful locomotion, the development of field-based

tools to quantify gait in challenging real-world environments are crucial. The aims of this

study were to assess the reliability and validity of a smartphone-based gait and balance

assessment while walking on unobstructed and obstructed terrains using two phone

placements. Furthermore, age-related differences in smartphone-derived gait strategies

when navigating different walking conditions and environments were evaluated. By

providing a method for evaluating gait in the simulated free-living environment, results

of this study can elucidate the strategies young and older adults utilize to navigate

obstructed and unobstructed walking paths. A total of 24 young and older adults

ambulated indoors and outdoors under three conditions: level walking, irregular surface

walking, and obstacle crossing. Android smartphones placed on the body and in a bag

computed spatiotemporal gait (i.e., velocity, step time, step length, and cadence) and

balance (i.e., center of mass (COM) displacement), with motion capture and video used to

validate parameters in the laboratory and free-living environments, respectively. Reliability

was evaluated using the intraclass correlation coefficient and validity was evaluated

using Pearson’s correlation and Bland-Altman analysis. A three-way ANOVA was used to

assess outcome measures across group, condition, and environment. Results showed

that smartphones were reliable and valid for measuring gait across all conditions, phone

placements, and environments (ICC2,1: 0.606–0.965; Pearson’s r: 0.72–1.00). Although

body and bag placement demonstrated similar results for spatiotemporal parameters,

accurate vertical COM displacement could only be obtained from the body placement.

Older adults demonstrated a longer step time and lower cadence only during obstacle

crossing, when compared to young adults. Furthermore, environmental differences in

walking strategy were observed only during irregular surface walking. In particular,

participants utilized a faster gait speed and a longer step length in the free-living

environment, compared to the laboratory environment. In conclusion, smartphones

demonstrate the potential for remote patient monitoring and home health care. Along

with being easy-to-use, inexpensive, and portable, smartphones can accurately evaluate

gait during both unobstructed and obstructed walking, indoors and outdoors.
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INTRODUCTION

Gait performance is an important marker of functional ability,
independent living, and survival (Hardy et al., 2007; Lord
et al., 2013). In particular, the ability to modify gait to
suit different environmental contexts is vital for successful
locomotion, especially in complex environments such as irregular
surfaces or negotiating obstacles. To examine gait adaptation,
most research replicated these challenging walking situations in a
low-distraction laboratory setting using sophisticated equipment
(i.e., motion capture systems or instrumented walkways) (Chen
et al., 1994; Weerdesteyn et al., 2005; Marigold and Patla, 2008).
However, these conventional systems cannot collect data from
more than a few gait cycles, thus may not reflect the usual gait
behavior of people during daily life.

Recently, the use of body-worn inertial measurement units
(IMU) has allowed for continuous, remote data collections
over extended time periods (Patel et al., 2012). Although IMUs
have demonstrated excellent concurrent validity for assessing
gait compared to conventional instruments (Hartmann et al.,
2009), they have numerous shortcomings. Attachment of an IMU
directly onto the body can lead to discomfort, and thus reduce
compliance (del Rosario et al., 2015). Importantly, an IMU has
a relatively high cost for commercial software packages and
requires trained personnel to perform the assessment, operate
the system, and interpret the data. Smartphones have thus been
proposed as a potential instrument for gait evaluation. With
the ubiquity of smartphones, utilizing the embedded sensors
and user-friendly interface of a smartphone can allow for a
cost-effective, convenient, and automated tool for assessing gait
among health care providers, care givers, athletes, or patients.

Current smartphone technology has made remote and
prolonged gait assessment possible. Previous studies have shown
that a smartphone placed on the body or in a bag is valid and
reliable for measuring spatiotemporal gait parameters during
straight walking (Silsupadol et al., 2017), turning, and gait speed
modulation (Silsupadol et al., 2019). While spatiotemporal gait
parameters provide a basic quantification of walking quality,
the center of mass (COM) motion has been used as a global
measure of balance control during gait. To date, only one
study has investigated the reliability and validity of the vertical
COM displacement using a smartphone-based accelerometer
(Furrer et al., 2015). The results demonstrated good reliability
and moderate correlations when comparing the vertical COM
displacement derived from a smartphone-based accelerometer
against a motion capture system during level walking.

Validation of smartphone-based gait and balance assessment
is currently limited to unobstructed walking. Whether the
smartphone-derived validity during unobstructed walking
is transferable to challenging real-world walking situations,
requires further investigation. It is crucial to assess gait
and balance performance under conditions that individuals,
especially older adults, are likely to encounter in daily life. Aging
is accompanied by deterioration in physical, cognitive, and
psychological health that are essential for effective propulsion
and balance control, consequently putting the elderly at a greater
risk for falls. In particular, a large proportion of falls in older

people occur outdoors (51–81%) and are initiated by tripping
either on irregular walking surfaces (44%) or on a discrete object
(37%) (Li et al., 2006; Robinovitch et al., 2013).

Since gait adaptation is a key requirement for successful
locomotion and falls among older adults mostly occur outdoors
while walking on irregular surfaces and negotiating obstacles,
it is essential to have a valid, user-friendly, and cost-
effective measurement system that can quantitatively and
continuously assess gait in the free-living environment. As
phones are generally carried in different locations, the effect
of placement requires investigation. Furthermore, no studies
have utilized smartphones to investigate age-related gait and
balance performance during a variety of challenging conditions.
Therefore, the purposes of this study were: (1) to assess the
reliability and validity of a smartphone-based accelerometer
in determining spatiotemporal gait and COM displacement
during level walking, irregular surface walking (continuous
perturbation), and obstacle crossing (discrete perturbation) in
both laboratory and free-living environments; (2) to examine
inter-placement validity of two identical Android smartphones
placed on the body and in a bag; and (3) to evaluate differences
in walking strategy among young and older adults across
walking condition and environment. We hypothesized that a
smartphone-based evaluation of spatiotemporal gait parameters
and COM displacement would be reliable and valid across
walking conditions and environments, when placed either on the
body or in a bag. We further hypothesized that a smartphone-
based assessment would elucidate age-related differences in
gait performance across environment when negotiating various
walking surfaces and obstacles.

MATERIALS AND METHODS

Participants
Young (18–35 years old) and older (65 years or older) adults
were recruited into the study through leaflets and announcement
through community leaders and primary health care providers.
All participants were able to walk at least 10-m without the
assistance of another person or walking aid. Exclusion criteria
included unstable medical conditions, having visual impairment
uncorrectable with lenses, and having lower limb amputation or
arthroplasty. This study was approved by the university’s research
ethics committee (number AMSEC-61EX-043). All participants
provided written informed consent prior to enrollment.

Experimental Design
Following informed consent, participants’ demographic and
anthropometric information such as age, gender, and leg length
were recorded. During laboratory trials, a total of 28 retro-
reflective markers were positioned on bony landmarks of the
body, using a modified Helen Hayes marker set (Hahn and
Chou, 2004). Participants’ gait was evaluated using a nine-
camera motion analysis system (Motion Analysis Corp., Santa
Rosa, CA), which collected three-dimensional marker trajectories
at 120Hz. In the free-living environment, a video camera
recorded participants’ gait at 30Hz. During all walking trials,
participants carried two Android smartphones (Samsung J7+
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Android 7.1.1; 152.4 × 74.7 × 7.9mm). One smartphone was
attached horizontally at the level of the third lumbar vertebrae
using a secure belt pouch (Figure 1). The second smartphone was
placed vertically inside a shoulder bag (13× 20 cm) and rested on
the right hip.

Participants were asked to walk 10m at their self-selected
comfortable speed under three conditions indoors and outdoors:
(1) level walking; (2) irregular surface walking; and (3) obstacle
crossing. The controlled laboratory environment was quiet
and clutter-free, whereas the simulated free-living environment
included a level pedestrian walkway connected to a parking
lot, coffee shop, and classrooms. For the irregular surface task
performed in the laboratory, a walkway was constructed from
16 irregular terrains (0.6 × 1.2m) to create a 9.6 × 1.2m grid.
Each terrain consisted of eight plywood pieces (width × height
× thickness of 30 ×30 × 0.9 cm) elevated from a level surface
using dowels of 0.7–1.6 cm to produce anterior-posterior (AP) or
medial-lateral (ML) disturbances (Figure 2A). For the irregular
surface condition in the free-living environment, an uneven 10-
m portion of a sidewalk located near a parking lot and street was

FIGURE 1 | Placement of the two smartphones in a shoulder bag and on the

lumbar spine during all walking trials. During laboratory walking trials, reflective

markers were placed on bony landmarks of the body while the participant

wore a body suit.

utilized (Figure 2B). For both environments, during the crossing
over an obstacle trial, a light-weight plastic obstacle set at a height
of 20 cm was placed in the middle of the walkway, to resemble a
curb height found in real-life situations.

With three trials performed for each of the three walking
conditions across two environments, a total of 18 trials were
performed by each participant, with all trials completed during a
single visit. The order of all conditions was randomized, with the
order of environmental setting counterbalanced. Mean values for
each walking condition were used for further analysis.

Data Acquisition and Analysis
A custom-built Android application, Gait Analyzer (Lugade,
2018), was utilized to collect the smartphone’s tri-axial
accelerometer (STM LSM6DSL, 39.2 m/s2 range; 1.20 ×

10−3 m/s2 resolution) data at 50Hz. All acceleration data were
downloaded following completion of the data collection and
analyzed offline using custom written programs in MATLAB
(Mathworks Inc., Natick, MA).

Data across all three axes were filtered using a 4th order
low-pass Butterworth filter with a 20Hz cutoff frequency. AP
accelerations were further filtered using a Butterworth 4th order
low-pass filter with a cutoff frequency of 2Hz. Positive peaks in
the filtered AP direction were used to identify heel strikes. Gait
measures were calculated from the acceleration data and heel
strike timing events, with this methodology previously shown
to be valid and reliable (Zijlstra, 2004; Silsupadol et al., 2017).
Step time was defined as the time difference between heel strikes.
Step length was calculated as the displacement along the vertical
axis across each step cycle and a participant’s leg length using
the relationship:

FIGURE 2 | Configuration of the uneven surface while walking in the

laboratory (A) and in the free-living environment (B).

Frontiers in Sports and Active Living | www.frontiersin.org 3 November 2020 | Volume 2 | Article 560577

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Kuntapun et al. Smartphone Monitoring of Simulated Walking

step length = 2 ∗
√

2 ∗ h ∗ l− h2 (1)

where h is the vertical displacement of the center of mass across
each step cycle and l is the leg length (Zijlstra andHof, 2003). Step
velocity was computed as the quotient of the step length and step
time, with gait velocity being the average step velocity across all
steps. Cadence was calculated as the number of steps taken over
the total trial time.

Smartphone-derived COM displacement was calculated by
first removing gravity from the raw acceleration signal by
applying a high-pass 3rd order 0.25Hz elliptical filter with a 0.01
dB passband and 100 dB stopband (Lugade et al., 2014). The
body-motion component of acceleration was then numerically
double integrated across each step cycle to obtain the velocity and
position (Furrer et al., 2015). In order to remove integration drift,
a first order recursive high-pass Butterworth filter was applied to
both the velocity and position data, with a 0.2Hz cutoff frequency
applied to the AP and ML directions, and 0.5Hz used for the
superior-inferior (SI) direction (Floor-Westerdijk et al., 2012).
The COM range of motion was computed as the average of
each minimum to maximum displacement in the AP, ML, and
SI directions across all step cycles.

Marker data from the three-dimensional motion capture
system were downloaded and analyzed using custom written
MATLAB programs, with position data initially filtered using
a 4th order low-pass Butterworth filter with an 8Hz cutoff
frequency. Heel strikes were detected using the vertical velocity
of the midfoot (O’Connor et al., 2007). Step length and step
time were calculated using the position and time change of the
heel marker between heel strikes. Gait velocity and cadence were
computed identically to the methods used for the smartphone
analysis. COM was computed as the weighted sum of a 13-
segment model, which included segmental COM for bilateral
feet, bilateral shanks, bilateral thighs, pelvis, trunk, bilateral
upper arms, bilateral lower arms and hands, and the head
(Lugade et al., 2011).

Synchronization between motion capture and smartphone
was performed by counting the number of steps taken from the
starting point till the participant entered the capture volume
of the motion capture system. Only steps collected within the
capture volume were used for validation purposes. For obstacle
crossing trials, only the two crossing steps were used for analysis.

A video editing program (Avidemux 2.7) was used to identify
heel strikes of each step from video, and subsequently calculate
step time and cadence during free-living trials. Video-based gait
assessment revealed excellent intra-rater reliability (ICC3,1 =

0.928) from a single investigator who re-assessed step times of a
single participant 1 week after the initial evaluation. Gait velocity
was calculated based on the total distance traveled and time
elapsed per trial. Synchronization between the video camera and
the smartphone was performed using the onset of movement
detected by both systems. For level and irregular surface walking,
all steps except for the first two gait initiation steps and the final
two gait termination steps were included for analysis. Validity

and reliability of crossing speed during the obstacle crossing
condition could not be evaluated using video-derived data.

Statistical Analysis
For intra-session reliability, all derived parameters from the
two smartphones, motion capture system, and video camera
were assessed across trials using the intraclass correlation
coefficient (ICC2,1). For ICC values, Cicchetti’s guidelines was
used to interpret results, with values <0.40 representing poor
reliability, 0.40–0.59 fair reliability, 0.60–0.74 good reliability,
and values >0.75 having excellent reliability (Cicchetti, 1994).
For concurrent validity, average values of the data obtained
by the different measurement devices were examined using
Pearson correlation coefficients (r), with motion capture and
video observation considered the gold standard measures
in the laboratory and free-living environments, respectively.
Correlation r-values were interpreted as <0.30 being negligible,
0.30–0.50 low, 0.50–0.70 moderate, 0.70–0.90 high, and 0.90–
1.00 very high (Mukaka, 2012). Bland-Altman analysis was used
to evaluate the bias and 95% limits of agreement between the
smartphone-based evaluations and motion capture or video.

For participant demographics, t-tests were used to evaluate
differences in age, weight, and height between the young and
older groups. A three-way mixed-effects ANOVA was used
to investigate differences in gait and balance measures with
walking condition and environment setting as within-subject
factors, and group as the between-subjects factor. If a three-way
interaction was non-significant, all possible two-way interactions
were investigated. Main effects were considered only if no two-
way interactions were found. If there were any interaction effects,
the differences were then estimated at each level. Following
statistical guidelines (Prescott, 2019), significance was set at
an alpha level of p < 0.05 with unadjusted p-values reported.
Outliers which were not the result of technical error were
included in the analysis. All data were analyzed using SPSS 17.0
(IBM Inc., Armonk, NY).

RESULTS

Twelve healthy young [three males; age 23.4 (2.2) years;
weight 58.3 (9.9) kg; height 1.63 (0.07) m] and twelve
healthy older adults [three males; 75.6 (5.6) years; 58.0
(6.6) kg; 1.60 (0.09) m] were included in the study. While
an age difference was found (p < 0.001), there were
no height (p = 0.40) or weight (p = 0.92) differences
between groups.

Reliability
Spatiotemporal gait parameters obtained from motion capture,
video, and the two smartphones demonstrated excellent
reliability during level and irregular surface walking in both
laboratory (ICC2,1 ranging from 0.944 to 0.989, 0.908 to 0.965,
and 0.882 to 0.953 for motion, smartphone on the body, and
smartphone in the bag, respectively; Table 1) and free-living
environments (ICC2,1 ranging from 0.951 to 0.969, 0.896 to
0.952, and 0.774 to 0.882 for video, smartphone on the body,
and smartphone in the bag, respectively; Table 2). While motion
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TABLE 1 | Validity and reliability of smartphone-based measures in the laboratory.

Condition Motion Smartphone-body Smartphone-bag

Mean (SD) ICC (2,1) Mean (SD) ICC (2,1) r Bias (LOA) Mean (SD) ICC (2,1) r Bias (LOA)

Gait velocity (m/s)

Level 1.18 (0.21) 0.987 1.27 (0.24) 0.965 0.92 0.09 (−0.10–0.28) 1.24 (0.24) 0.948 0.92 0.06 (−0.12–0.24)

Irregular 1.12 (0.24) 0.972 1.21 (0.26) 0.938 0.95 0.09 (−0.06–0.25) 1.20 (0.25) 0.940 0.95 0.08 (−0.07–0.24)

Obstacle 0.85 (0.20) 0.932 1.03 (0.23) 0.770 0.90 0.18 (−0.02–0.38) 1.04 (0.23) 0.635 0.86 0.19 (−0.04–0.42)

Step time (ms)

Level 527 (47) 0.965 528 (47) 0.964 1.00 1.2 (−5.6–8.0) 531 (48) 0.947 1.00 4.4 (−4.2–13.0)

Irregular 553 (60) 0.944 554 (60) 0.946 1.00 1.0 (−5.9–7.9) 552 (55) 0.882 0.99 −0.6 (−18.5–17.2)

Obstacle 749 (133) 0.901 705 (103) 0.802 0.94 −44 (−143–54) 692 (107) 0.727 0.87 −56 (−185–72)

Step length (cm)

Level 61.3 (8.2) 0.989 66.2 (10.1) 0.954 0.86 4.9 (−5.1–15.0) 65.0 (9.7) 0.953 0.87 3.8 (−5.7–13.2)

Irregular 60.6 (9.4) 0.971 66.0 (10.5) 0.908 0.91 5.4 (−3.1–13.9) 65.5 (10.6) 0.920 0.91 4.8 (−3.6–13.3)

Obstacle 60.4 (9.2) 0.875 70.8 (10.9) 0.606 0.81 10.5 (−2.1–23.0) 70.5 (12.0) 0.654 0.72 10.2 (−6.2–26.5)

Cadence (steps/min)

Level 115 (10) 0.967 114 (10) 0.965 1.00 −0.2 (−1.7–1.2) 114 (10) 0.951 1.00 −0.9 (−2.8–1.0)

Irregular 110 (11) 0.949 110 (11) 0.951 1.00 −0.2 (−1.8–1.4) 110 (10) 0.903 1.00 −0.0 (−2.9–2.9)

Obstacle 82 (12) 0.930 87 (11) 0.761 0.92 4.6 (−4.7–14.0) 89 (13) 0.681 0.88 6.6 (−5.6–18.8)

COM AP (cm)

Level 5.7 (2.4) 0.344 6.0 (1.8) 0.921 −0.30 0.2 (−6.5–7.0) 5.5 (1.8) 0.484 −0.20 −0.3 (−6.8–6.3)

Irregular 6.5 (2.9) 0.461 6.0 (1.9) 0.907 −0.42 −0.5 (−8.5–7.5) 5.8 (1.7) 0.265 0.08 −0.6 (−6.9–5.6)

Obstacle 7.0 (1.9) 0.478 6.4 (2.0) 0.610 0.24 −0.7 (−5.4–4.0) 6.4 (1.8) 0.360 0.29 −0.6 (−4.9–3.7)

COM ML (cm)

Level 6.3 (1.8) 0.488 2.9 (1.2) 0.752 0.14 −3.4 (−7.3–4.4) 6.4 (2.4) 0.556 −0.30 0.1 (−6.6–6.8)

Irregular 7.2 (2.3) 0.556 3.2 (1.0) 0.638 0.12 −4.0 (−8.7–0.7) 6.6 (3.0) 0.711 −0.37 −0.6 (−9.2–8.0)

Obstacle 5.3 (2.1) 0.714 5.0 (2.6) 0.715 0.70 −0.4 (−4.0–3.3) 7.0 (2.9) 0.692 −0.20 1.6 (−6.1–9.3)

COM SI (cm)

Level 4.1 (0.8) 0.891 3.0 (0.5) 0.767 0.63 −1.1 (−2.3–0.1) 3.5 (1.0) 0.573 0.19 −0.6 (−2.8–1.6)

Irregular 4.5 (0.8) 0.805 3.2 (0.7) 0.703 0.75 −1.3 (−2.4–0.2) 3.9 (1.7) 0.676 0.42 −0.7 (−3.6–2.3)

Obstacle 7.9 (1.2) 0.722 4.9 (1.0) 0.543 0.49 −3.1 (−5.4– −0.8) 3.4 (1.0) 0.313 0.19 −4.6 (−7.3– −1.8)

COM, Center of mass; AP, Anterior-posterior; ML, Medial-lateral; SI, Superior-inferior; LOA, Limits of agreement.

capture and video also demonstrated excellent reliability for
spatiotemporal gait parameters during obstacle crossing trials,
the smartphones showed good to excellent reliability for this
condition (ICC2,1 ranging from 0.606 to 0.804 and 0.635 to 0.764
for the body and bag placements, respectively). Among the COM
displacement parameters, poor to excellent reliability was found
for motion capture (ICC2,1 ranging from 0.344 to 0.891), fair
to excellent reliability for the smartphone placed on the body
(ICC2,1 ranging from 0.543 to 0.921), and poor to good reliability
for the smartphone placed in the shoulder bag (ICC2,1 ranging
from 0.265 to 0.711).

Validity
High to very high correlations were found for all spatiotemporal
gait parameters when placing the smartphone on the body or
bag, across all conditions and environments (r ranging from
0.81 to 1.00 and 0.72 to 1.00 for the body and bag, respectively;
Tables 1, 2). Bland-Altman analysis revealed slightly increased
bias and limits of agreement during the obstacle crossing

condition, when compared to either the level or irregular surface
walking for all parameters (Figures 3, 4; Tables 1, 2).

Low to high correlations (r ranging from 0.49 to 0.75)
were demonstrated for the SI COM displacement, when the
smartphone was placed on the body. Negligible to moderate
correlations were found for the COM displacement along the
AP and ML directions for the smartphone placed on the body.
Furthermore, negligible to low correlations were found for COM
parameters across all directions and conditions, when placing the
smartphone in the bag.

Effect of Age, Walking Condition, and
Environment on Gait
Effects of age, condition, and environment were investigated
using smartphones from both body and bag locations. However,
as identical interaction and main effects were found for all
gait parameters between the two phone locations, only data
derived from the smartphone on the body location were reported
(Table 3). Results revealed no significant three-way group ×
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TABLE 1a | Validity and reliability of smartphone-based measures among young adults in the laboratory.

Condition Motion Smartphone-body Smartphone-bag

Mean (SD) ICC (2,1) Mean (SD) ICC (2,1) r Bias (LOA) Mean (SD) ICC (2,1) r Bias (LOA)

Gait velocity (m/s)

Level 1.26 (0.16) 0.980 1.31 (0.20) 0.953 0.89 0.05 (−0.14–0.24) 1.29 (0.21) 0.910 0.90 0.03 (−0.16–0.21)

Irregular 1.24 (0.17) 0.964 1.31 (0.20) 0.924 0.89 0.07 (−0.10–0.25) 1.31 (0.21) 0.960 0.89 0.07 (−0.12–0.26)

Obstacle 0.98 (0.11) 0.823 1.12 (0.19) 0.821 0.88 0.14 (−0.07–0.36) 1.14 (0.16) 0.539 0.76 0.16 (−0.05–0.37)

Step time (ms)

Level 522 (36) 0.970 523 (37) 0.969 0.99 1.7 (−6.2–9.6) 525 (37) 0.918 1.00 3.4 (−4.1–10.9)

Irregular 533 (38) 0.940 534 (37) 0.945 0.99 1.1 (−8.0–1.0) 533 (36) 0.934 0.99 0.8 (−1.0–11.5)

Obstacle 681 (60) 0.891 654 (57) 0.579 0.82 −27.6(−96.9–41.7) 634 (56) 0.478 0.76 −47.2(−126–31.3)

Step length (cm)

Level 65.3 (6.7) 0.984 68.3 (10.1) 0.946 0.86 3.0 (−7.6–13.6) 67.3 (9.8) 0.935 0.88 1.9 (−7.9–11.7)

Irregular 65.7 (7.1) 0.973 69.8 (9.5) 0.893 0.87 4.2 (−5.4–13.8) 69.5 (9.9) 0.962 0.87 3.9 (−6.0–13.8)

Obstacle 65.4 (8.0) 0.818 72.8 (11.9) 0.852 0.84 7.4 (−5.9–20.7) 72.3 (12.6) 0.784 0.84 6.9 (−7.5–21.2)

Cadence (steps/min)

Level 115 (8.1) 0.973 115 (8.2) 0.970 0.99 −0.4 (−2.0–1.3) 115 (8.2) 0.928 1.00 −0.7 (−2.2–0.8)

Irregular 113 (8.2) 0.934 113 (7.8) 0.945 0.99 −0.3 (−2.5–2.0) 113 (7.7) 0.935 0.99 −0.2 (−2.8–2.3)

Obstacle 89 (8.3) 0.915 93 (8.2) 0.544 0.80 4.0 (−6.2–14.2) 96 (8.7) 0.495 0.79 6.9 (−3.9–17.7)

COM AP (cm)

Level 4.8 (1.2) 0.002 6.2 (1.8) 0.942 0.15 1.5 (−2.5–5.5) 5.9 (2.1) 0.623 −0.09 1.2 (−3.8–6.1)

Irregular 4.8 (0.8) −0.148 6.5 (0.8) 0.925 0.20 1.7 (−1.8–5.2) 5.3 (1.1) 0.202 0.33 0.5 (−1.8–2.8)

Obstacle 6.1 (1.1) 0.278 6.1 (2.1) 0.690 0.57 −0.0 (−3.4–3.3) 5.9 (1.6) 0.351 0.73 −0.2 (−2.4–1.9)

COM ML (cm)

Level 5.5 (0.6) −0.022 2.5 (0.7) 0.632 −0.05 −3.0 (−4.8– −1.2) 6.7 (2.4) 0.509 −0.40 1.3 (−4.0–6.5)

Irregular 5.8 (1.3) 0.576 2.8 (0.6) 0.521 −0.24 −3.0 (−6.2–0.1) 6.6 (1.4) 0.569 −0.43 0.8 (−3.8–5.4)

Obstacle 4.3 (0.9) 0.457 3.7 (1.4) 0.489 0.36 −0.6 (−3.4–2.1) 6.8 (2.4) 0.594 0.18 −2.4 (−2.2–7.1)

COM SI (cm)

Level 4.3 (0.8) 0.904 3.1 (0.4) 0.626 0.40 −1.2 (−2.7–0.3) 3.7 (0.8) 0.273 0.06 −0.6 (−2.7–1.6)

Irregular 4.8 (0.7) 0.775 3.4 (0.6) 0.437 0.60 −1.4 (−2.5– −0.3) 3.6 (0.7) 0.379 −0.23 −1.2 (−3.4–0.9)

Obstacle 7.9 (1.3) 0.845 4.7 (0.8) 0.474 0.62 −3.2 (−5.3– −1.2) 3.7 (1.1) 0.468 0.35 −4.2 (−6.9– −1.4)

COM, Center of mass; AP, Anterior-posterior; ML, Medial-lateral; SI, Superior-inferior; LOA, Limits of agreement.

condition × environment interaction for gait velocity, step time,
step length, or cadence. Furthermore, there was an absence of
group × environment interactions as well as the main effect of
group and environment for all parameters.

Group × condition interactions were significant for step
time and cadence. When comparing the age groups for each
walking condition, older adults walked with a longer step
time (p = 0.012) and lower cadence (p = 0.009) than young
adults only during the obstacle crossing condition. No group
differences were found during level walking or walking over an
irregular surface. Condition × environment interactions were
significant for gait velocity and step length. When comparing the
environmental setting for each walking condition, there was an
environmental effect only during the irregular surface walking
condition, but not during the level walking and obstacle crossing
conditions. For irregular surface walking, participants ambulated
∼0.11 m/s faster (p = 0.001) and took ∼4.3 cm longer steps
(p = 0.004) in the free-living environment compared to the
laboratory environment.

Effect of Age, Walking Condition, and
Environment on Balance
Due to poor validity, the AP and ML COM displacement was
not analyzed for effects of age, condition, and environment. For
the SI COM displacement, only the condition × environment
interaction was found to be significant (Table 3). Participants
walked with a larger COM displacement in the free-living
environment (p < 0.001), compared to the laboratory, especially
while walking over an irregular surface.

DISCUSSION

This study demonstrated that a smartphone can be used as a
field-based assessment tool to quantify ambulatory tasks while
navigating both unobstructed and obstructed surfaces. In support
of our first hypothesis, smartphone-derived spatiotemporal
gait parameters were valid and reliable while level walking,
ambulating over an irregular surface, or crossing an obstacle,
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TABLE 1b | Validity and reliability of smartphone-based measures among older adults in the laboratory.

Condition Motion Smartphone-Body Smartphone- Bag

Mean (SD) ICC (2,1) Mean (SD) ICC (2,1) r Bias (LOA) Mean (SD) ICC (2,1) r Bias (LOA)

Gait velocity (m/s)

Level 1.10 (0.23) 0.988 1.22 (0.28) 0.972 0.96 0.13 (−0.03–0.29) 1.19 (0.26) 0.973 0.96 0.09 (−0.06–0.25)

Irregular 0.99 (0.24) 0.963 1.11 (0.27) 0.932 0.98 0.11 (−0.01–0.24) 1.09 (0.25) 0.910 0.97 0.10 (−0.02–0.22)

Obstacle 0.73 (0.20) 0.915 0.94 (0.24) 0.696 0.94 0.21 (0.04–0.38) 0.94 (0.26) 0.614 0.88 0.22 (−0.03–0.46)

Step time (ms)

Level 532 (57) 0.965 533 (57) 0.964 1.00 0.6 (−5.0–6.3) 538 (57) 0.962 1.00 5.4 (−4.1–15.0)

Irregular 573 (73) 0.939 574 (73) 0.941 1.00 0.9 (−3.2–5.0) 571 (65) 0.854 0.99 −2.1 (−25.3–21.1)

Obstacle 816 (153) 0.871 755 (116) 0.806 0.94 −60.6 (−175–54.2) 751 (115) 0.694 0.84 −65.3 (−23.2–101)

Step length (cm)

Level 57.2 (7.7) 0.988 64.1 (10.1) 0.962 0.92 6.9 (−1.3–15.0) 62.8 (9.5) 0.971 0.91 5.6 (−2.3–13.5)

Irregular 55.6 (8.9) 0.954 62.2 (10.5) 0.904 0.95 6.6 (−0.3–13.6) 61.4 (10.1) 0.863 0.95 5.8 (−0.7–12.3)

Obstacle 55.3 (7.5) 0.847 68.8 (10.0) 0.382 0.91 13.5 (4.9–22.2) 68.8 (11.7) 0.541 0.71 13.5 (−2.7–29.7)

Cadence (steps/min)

Level 114 (11.8) 0.966 114 (11.8) 0.965 1.00 −0.1 (−1.4–1.2) 113 (11.7) 0.965 1.00 −1.1 (−3.3–1.1)

Irregular 106 (12.2) 0.950 106 (12.1) 0.948 1.00 −0.2 (−0.9–0.5) 106 (11.1) 0.878 0.99 0.2 (−3.1–3.5)

Obstacle 76 (12.8) 0.905 81 (10.9) 0.805 0.94 5.3 (−3.3–14.0) 82 (12.6) 0.648 0.84 6.3 (−7.6–20.2)

COM AP (cm)

Level 6.7 (3.0) 0.369 5.7 (1.8) 0.902 −0.46 −1.0 (−9.1–7.1) 5.0 (1.5) 0.255 −0.15 −1.7 (−0.9–5.3)

Irregular 8.1 (3.2) 0.382 5.5 (2.1) 0.891 −0.51 −2.6 (−11.7–6.4) 6.4 (2.0) 0.252 −0.23 −1.8 (−9.9–6.4)

Obstacle 7.9 (2.1) 0.425 6.6 (2.0) 0.544 0.02 −1.3 (−6.9–4.4) 6.9 (1.9) 0.330 −0.04 −1.0 (−6.7–4.7)

COM ML (cm)

Level 7.1 (2.1) 0.487 3.3 (1.4) 0.757 −0.05 −3.8 (−9.0–1.3) 6.0 (2.5) 0.617 −0.28 −1.1 (−8.5–6.2)

Irregular 8.5 (2.3) 0.387 3.6 (1.2) 0.610 −0.19 −4.9 (−10.3–0.5) 6.6 (4.1) 0.745 −0.49 −2.0 (−12.8–8.9)

Obstacle 6.3 (2.5) 0.688 6.3 (2.9) 0.701 0.65 −0.1 (−4.5–4.4) 7.1 (3.5) 0.757 −0.38 0.8 (−9.0–10.6)

COM SI (cm)

Level 3.9 (0.7) 0.870 2.9 (0.6) 0.860 0.79 −1.0 (−1.9– −0.2) 3.3 (1.1) 0.883 0.20 −0.6 (−2.9–1.7)

Irregular 4.2 (0.9) 0.792 3.1 (0.8) 0.892 0.81 −1.1 (−2.1– −0.1) 4.1 (2.3) 0.719 0.77 −0.1 (−3.4–3.3)

Obstacle 8.0 (1.2) 0.614 5.0 (1.2) 0.582 0.42 −2.9 (−5.4– −0.4) 3.0 (0.7) 0.016 0.01 −5.0 (−7.6– −2.3)

COM, Center of mass; AP, Anterior-posterior; ML, Medial-lateral; SI, Superior-inferior; LOA, Limits of agreement.

TABLE 2 | Validity and reliability of smartphone-based measures in the free-living environment.

Condition Video Smartphone-body Smartphone-bag

Mean (SD) ICC (2,1) Mean (SD) ICC (2,1) r Bias (LOA) Mean (SD) ICC (2,1) r Bias (LOA)

Gait velocity (m/s)

Level 1.20 (0.25) 0.969 1.16 (0.22) 0.896 0.86 −0.04 (−0.27–0.21) 1.15 (0.19) 0.882 0.92 −0.05 (−0.25–0.15)

Irregular 1.26 (0.27) 0.958 1.25 (0.23) 0.927 0.91 −0.00 (−0.23–0.22) 1.26 (0.24) 0.875 0.94 0.01 (−0.18–0.20)

Obstacle N/A N/A 0.99 (0.25) 0.731 N/A N/A 0.99 (0.24) 0.764 N/A N/A

Step time (ms)

Level 531 (44) 0.951 531 (45) 0.949 1.00 0.3 (−3.2–3.8) 537 (43) 0.873 0.96 6.3 (−18.3–31.0)

Irregular 540 (57) 0.957 540 (57) 0.952 1.00 0.6 (−2.8–4.0) 543 (55) 0.805 0.99 3.4 (−13.2–20.0)

Obstacle 733 (128) 0.934 715 (113) 0.804 0.98 −18 (−69–33) 703 (99) 0.700 0.86 −30 (−159–98)

Cadence (steps/min)

Level 114 (9) 0.952 114 (10) 0.950 1.00 −0.0 (−0.9–0.8) 112 (9) 0.876 0.96 −1.4 (−6.7–4.0)

Irregular 112 (11) 0.953 112 (11) 0.948 1.00 −0.1 (−1.0–0.7) 112 (11) 0.774 0.99 −0.5 (−4.4–3.3)

Obstacle 84 (13) 0.919 86 (12) 0.718 0.98 1.9 (−3.8–7.6) 87 (12) 0.722 0.87 3.3 (−9.1–15.7)

LOA, Limits of agreement; N/A, Not available. The crossing speed during the obstacle crossing condition could not be evaluated using video-derived data.
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FIGURE 3 | Bland Altman plots for gait velocity, step time, step length, and cadence when using the smartphone-based assessment compared to Motion Analysis in

the laboratory environment. The dashed lines are the average difference, with the solid lines being the repeatability coefficient (±1.96 SD).

when placed on either the body or in a bag. Furthermore,
high to very high validity and good to excellent reliability
was demonstrated for spatiotemporal gait measures in both
the laboratory and free-living environments. However, partially
supporting our hypothesis that a smartphone-based assessment
of the COM displacement would be valid and reliable across
all three directions, results of our study revealed that only the
vertical displacement of the COM could be quantified accurately
when attached to the body.

The moderate to very high validity and excellent reliability
results for gait parameters and the SI COM displacement found
during level walking in this study were comparable to those
previously reported (Furrer et al., 2015; Silsupadol et al., 2017,
2019). When compared to motion capture, it was shown that
body and bag placement of a smartphone had high to very
high validity (Pearson’s r from 0.86 to 1.00 and from 0.87 to
1.00, for the body and bag, respectively) for all spatiotemporal
measures in the current study. In comparison, a previous study
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FIGURE 4 | Bland Altman for gait velocity, step time, and cadence when using the smartphone-based assessment compared to video in the free-living environment.

The dashed lines are the average difference, with the solid lines being the repeatability coefficient (±1.96 SD).

reported r values from 0.82 to 1.00 and from 0.77 to 1.00, for
body and bag placements, respectively (Silsupadol et al., 2019).
Furthermore, the use of a smartphone to quantify gait parameters
during level walking was shown to have excellent reliability when
placed on the body and bag (ICC2,1 ≥ 0.95), with similar results
demonstrated previously (ICC2,1 ≥ 0.90 and≥ 0.79, for the body
and bag, respectively) (Silsupadol et al., 2017).

During level walking, our study found moderate correlations
(r = 0.63) and excellent reliability (ICC = 0.77) for the
vertical COM displacement when the smartphone was placed
on the body. In line with our results, Furrer and colleagues
also showed similar findings (r ∼0.63 and ICC ∼0.74), when
compared to motion capture (Furrer et al., 2015). Alternatively,
validity and reliability of the COM displacement in the AP and
ML directions were less successful. Even though no previous
studies have investigated the validity of the AP and ML
COM displacement during gait, similar trends for the COM
displacement were demonstrated when utilizing an inertial
measurement unit during ski skating. Compared to motion

capture, COM displacement demonstrated root mean square
errors of 2.4, 3.2, and 0.6 cm for the AP, ML and SI axes,
respectively (Myklebust et al., 2015). This decreased accuracy for
the AP and ML axes might be due to small misalignments of
the accelerometer in relation to gravity affecting the transverse
plane more than the vertical direction (Myklebust et al., 2015).
For the bag location, the smartphone demonstrated poor validity
and reliability for the COM displacement across all three axes.
Along with possible misalignment and increased movement at
this location, reduced validity may be due to the bag being placed
over the right hip, rather than corresponding to the body’s COM
location (Kavanagh and Menz, 2008). In addition, while the L3
location has low transverse plane rotation, movement of the hip
during walking might have caused extraneous movement of the
bag, as movement of the bag was not restricted.

While previous work has mainly focused on unobstructed
level walking, this is the first study to reveal very high
validity and excellent reliability of using smartphones to
measure spatiotemporal gait measures when ambulating over
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TABLE 3 | Gait and balance parameters [mean (SD)] for young and older adults under three walking conditions in the laboratory and free-living environments.

Condition Young Older P-value

Laboratory Free Laboratory Free Gr × Cond × Env Gr × Cond Gr × Env Cond × Env

Gait velocity (m/s)

Level 1.31 (0.20) 1.28 (0.28) 1.22 (0.28) 1.17 (0.18) 0.696 0.061 0.827 <0.001*

Irregular 1.31 (0.20) 1.42 (0.27) 1.11 (0.27) 1.22 (0.21)

Obstacle 1.12 (0.19) 1.06 (0.21) 0.94 (0.24) 0.91 (0.27)

Step time (ms)

Level 523 (37) 524 (41) 533 (57) 538 (49) 0.488 0.005* 0.914 0.055

Irregular 534 (37) 527 (41) 573 (73) 554 (69)

Obstacle 654 (57) 661 (57) 755 (116) 768 (132)

Step length (cm)

Level 68.3 (10.0) 66.3 (12.4) 64.1 (10.1) 62.3 (7.9) 0.822 0.182 0.609 0.002*

Irregular 69.8 (9.5) 73.9 (11.4) 62.2 (10.5) 66.8 (7.3)

Obstacle 72.8 (11.9) 69.6 (11.9) 68.8 (10.0) 67.4 (14.2)

Cadence (steps/min)

Level 115 (8.2) 115 (9.1) 114 (11.8) 112 (10.1) 0.445 0.005* 0.733 0.054

Irregular 113 (7.8) 115 (8.9) 106 (12.1) 110 (13.4)

Obstacle 93 (8.2) 91 (7.9) 81 (10.9) 81 (12.6)

COM SI (cm)

Level 3.1 (0.4) 3.9 (0.7) 2.9 (0.6) 3.6 (0.9) 0.921 0.057 0.682 0.006*

Irregular 3.4 (0.6) 4.9 (0.8) 3.1 (0.8) 4.4 (0.9)

Obstacle 4.7 (0.8) 5.5 (1.0) 5.0 (1.2) 5.9 (1.4)

All values were derived from the smartphone placed on the body. COM, Center of mass; SI, Superior-inferior; Gr, Group; Cond, Condition; Env, Environment; *P < 0.05.

irregular walkways. The similar findings obtained from level
and irregular surface walking indicate that the smartphone-
based algorithm employed in this study is appropriate even for
walking environments where gait is continuously challenged.
Alternatively, slightly reduced validity and reliability was found
during the obstacle crossing condition, particularly for the bag
placement. This might be due to the small number of steps
utilized for assessing obstacle crossing and the preference of
leading limb. As the bag was placed over the right hip, choice of
left or right limb to cross the obstacle might affect reliability and
validity, since the hip flexion angle of the leading limb is greater
than that of the trailing limb during obstacle crossing (Chou et al.,
2001).

In partial support of our second hypothesis, smartphone-
based assessment revealed age-related differences in gait and
balance performance only during obstacle crossing. Older adults
crossed the obstacle with a longer step time than young adults.
Age-related differences may become more pronounced when a
greater time constraint is imposed and a wider obstacle is utilized
(Chen et al., 1994; Weerdesteyn et al., 2005). A smartphone-
based gait assessment also revealed balance and gait changes
depending upon the task and environment. During irregular
surface walking, participants utilized a faster gait speed and a
longer step length in the free-living environment, compared
to the laboratory environment. Environmental differences in
walking strategy while navigating the uneven surface may be due
the perceived hazard of the terrain within each environment.
Shorter steps taken while navigating the irregular surface in

the laboratory might be due to the consistency of perturbation
(∼every 30 cm) and compliance of the plywood surface. Even
though our irregular terrain in the laboratory was intended to
be analogous to surfaces found outdoors, the irregular surface in
the free-living environment was less uniform and cement. Unlike
previous studies that found differences between laboratory and
daily life gait when walking on a level surface (Brodie et al., 2016;
Giannouli et al., 2016), this study found that the environment
does not affect the way participants walk during this simple
condition. With longer walking distances comprising activities
of daily living, gait discrepancies between environments may be
more evident.

There were a few limitations to the current study. While this
study attempted to address a gap in the literature in regards
to evaluating gait in the real-world environment, participants
in this study were explicitly asked to walk a certain distance
and were in the presence of research staff. Although gait trials
utilized a 10-m walking distance, it is expected that longer
duration walking bouts would lead to improved accuracy results,
as misclassification and computation errors commonly occur
during the acceleration and deceleration phases found at the
beginning or end of trials, respectively (Lugade et al., 2014).
Alternatively, this was the first study to explicitly evaluate
gait and balance from smartphone-derived measures among
young and older adults across various environments. Although
utilizing accelerometer-based gait assessment under real-world
conditions is beneficial, few studies have performed long
duration evaluations in the free-living environment. Therefore,
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future studies need to investigate the feasibility of home-
based smartphone evaluations of gait in an environment where
participants freely engage in everyday walking. Additionally,
investigation of additional participants with variable body
sizes, ages, and morbidities would increase the robustness of
this methodology.

In conclusion, given its ease-of-use, cost effectiveness, and
portability, smartphones offer an alternative approach to analyze
gait and subsequently provide an easy-to-implement tool for
remote patient monitoring and home health care. In particular,
smartphone-based assessment, regardless of phone placement,
was shown to be reliable and valid for all spatiotemporal gait
parameters across obstructed and unobstructed conditions, both
indoors and outdoors.
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