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This paper adopts a novel, interdisciplinary approach to explore the relationship

between stress-related psychosocial factors, physiological markers and occurrence

of injury in athletes using a repeated measures prospective design. At four data

collection time-points, across 1-year of a total 2-year data collection period, athletes

completed measures of major life events, the reinforcement sensitivity theory personality

questionnaire, muscle stiffness, heart rate variability and postural stability, and reported

any injuries they had sustained since the last data collection. Two Bayesian networks

were used to examine the relationships between variables and model the changes

between data collection points in the study. Findings revealed muscle stiffness to have

the strongest relationship with injury occurrence, with high levels of stiffness increasing

the probability of sustaining an injury. Negative life events did not increase the probability

of injury occurrence at any single time-point; however, when examining changes between

time points, increases in negative life events did increase the probability of injury. In

addition, the combination of increases in negative life events andmuscle stiffness resulted

in the greatest probability of sustaining an injury. Findings demonstrated the importance

of both an interdisciplinary approach and a repeated measures design to furthering our

understanding of the relationship between stress-related markers and injury occurrence.

Keywords: sports injury, stress, interdisciplinary, Bayesian network, sports psychology

INTRODUCTION

Over the last four decades sport-related injuries have received increased research attention
(Ivarsson et al., 2017) in response to the high incidence (Rosa et al., 2014; Sheu et al., 2016)
and associated undesirable physical and psychological effects (Leddy et al., 1994; Brewer, 2012).
Multiple psychological (Slimani et al., 2018), anatomical (Murphy et al., 2003), biomechanical
(Neely, 1998; Hughes, 2014), and environmental (Meeuwisse et al., 2007) factors have been
associated with sports injury occurrence and several models of injury causation have been proposed
that highlight the multifactorial nature of injury occurrence (Meeuwisse et al., 2007; Kumar, 2001;
Wiese-Bjornstal, 2009), of which one of the most widely cited was developed by Andersen and
Williams (1988) and Williams and Andersen (1998).

Williams and Andersen’s (1998) stress-injury model proposed that when faced with a potentially
stressful athletic situation, an athlete’s personality traits (e.g., hardiness, locus of control, and
competitive trait anxiety), history of stressors (e.g., major life events and previous injuries)
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and coping resources (e.g., general coping behaviours) contribute
to the injury response, either interactively or in isolation.
The stress response is central to the model and reflects the
bi-directional relationship between athletes’ appraisal of, and
response to, a stressful athletic situation. The model predicts
that athletes who have a history of stressors, personality
traits that intensify the stress response and few coping
resources, will exhibit greater attentional (e.g., peripheral
narrowing) and/or physiological (e.g., increased muscle tension)
responses that put these individuals at greater injury risk
(Supplementary Figure 1).

Within Williams and Andersen’s (1998) model, major life
events, which is a component of an athlete’s history of stressors,
most consistently predicts injury occurrence (Williams and
Andersen, 2007); specifically, major life events with a negative, as
opposed to positive, valence (Passer and Seese, 1983; Maddison
and Prapavessis, 2005). Personality traits and coping resources
have also been found to predict injury with athletes more
likely to sustain an injury if they have poor social support and
psychological coping skills, and high trait anxiety and elevated
competitive state anxiety; compared to those with the opposing
profile (Smith et al., 1990; Lavallée and Flint, 1996; Ivarsson and
Johnson, 2010). However, the amount of variance explained by
these psychosocial factors has been modest and typically between
5 and 30% (Ivarsson and Johnson, 2010; Galambos et al., 2005),
which indicates a likely interaction with other factors.

While the psychosocial factors in Williams and Andersen’s
(1998) model have received the most research attention, less
insight into the mechanisms through which these factors are
proposed to exert their effect exists. To elaborate, the model
suggests that injuries are likely to occur through either increased
physiological arousal resulting in increased muscle tension and
reduced flexibility or attentional deficits caused by increased
distractibility and peripheral narrowing. However, to date, the
research has largely focused on attentional deficits (Andersen
and Williams, 1999; Rogers and Landers, 2005; Wilkerson, 2012;
Swanik et al., 2007). For example, Andersen and Williams
(1999) found athletes with high life event stress coupled with
low social support had greater peripheral narrowing under
stressful conditions compared to athletes with the opposing
profile; these athletes went on to sustain an increased number of
injuries during the following athletic season. Rogers and Landers
(2005) further supported Andersen and Williams’s (1999) earlier
findings by identifying that peripheral narrowing under stress
mediated 8.1% of the relationship between negative life events
and injury.

Knowledge of the physiological factors (e.g., increased
muscle tension and reduced motor control) contributing to the
remaining variance between negative life events and athletic
injury remains sparse (Williams and Andersen, 1998). One
challenge faced by researchers addressing the sports injury
problem through a psychological lens is the multifactorial
nature of injury, and the possible interaction with physiological
factors in the stress response (Meeuwisse et al., 2007; Wiese-
Bjornstal, 2009). For example, a large body of research has
suggested that training-related stress is also likely to contribute
to the stress response and injury occurrence (Lee et al., 2017;

Djaoui et al., 2017) and may account for the unexplained
variance from the psychological predictors. In an attempt to
combine the psychosocial factors proposed by Williams and
Andersen (1998) and potential markers of training-related
stress, Appaneal and Perna (2014) proposed the biopsychosocial
model of stress, athletic injury and health (BMSAIH) to serve
as an extension to Williams and Andersen’s (1998) model.
The BMSAIH enhances our understanding of the mediating
pathways between the stress response and injury alongside other
health outcomes and behavioural factors that impact sports
participation (Appaneal and Perna, 2014). The central tenet of
the BMSAIH is that psychosocial distress (e.g., negative life
events) may act synergistically with training-related stress as a
result of high-intensity and high-volume sports training, and
“widen the window of susceptibility” (Appaneal and Perna, 2014)
to a range of undesirable health outcomes including illness
and injury. Consequently, the BMSAIH provides an important
framework that has enhanced insight into the multi-faceted
nature of the injury process by building on Williams and
Andersen’s (1998) model whilst including other physiological
markers of training-related stress.

The BMSAIH offers researchers several potential avenues
for research. To date, the physiological mechanisms explored
using the BMSAIH have focused on the hormonal response
to high intensity training and injury. For example, Perna
and McDowell (1995) examined life event stress and cortisol
response in athletes following an exhaustive graded exercise
test. Participants were split into high and low life event stress
groups, and the high life event stress group were found to have
both higher cortisol in response to the graded exercise test,
and increased symptomatology, including muscle complaints
and viral illness, over the 30 days following the graded exercise
test; however, Perna and McDowell (1995) did not explicitly
examine the relationship between cortisol response to high
intensity training and sports injury. Research from a wider
physiological perspective has identified other important training-
related stress markers that have been associated with an increased
risk of injury. Postural stability, skeletal muscle characteristics
and heart rate variability are of particular interest here as
they have been examined in a variety of different stress-related
disciplines including psychopathology, lifestyle, and geriatric
research (Ockenburg et al., 2015; Gervasi et al., 2017; Bailey
et al., 2013; Rath and Rath, 2017). Importantly, these variables
have also been linked to injury occurrence in athletes (Pickering-
Rodriguez et al., 2017; Plews et al., 2012; Trojian and McKeag,
2006; Williams et al., 2017) but have typically been studied
in isolation without an assessment of the interaction with the
psychosocial factors that are known to contribute to injury.
Furthermore, a reliance on designs that capture a single point of
measurement precludes the assessment of intra- as well as inter-
individual changes and the effect of the time interval between
measurement and injury occurrence on subsequent injuries
(Johnson et al., 2014). Such an approach fails to capture changes
in both psychosocial factors and physiological markers that may
occur preceding an injury. Importantly, a repeated measurement
approach would enable an assessment of how variables and their
interactions change with respect to time and would provide
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greater insight into the effect that repeated exposure to major life
events and other stress-related factors has on injury occurrence.

Recently, Bittencourt et al. (2016) advocated a move away
from studying isolated risk factors and instead, adopt a complex
systems approach in order to understand injury occurrence.
Such an approach posits that injury may arise from a complex
“web of determinants” (Bittencourt et al., 2016), where different
factors interact in unpredictable and unplanned ways, but result
in a global outcome pattern of either adaptation or injury.
Capturing the uncertainty and complexity of the relationships
between different variables using an appropriate interdisciplinary
analysis within the framework of a complex systems approach
is challenging. Bayesian network (BN) modelling provides one
solution by allowing the construction of graphical probabilistic
models using the underlying structure that connects different
variables (Scutari and Denis, 2014). The learned BN structure can
be used for inference by obtaining the posterior probabilities of a
particular variable for a given query (e.g., if the value of variable A
is x and the value of variable B is y, what is the probability variable
C of being value z?). Furthermore, unlike regression or structural
equation models, BN’s do not distinguish between dependent
and independent variables when the underlying relationship
in the network may not be known (Olmedilla et al., 2018).
BN modelling subsequently provides a valuable but underused
interdisciplinary approach to investigating the complex and
unpredictable interactions of psychosocial and physiological
factors implicated in the injury process.

Using the frameworks provided by Williams and Andersen’s
(1998) stress injury model and Appaneal’s BMSAIH model
(Appaneal and Perna, 2014), the aim of this longitudinal
interdisciplinary study was to develop new understanding of the
multifaceted interactions of psychosocial (life event stress and
reinforcement sensitivity) and physiological stress-related factors
(heart rate variability, muscle stiffness, and postural control)
with injury occurrence. Due to the inevitable constraints of a
longitudinal interdisciplinary study of this kind, we have not
been able to incorporate a number of other variables that might
also be of interest (e.g., coping resources, emotional states, and
attentional deficits). A prospective, repeated measures design
incorporating the physiological and psychosocial measures
combined with BN modelling was used to address the study aim.

MATERIALS AND METHODS

Ethics Statement
Ethical approval was obtained from the University ethics
committee prior to the start of the study and all participants
provided informed consent.

Participants
A total of 351 athletes (male: n = 231, female: n = 120) were
initially recruited for the study from a British University and
local sports clubs (Table 1). Participants had an average age of
22.0 ± 7.0 years and represented a range of team (football,
rugby, netball, cricket, lacrosse, basketball, and field hockey)
and individual sports (running, tennis, weightlifting, gymnastics,
judo, swimming, and golf). Participants’ self-rated competitive

TABLE 1 | Participant characteristics.

Female (n = 120) Male (n = 231)

Demographics M (SD)

Age (yrs) 26.0 (11.3) 20.2 (1.8)

Height (cm) 167.4 (7.6) 177.8 (7.8)

Body mass (kg) 67.0 (9.5) 82.0 (14.6)

Training hours per week 8.5 (4.5) 11.2 (8.8)

Current competitive level n (%)

Recreational 3 (4) 7 (4)

University 45 (56) 141 (80)

National/International 33 (41) 28 (16)

level ranged from recreational to international standard. They
were engaged in training for their respective sports for at least
5 h per week. A total of 162 (46%) participants had sustained an
injury in the 12 months prior to the start of the study (male: n =

114 [49%], female; n = 48 [40%]). All participants were injury
free (no modifications to their usual training routine due to a
sport related medical problem for a minimum of 4 weeks) at the
start of the study.

Study Design
The study adopted a prospective, repeated measures design
that included a total of four data collection sessions over
a 12-month period. The first three data collections were
conducted in person, with the final collection (injury reporting)
being performed remotely via email (Supplementary Figure 3).
The primary dependant variable was injury outcome (injured
or non-injured), with major life events, the reinforcement
sensitivity theory personality questionnaire, muscle stiffness,
balance ability and heart rate variability serving as independent
variables. The following sections describe the specific measures
used and outline the procedure for both the data collection
and analysis.

Measures
Injury
At each data collection, participants self-reported all injuries they
sustained during the study period via a questionnaire. An injury
was defined as any sports related medical problem causing the
athlete to miss or modify their usual training routine for at
least 24 h (Fuller et al., 2006, 2007; Timpka et al., 2014). Minor
scrapes and bruises that may require certain modifications (e.g.,
strapping or taping) but did not limit continued participation
were not considered injuries (Appaneal et al., 2009). Injury
status (did/did not sustain an injury) served as the main
outcome measure.

Major Life Events
A modified version of the Life Events Survey for Collegiate
Athletes (LESCA) was used to measure participants’ history
of life event stress (Petrie, 1992). The LESCA is the most
widely used measure of major life events for athletes in
the sports injury literature. Modifications were made to the
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LESCA to ensure the suitability of the items for the study
cohort (Supplementary Table 1). The LESCA comprises 69
items that reflect possible life events that participants may
have experienced. Example items include, “Major change in
the frequency (increased or decreased) of social activities
due to participation in sport,” “Major change in the amount
(more or less) of academic activity (homework, class time,
etc.),” and “Major change in level of athletic performance in
actual competition (better or worse).” Participants were asked
to rate the perceived impact of each life event they had
experienced within 12-months preceding the study onset on
an 8-point Likert scale anchored at −4 (extremely negative)
and +4 (extremely positive). Negative life event (NLE) and
positive life event (PLE) scores were calculated by summing
the negative and positive scores, respectively. A score for total
life events (TLE) was also calculated by summing the absolute
values for both negative and positive events. Petrie (1992)
reported test-retest reliabilities at 1-week and 8-weeks with
values ranging from 0.76 to 0.84 (p < 0.001) and 0.48 to
0.72 (p < 0.001), respectively. Petrie also provided evidence
of discriminant, convergent, and predictive validity. For this
study, composite reliability (Fornell and Larcker, 1981) was
preferred to Cronbach’s alpha as it does not assume parallelity
(i.e., all factor loadings are constrained to be equal, and all error
variances are constrained to be equal) and instead takes into
consideration the varying factor loadings of the items in the
questionnaire. The composite reliability for the LESCA in this
study was 0.84.

Reinforcement Sensitivity Theory Personality

Questionnaire
A revised version of the Reinforcement Sensitivity Theory
Personality Questionnaire (RST-PQ) was used to measure
motivation, emotion, personality and their relevance to
psychopathology (Corr and Cooper, 2016). The revised version
of the RST-PQ comprises 51 statements that measure three
major systems: Fight-Flight-Freeze System (FFFS; e.g., “I am the
sort of person who easily freezes-up when scared”), Behavioural
Inhibition System (BIS; e.g., “When trying to make a decision,
I find myself constantly chewing it over”) and four Behavioural
Approach System (BAS) factors; Reward Interest (e.g., “I
regularly try new activities just to see if I enjoy them”), Goal
Drive Persistence (e.g., “I am very persistent in achieving my
goals”), Reward Reactivity (e.g., “I get a special thrill when I
am praised for something I’ve done well”), and Impulsivity
(e.g., “I find myself doing things on the spur of the moment”).
Participants rated each item on a scale from 1 (not at all) to
4 (highly) to reflect how well each statement described their
personality in general. The responses to items associated with
each subscale (FFFS, BIS, RI, GDP, RR, and I) were summed
to give a total personality score that was subsequently used for
further analysis. The composite reliabilities for each subscale
were; BIS = 0.92, FFFS = 0.77, GDP = 0.87, I = 0.71, RI = 0.77,
RR = 0.81. Further details regarding the revised RST-PQ are in
Supplementary Appendix 1.

Heart Rate Variability
A Polar V800 heart rate monitor (HRM) and Polar H7 Bluetooth
chest strap (Polar OY, Finland) was used to collect inter-beat
interval (IBI) data. IBI recordings using the Polar V800 are highly
comparable (ICC = 1.00) with ECG recordings (Giles et al.,
2016), which are considered the gold standard for assessing heart
rate variability (HRV). In addition, HRV indices calculated from
IBI and ECG data have shown a strong correlation (r = 0.99) in
athletes (Caminal et al., 2018) and under spontaneous breathing
conditions (Plews et al., 2017).

Musculoskeletal Properties
A handheld myometer (MyotonPRO, Myoton AS, Tallinn,
Estonia) was used to measure passive muscle stiffness. The
MyotonPRO is a non-invasive, handheld device that applies a
mechanical impulse of 0.40 N for 0.15 ms perpendicular to
the surface of the skin. The impulse causes natural damped
oscillations in the tissue, which are recorded by a three-axis
digital accelerometer sensor in the device. The raw oscillation
signal is then processed, and the stiffness parameter is calculated
(Agyapong-Badu et al., 2016). The MyotonPRO has previously
been reported to be a reliable and valid tool for the measurement
of in-vivo tissue stiffness properties (Chuang et al., 2013; Pruyn et
al., 2016; Nair et al., 2014), and has demonstrated good internal
consistency (coefficient of variation < 1.4%) over sets of 10
repetitions (Aird et al., 2012).

Postural Stability
Postural stability was assessed with a modified version of the
balance error scoring system (mBESS) based on the protocol
recommended by Hunt et al. (2009). In total, each trial of the
mBESS was performed without shoes (McCrory et al., 2013) and
included six stances in the following order; dominant leg (DL;
standing on the dominant foot with the non-dominant foot at
approximately 30-degrees of hip flexion and 45-degrees of knee
flexion), non-dominant leg (NDL; standing on the non-dominant
foot with the dominant foot at approximately 30-degrees of hip
flexion and 45-degrees of knee flexion) and tandem leg stance
(TS; standing heel-to-toe with the non-dominant foot behind the
dominant) on firm and foam (Alcan airex AG, Sins, Switzerland)
surfaces, respectively (Supplementary Figure 2). To determine
leg dominance, participants were asked their preferred leg to kick
a ball to a target, and the chosen limb was labelled as dominant
(van Cingel et al., 2017). Participants were asked tomaintain each
stance for a total of 20-s. Participants hands were placed on hips
at the level of the iliac crests. A Sony DSC-RX10 video camera
(Sony Europe Limited, Surrey, United Kingdom) was used to
record each participants’ performance during the mBESS.

The error identification criteria from the original BESS
protocol was used by the lead researcher who scored all the
BESS trials. One error was recorded if any of the following
movements were observed during each trial: (a) lifting hands off
iliac crests; (b) opening eyes; (c) stepping, stumbling, or falling;
(d) moving the thigh into more than 30 degrees of flexion or
abduction; (e) lifting the forefoot or heel; and (f) remaining
out of the testing position for more than 5-s (Riemann et al.,
1999). A maximum score of 10 errors was possible for each
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stance. Multiple errors occurring simultaneously were recorded
as one error. A participant was given the maximum score of
10 if they remained out of the stance position for more than
5-s. A total score was calculated by summing the total number
of errors recorded on all stances (DL, NLD, and TS, on foam
and firm surfaces). To assess the intra-rater reliability, a single
measurement, absolute agreement, two-way mixed effects model
for the intraclass correlation (Koo and Li, 2016) was used on a
sample of 40 participants from the first time point. The test-retest
scoring of BESS resulted in a “good” to “excellent” ICC score
(ICC = 0.93, 95% confidence interval = 0.88–0.96), indicating
the scoring was reliable.

Procedure
At the start of the academic year (September), coaches of
sports teams at a British University and local sports clubs
were contacted and informed about the study. With the
coaches’ permission, the lead researcher attended training
sessions to inform athletes about the overall purpose of the
study and the requirements of participation. Athletes who
met the participation criteria and volunteered to take part in
the study were invited to attend scheduled testing sessions.
A repeated measures prospective cohort design was used to
assess athletes’ major life events, stress-related physiological
markers and injury status over a 2-year period. Within the study
period, each participant was asked to complete a total of four
data collections, with each data collection separated by a 4-
month interval (Supplementary Figure 3). Participants provided
informed consent before data collection commenced.

For each of the data collections (T1, T2, and T3),
participants followed the same protocol in a specific order
(Supplementary Figure 4). To ensure all measures could be
collected within a viable time-frame, participants were separated
into two groups. The first group completed all computer-based
measures followed by all physical measurements, whereas the
second group completed all physical measurements followed by
computer-based measures. Participants were randomly assigned
to one of the two groups and remained in those groups across all
time points.

Questionnaires
The questionnaires, which included demographic information,
the LESCA, RST-PQ (T1, T2, T3) and injury status (T2,
T3, T4) were completed on-line (SurveyMonkey Inc., USA,
www.surveymonkey.com). The instructions for the LESCA were
modified at T2 and T3 so that participants reported major life
events that had occurred since the previous testing session. For
injury reporting, participants were asked to record any injuries
that they had sustained since the last data collection. The data
were downloaded from surveymonkey.com and imported into R
(R Core Team, 2019) for analysis.

Heart Rate Variability
To minimise potential distractions, participants were directed to
a designated quiet area in the laboratory where IBI data were
recorded. Participants were instructed to turn off their mobile
devices to avoid any interference with the Bluetooth sensor.

Each chest strap was dampened with water and adjusted so it
fitted tightly but comfortably, as outlined by Polar’s guidelines.
Participants were seated and asked to remain as still as possible
for the duration of the recording. No attempt wasmade to control
participants’ respiratory frequency or tidal volume (Denver et al.,
2007). Inter-beat interval (IBI) data was collected for 10-min at a
sampling frequency of 1,000 Hz.

Raw, unfiltered IBI recordings were exported from the Polar
Flow web service as a space delimited .txt file and imported into
R (R Core Team, 2019) where the RHRV package (Rodriguez-
Linares et al., 2019) was used to calculate HRV indices. Raw IBI
data was filtered using an adaptive threshold filter, and the first
3-min and last 2-min of each recording were discarded, leaving
a 5-min window that was used to calculate the root mean square
of successive differences (RMSSD) in RR intervals following the
recommendations for short term IBI recordings (Laborde et al.,
2017; Malik et al., 1996). RMSSD was calculated as:

RR =
1

N

n∑

i=1

RRi (1)

Where N is the length of the time series, and RRi the RR interval
between beats i and i − 1, where each beat position corresponds
to the beat detection instant.

Muscle Stiffness
To assess muscle stiffness, participants lay horizontally on a
massage bed and four testing sites were identified on each lower
limb. The muscle belly of the rectus femoris (RF), biceps femoris
(BF), medial gastrocnemius (MG), and lateral gastrocnemius
(LG) sites were identified using a visual-palpatory technique
to determine the exact location of each site (Chuang et al.,
2012). The visual-palpatory technique required the participant to
contract the target muscle to aid the lead researcher to visually
identify the muscle. The participant was then asked to relax the
muscle and the muscle was palpated to locate the muscle belly. A
skin safe pen (Viscot all skinmarker pen, ViscotMedical LLC, NJ)
was used to mark the testing site in the center of the muscle belly.

After the eight testing sites had been identified, the testing
end of the MyotonPRO (diameter = 3 mm) was positioned
perpendicular to the skin on the testing site. A constant pre-load
of 0.18 N was applied for initial compression of subcutaneous
tissues. The device was programmed to deliver five consecutive
impulses, separated by a 1-s interval (Morgan et al., 2018). For
each impulse, the device computed passive stiffness values, with
the median of the five values being saved by the device for
further analysis. In accordance with Myoton.com, a set of five
measurements with a coefficient of variation (CV) of <3% was
accepted. Sets of measurements above 3% were measured again
to ensure data reliability. Measurements were uploaded using
MyotonPRO software and imported in R (RCore Team, 2019) for
further analysis. For each participant, the sum of all eight testing
sites was calculated to provide a total lower extremity stiffness
score and was used for further analysis.
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Postural Stability
Instructions for the mBESS were read to each participant and
a demonstration of the positions was provided by the research
assistant. For each position, participants were instructed to close
their eyes, rest their hands on their iliac crests and remain as
still as possible for 20-s. Participants were instructed to return
to the testing position as quickly as possible if they lost their
balance. The video recording was started prior to the first stance
position and stopped after all stances had been completed. Each
completed mBESS protocol took approximately 4-min. Only
one trial was performed to avoid familiarisation effects across
the repeated measurement (Valovich et al., 2003). The video
recordings for each participant were imported from the recording
equipment (Sony DSC-RX10) and the lead researcher scored
each trial using the error identification criteria.

Data Analysis
Two Bayesian Networks (BN) were used to explore the
relationships between the psychosocial measures, physiological
markers of stress, and sports injury. A BN is a graphical
representation of a joint probability distribution among a set
of random variables, and provides a statistical model describing
the dependencies and conditional independences from empirical
data in a visually appealing way (Scutari and Denis, 2014). A
BN consists of arcs and nodes that together are formally known
as a directed acyclic graph (DAG), where a node is termed a
parent of a child if there is an arc directed from the former to
the latter (Pearl, 1988). However, the direction of the arc does
not necessarily imply causation, and the relationship between
variables are often described as probabilistic instead of causal
(Scutari and Denis, 2014). The information within a node can
be either continuous or discrete, and a complete network can
contain both continuous and discrete nodes; however, discrete
networks are the most commonly used form of BN (Chen and
Pollino, 2012). In discrete networks, conditional probabilities for
each child node are allocated for each combination of the possible
states in their parent nodes and can be used to assess the strength
of a dependency in the network.

In order to use discrete networks, continuous variables must
first be split into categorical levels.When there are a large number
of variables in the network, limiting the number of levels has
the benefit of producing a network that is more parsimonious
in terms of parameters. For example, a network with 10
variables each with two levels has 100 (10ˆ2) possible parameter
combinations, however the same network with three levels has
1,000 (10ˆ3) possible parameter combinations, the latter being
significantly more computationally expensive. Using a larger
number of splits in the data also comes at a cost of reducing
the statistical power in detecting probabilistic associations, and
reduces the precision of parameter estimates for the probabilistic
associations that are detected because it reduces the sample-size-
to-parameters ratio (Scutari and Denis, 2014). Typically, nomore
than three levels have been used in Bayesian networks in the
sports injury literature (Olmedilla et al., 2018; Ruiz-Pérez et al.,
2019)

Learning the structure of the network is an important step in
BN modelling. The structure of a network can be constructed

using expert knowledge and/or data-driven algorithm techniques
(e.g., search and score, such as hill climbing and gradient descent
algorithms; Scutari and Denis, 2014). The learned structure
can then be used for inference by querying the network1 and
obtaining the posterior probabilities of a particular node for
a given query. The posterior distribution can be obtained by
Pr(X|E,B)=Pr(X|E,G,2), where the learned network B with
structureG and parameters2, are investigated with new evidence
E using the information in B (Scutari and Denis, 2014). When a
network contains many nodes, the outcome of a particular node
can be assessed conditional on the states of any subset of nodes
in the network. BNs therefore provide a unique and versatile
approach to modelling a set of variables to uncover dependency
structures within the data.

BNs have recently been used in the sport psychology literature
(Fuster-Parra et al., 2017; Olmedilla et al., 2018; Ruiz-Pérez et
al., 2019) and offer several benefits over traditional statistical
analysis. For example, predictions can bemade about any variable
in the network, rather than there being a distinction between
dependent and independent variables in the data, such as in
linear regression models that are often used within the sport
psychology literature (Bittencourt et al., 2016; Olmedilla et al.,
2018). Furthermore, the structure of a network can be obtained
from both empirical data and prior knowledge about the area
of study; the latter being particularly useful when there are
a large number of variables in the network, or only a small
number of observations are available in the data (Xiao-Xuan
et al., 2007). In such instances, a purely data driven approach
to learning the network would be time-consuming due to
the large parameter space, and inefficiency at identifying an
approximation of the true network structure. Prior knowledge
about dependencies between variables can therefore be included
in the network structure, while still allowing a data driven
approach for unknown dependencies, to improve the overall
computation of the network structure (Heckerman et al., 1995;
Xu et al., 2015). The following sections detail the steps taken in
the current study to firstly prepare the data for each network,
and then obtain the structure of each network that was used for
further inference.

First Network

Data preparation
Of the 351 participants that were initially recruited for the
study, 94 only completed the first time point, and therefore had
to be removed from the study as no injury information was
obtained for these participants following the first time point.
To prepare the data for the BN, missing values in the dataset
were first imputed. Out of the 650 total measurements across all
time points in the current study, there were 31 (4.77%) missing
muscle stiffness measurements and 70 (10.77%) missing heart
rate recordings. The missing data were due to technical faults

1The term “query” in relation to Bayesian Networks stems from Pearl’s expert

systems theory Pearl (1988). A query can be submitted to an expert (in this case,

the network is the expert) to get an opinion, the expert then updates the querier’s

beliefs accordingly. Widely used texts on Bayesian Network analysis (Koller and

Friedman, 2009) have widely adopted the terminology in favor of that used in

traditional statistics.
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in the data collection equipment and were considered to be
missing completely at random. A missing rate of 15–20% has
been reported to be common in psychological studies, and several
techniques are available to handle missing values (Enders, 2003;
Lang et al., 2013). In the current study, the caret R package (Kuhn
et al., 2008) was used to impute the missing values. A bagged tree
model using all of the non-missing data was first generated and
then used to predict eachmissing value in the dataset. The bagged
tree method is a reliable and accurate method for imputing
missing values in data and is superior to other commonly used
methods such a median imputation (Kuhn et al., 2008).

A median split technique was used to discretise the data used
in the network into “Low” and “High” levels. All variables apart
from negative and total life events were approximately normally
distributed and required no further transformation prior to the
median split. For the LESCA questionnaire data, a cumulative
total of the current, and previous time points was calculated at
each time point to account for the potential continuing effect
of the life events experienced by athletes over time. Given the
limited support for a relationship between positive life events and
injury (Williams and Andersen, 2007), only negative and total
life events were included in the network. Cumulative negative,
and cumulative total life event scores at each time point were
first log scaled so distributions were approximately normal, and
then binarised using the median at each time point. In addition
to the log scaled cumulative values, an untransformed negative
life event score from the first time point (baseline NLE) was
included as an additional variable based on previous literature
that indicates this variable should have a strong relationship with
injury outcome (Ivarsson et al., 2017).

Network structure
To obtain the network structure, several steps were taken to
ensure that both a theoretically realistic network, and a network
that was an appropriate fit to the collected data, was used for
inference. Prior knowledge about the network structure was
included by providing a list of arcs that are always restricted
from being in the network (blacklist), and a list of arcs that are
always included in the network (whitelist). Additionally, there are
several scoring functions such as Bayesian Information Criteria
(BIC) and Bayesian Dirichlet equivalent uniform (BDeu) that
can be used to compare network structures with certain nodes
and arcs included or excluded (Scutari and Denis, 2014). To
account for the repeated measures design employed in this study
and to maximise the use of the data, pairs of complete cases
(e.g., participants who completed T1 + T2, and T2 + T3) were
used in a two-time Bayesian network (2TBN) structure (Murphy,
2002). In the 2TBN, variables measured at T2 could depend on
variables measured at T1 (e.g., T1→ T2) and variables measured
at T3 could depend on variables measured at T2 (e.g., T2→ T3).
However, arcs were blacklisted between T2 → T1 and T3 →

T2 to preserve the order in which data was collected. Variables
were separated into two groups; “explanatory,” for variables that
were fixed (e.g., gender), or “independent,” for variables that were
measured at each time point and could vary during the study.
Independent variable names were suffixed with _1 for time point
T, and _2 for time point T+1 (e.g., T1_1 → T2_2 and T2_1

→ T3_2). Formatting the data in this way meant participants
who completed T1 and T2, but did not complete T3, could
still be included in the analysis. In addition to the blacklisted
arcs between T2 → T1 and T3 → T2, the direction of arcs
was restricted between independent variables and explanatory
variables (e.g., independent → explanatory); however, arcs were
not restricted between explanatory → independent variables.
Finally, arc direction was restricted between specific nodes
within the explanatory variables. Arcs from competitive level →
gender, baseline NLE → gender and baseline NLE → sport type
(individual or team) were included in the blacklist, as arcs in these
directions did notmake logical sense. All subsequentmodels used
the same blacklist.

Preliminary network structures
Prior to the final network structure presented in the results
section, several structures with different combinations of
variables were explored. Networks were learned using a Tabu
search algorithm (Russell and Norvig, 2009) and BIC was used
to compare different models. A higher BIC value indicates the
structure of a DAG is a better fit to the observed data (Scutari
and Denis, 2014). BIC values for each combination of variables
of interest are reported as the combination of variables with the
highest BIC value, followed by the relative scores of the other
variables in the model.

Initially, both negative life events (NLE) and total life events
(TLE) were included in the network structure, however, the
network score was improved when only NLE or TLE was
included (NLE = −4,242.76, TLE only = −4,326.39, TLE and
NLE = −4,459.23). Additionally, despite strong evidence in the
literature that both NLE and TLE stress are related to injury
occurrence (Williams and Andersen, 2007), network structures
learned using the Tabu search algorithm failed to identify a
relationship between NLE and injury or TLE and injury in the
data. Given that NLE provided the highest network score, and
there is a stronger relationship between negative life events and
injury in the literature, an arc was whitelisted between NLE_1
and injured_1 and NLE_2 and injured_2 in the final network
structure. TLE was not included in the final structure.

The subscales representing the Behavioural Activation
System (Reward Reactivity [RR], Reward Interest [RI], Goal
Drive Persistence [GDP] and Impulsivity [I]) showed limited
connection to other variables in the network. Therefore,
competing models were examined and BIC scores compared to
establish the model with the best fit to the data (values are shown
relative to the highest value). RI provided the highest BIC value
(−3,563.13), compared to RR (−3,579.10), GDP (−3,582.39),
and I (−3,582.89). Including all the variables (RR, RI, GDP, and
I) resulted in a significantly lower score (−4,463.25) indicating
that including all the variables was not beneficial to the model
structure and did not offset the cost of the additional parameters.
Therefore, only RI was included in the final structure. Finally,
both total score and asymmetry (percentage difference in score
between limbs) for balance were included in the initial network.
However, visual inspection of the network revealed no arcs
between the balance asymmetry node and any other node in
the network. Therefore, balance asymmetry was removed from
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TABLE 2 | Variables included in the final Bayesian network structure.

Variable Definition State 1 State 2

Competitive level Current competitive level Club_university_county National_international

Gender Gender of the participant Female Male

Training hours Number of hours spent training per week 0–9 (Low) >9–35 (High)

Sport type Participate in an individual or team based sport Individual Team

Previous injury Whether an injury had been sustained in the previous 12 months prior to the study No Injury Injury

Baseline NLE Untransformed NLE at the first time point 0–13 (Low) >13–93 (High)

FFFS Fight-Flight-Freeze System 8–16 (Low) >16–30 (High)

BIS Behavioural Inhibition System 17–38 (Low) >38–68 (High)

RI Reward Interest 4-10 (Low) >10–16 (High)

Stiffness Sum of all stiffness locations 1,543–2,330 (Low) >2,330–4,518 (High)

HRV Root mean squared difference of successive RR intervals 2.03–4.01 (Low) >4.01–5.94 (High)

Balance Total balance score 5–15 (Low) >15–46 (High)

NLE_1 Log Negative life events (NLE) at time 1 0–2.64 (Low) >2.64–4.54 (High)

NLE_2 Log NLE at time 2 0–3.04 (Low) >3.04–5.19 (High)

NLE_3 Log NLE at time 3 0–3.18 (Low) >3.18–4.79 (High)

TLE_1 Log Total life events (TLE) at time 1 1.79–3.4 (Low) >3.4–4.88 (High)

TLE_2 Log TLE at time 2 1.79–3.74 (Low) >3.74–5.42 (High)

TLE_3 Log TLE at time 3 1.79–3.81 (Low) >3.81–5.18 (High)

the final network structure. To summarise, Table 2 reports the
variables that were included in the final network structure.

Preliminary network structures also revealed strong
dependencies between the same variables at sequential time
points. For example, the probability that stiffness_1 and
stiffness_2 were both “High,” or both “Low” was approximately
80%. Including the arcs between the same variables from
X_1 −→ X_2 did not provide any theoretically meaningful
information to the network structure as the majority of
participants would either be in a “Low” or “High” state for
each pair of variables in the network. Therefore, these arcs
were blacklisted from the network. To obtain the final network,
the appropriate blacklist and whitelists were provided and a
Tabu search algorithm identified the remaining structure of the
network. The final network structure was obtained by averaging
1,000 bootstrapped models (Efron and Tibshirani, 1994) to
reduce the impact of locally optimal, but globally suboptimal
network learning, and to obtain a more robust model (Olmedilla
et al., 2018). Arcs that were present in at least 30% of the models
were included in the averaged model. The strength of each arc
was determined by the percentage of models that the arc was
included in, independent of the arc’s direction. An arc strength of
1 indicated that the arc was always present in the network, with
the value decreasing as arcs were found in fewer networks. In
the respective study arcs above 0.5 were considered “significant”
with arcs below 0.5 and above 0.3 “non-significant” (Scutari and
Nagarajan, 2013). Arcs below 0.3 were not included in the model.
The full table of arc strengths for the first and second network
are available in Supplementary Tables 2, 3, respectively.

Network inference
Conditional probability queries (CPQ) were used to perform
inference on both network structures. To conduct a CPQ, the

joint probability distribution of the nodes was modified to
include a new piece of evidence. The query allows the odds
of a particular node state (e.g., injured_1 = “injured”) to be
calculated based on the new evidence. CPQ were performed
using a likelihood weighting approach; a form of importance
sampling where random observations are generated from the
probability distribution in such a way that all observations match
the evidence given in the query. The algorithm then re-weights
each observation based on the evidence when computing the
conditional probability for the query (Scutari and Denis, 2014).
Inference was first performed on arcs that had a strength >0.5
between the explanatory variables and independent variables
and between different independent variables in the network.
Of particular interest were the variables that were connected
to “injured” nodes, which were examined in the network using
the Markov blanket of “injured_1” and “injured_2.” A Markov
blanket contains all the nodes that make the node of interest
conditionally independent from the rest of the network (Fuster-
Parra et al., 2017). CPQ were used to determine what effect the
variables in the Markov blanket of injured nodes had on the
probability of the injured node being in the “injured” state.

Second Network

Data preparation
For the second network, change scores for continuous variables
between T1 → T2 and T2 → T3 were standardised to allow
relative changes between variables to be compared. The “injured”
variable was also modified to represent whether a participant had
sustained an injury at any point over the duration of the study
or were healthy for the duration of the study. Setting the data up
in this way enabled the construction of a network that explicitly
modelled the amount of change within variables between time
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TABLE 3 | The number and percentage (%) of types of injuries sustained by male and female participants.

Female Male

Lower body Upper body Lower body Upper body

Joint/ligament 14 (36) 5 (36) 37 (43) 14 (38)

Muscle/tendon 17 (44) 6 (43) 45 (52) 12 (32)

Other (bone, brain, and skin) 8 (21) 3 (21) 5 (6) 11 (30)

points, as opposed to the first network that only captured changes
when the median threshold was crossed from “Low” to “High.”

Network structure
Similar to the first network, blacklists were used to prevent
arcs from independent variables → explanatory variables. In
addition, baseline negative life events was dropped from the list of
explanatory variables to allow the changes in negative life events
to be the only life event variable in the network. The final network
was obtained using the same approach as the first network.

Network inference
Conditional probability queries (CPQ) were again used to
perform inference on the network structures. The Markov
blanket of the “injured” node was of particular interest, and
the probability of injury was investigated with combinations
of variables in the Markov blanket below the mean change,
at the mean change and above the mean change. Initial
visual inspection of the network structure also revealed arcs
between Behavioural Inhibition System (BIS) → Fight-Flight-
Freeze System (FFFS) and heart rate variability (HRV) → FFFS.
To investigate this relationship further, random samples were
generated for BIS, HRV, and FFFS based on the conditional
distribution of the nodes included as evidence in the query. The
samples were then examined using a Bayesian linear regression
models with the brms R package (Bürkner, 2017) to determine
the relationship between these nodes. Weakly regularizing priors
(normal prior with mean of 0 and standard deviation of 5) were
used for all parameters in the model.

RESULTS

During the study, 46% (n = 117) of participants reported at
least one injury with an average severity of 11 ± 31, days (range
= 2–365 days). Both male and female participants reported a
greater number of acute compared to chronic injuries (male,
acute = 85 [69%], chronic = 39 [31%]; female, acute = 38
[72%] chronic = 15 [28%]), and non-contact injuries were more
common than contact injuries (male, non-contact = 83 [67%],
contact= 39 [31%]; female, non-contact= 35 [66%] contact= 18
[34%]). Table 3 shows the number and percentage of injury types
sustained by both male and female participants. An additional
breakdown of injury by sport, type (acute or chronic) and injury
location is available in Supplementary Tables 4, 5.

First Network Structure
The first network structure obtained from the data (Figure 1)
examined the interactions between explanatory variables,

independent variables and probability of injury across time
points in the study. Strong sport-related and gender-based
connections between several explanatory and independent
variables were demonstrated for individual and team-based
sports. The “Sport type” node had strong arcs to training hours
(0.94) and baseline negative life events (NLE) (0.78). Individual
athletes were more likely to have “High” training hours (0.84)
compared to team-based athletes (0.60). Individual athletes were
also more likely to have “High” negative life events in the 12
months preceding the start of the study compared to team-based
athletes (individual athletes = 0.65, team-based athletes = 0.41).
The arc from competitive level → balance_1 had a strength of
0.47, with lower level performers more likely to have decreased
balance ability (0.48), compared to national level athletes (0.29).
High gender-based connections were reported for the arcs from
gender → stiffness_1 (0.71) and gender → stiffness_2 (0.43),
with males more likely to have “High” stiffness compared to
females (males = 0.62, females = 0.43). Irrespective of sport
or gender, strong connections were found between explanatory
variables. The arc from baseline NLE → Reward Interest (RI_1)
had a strength of 0.84, and the probability of RI_1 being in the
“High” state increased from 0.47 to 0.77 when baseline NLE
increased from “Low” to “High.”

The first network demonstrated further strong variable
interactions between high stiffness, poor balance, and injury
probability. The arc from previous injury→ stiffness_1 was 0.57
with athletes who reported an injury in the preceding 12 months
being more likely to have “High” (0.65) compared to “Low”
(0.35). stiffness. Strong arcs were present between Behavioural
Inhibition System (BIS) → Fight-Flight-Freeze System (FFFS;
BIS_1 → FFFS_1 = 0.98, BIS_2 → FFFS_2 = 0.74). In both
instances, “High” FFFS was more likely when BIS was “High”
(0.64 for _1, 0.61 for _2) compared to “Low” (0.33 for _1, 0.37
for _2). The arc between NLE → BIS had a strength of 0.55 for
NLE_1 → BIS_1, and 0.37 NLE_2 → BIS_2. “Low” negative life
events increased the probability of BIS being in the “High” state
from 0.33 to 0.55 for NLE_1→ BIS_1, and 0.38 to 0.58 for NLE_2
→ BIS_2.

Markov Blanket for Injured_1
The first conditional probability query (CPQ) investigated the
variables in the Markov blanket for injured_1 (Figure 2), which
contained hours spent training per week, negative life events
(NLE_1), muscle stiffness (stiffness_1), competitive level and
balance (balance_1). The arc between NLE_1 and injured_1 was
fixed in the network, so has the maximum strength of 1.
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FIGURE 1 | The full Bayesian network structure was plotted using the “strength.plot” function in bnlearn. The strength of each arc is shown graphically by the style of

the arc. Thin, dashed arcs indicate the weakest arcs (arc strength below 0.50), whereas thick solid arcs indicate the strongest arcs (arc strength of 1). White nodes in

the network indicate the explanatory variables, blue nodes indicate T1_1 and T2_1 variables, and red nodes indicated T2_2 and T3_2 variables. The injured_X nodes

have been coloured gold as they are the main nodes of interest within the network.

The CPQ for injured_1 in the “injured” state for all variables
that were linked to injured_1 is shown inTable 4. The probability
of injured_1= “injured” rose from 0.17 to 0.31 when stiffness was
“High” compared to “Low”. Negative life events had a negligible
effect when moving from the “Low” to “High” state.

The second CPQ investigated the outcome of injured_1 being
“injured” conditional on all variables in the Markov blanket. The
Markov blanket contained five nodes, each with two possible
states resulting in 25 combinations of variables, therefore only
the three lowest and highest probabilities are shown in Table 5

(complete results in Supplementary Table 4). The combination
of lower competitive level, “High” hours per week, “Low” negative
life events, “High” balance and “High” stiffness resulted in a
probability of 0.53 for injured_1 being in the “injured” state.
When all variables were in the “Low” state the probability of
“injured” was approximately 0.04.

Negative life event stress had a negligible effect on the
probability of injury, only influencing injured_1 when all other
variables were fixed to “Low.” In this instance, the probability

of injured_1 being “injured” rose marginally from 0.04 to
0.19, when negative life events was in the “Low” and “High”
states, respectively.

Markov Blanket of Injured_2
The Markov blanket for injured_2 is shown in Figure 3

and contained gender, Fight-Flight-Freeze System (FFFS_1),
stiffness_2, balance_2, and heart rate variability (HRV_2;
Table 6). The arc between stiffness_2 → injured_2 was
comparable to the arc between stiffness_1 → injured_1. Very
weak arcs (0.3) between injured_2 → balance_2 and injured_2
→HRV_2 were also present in theMarkov blanket for injured_2.
Similar to injured_1, stiffness_2 doubled the probability of
injured_2 being “injured” from 0.13 in the “Low” state to 0.27 in
the “High” state. FFFS_1 in the “Low” state increased probability
of injured_2 being “injured” by 0.19 compared to the “High”
state. “High” negative life events decreased the probability of
injury from 0.26 to 0.17.
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FIGURE 2 | Markov blanket of injured_1. Arc strengths are included as arc labels.

TABLE 4 | Probability of injured_1 being in the “injured” state, conditional on each

variable.

Variable Low High

Balance_1 0.21 0.30

Training hours 0.18 0.28

Negative life events_1 0.24 0.26

Stiffness_1 0.17 0.31

The three lowest and highest conditional probabilities based
on all the variables in injured_2 Markov blanket are presented
in Table 7 (complete results in Supplementary Table 5). The
combination of “Low” FFFS_1, “High” stiffness_2, “High”
balance resulted in the greatest probability of injured_2 being
“injured,” with the highest probability of injury being 0.53. With
all other variables held in the “High” state, the probability of
injured_2 being “injured” rose from 0.15 to 0.35 when FFFS_1

TABLE 5 | Highest and lowest probability of injured_1 being in the “injured” state,

conditional on all the variables in the Markov blanket for injured_1.

Probability Competitive level Training

hours

Negative

life

events_1

Stiffness

_1

Balance

_1

Highest

0.53 club_university_county High Low High High

0.46 national_international High Low High Low

0.44 national_international High Low High High

Lowest

0.06 national_international Low Low Low Low

0.05 national_international Low Low Low High

0.04 club_university_county Low Low Low Low

was in the “Low” compared to “High” state. The combination of
“Low” stiffness, “Low” balance and “High” FFFS resulted in the
lowest probability of injured_2 being “injured”.
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FIGURE 3 | Markov blanket for injured_2.

TABLE 6 | Probability of injured_2 being in the “injured” state, conditional on each

variable in the Markov blanket for injured_2.

Variable Low High

Balance_2 0.17 0.27

Fight-Flight-Freeze System_1 0.30 0.11

Heart rate variability_2 0.26 0.17

Negative life events_2 0.23 0.19

Stiffness_2 0.13 0.27

Second Network Structure—Changes
Within Variables
The second network structure (Figure 4) examined changes
within variables between time points and the probability of
injury. An arc between Behavioural Inhibition System (BIS) →
Fight-Flight-Freeze System (FFFS) with strength 1.00 was present
in the network. Arcs between competitive level→ BIS and gender

TABLE 7 | Highest and lowest probability of injured_2 being in the “injured” state,

conditional on all the variables in the Markov blanket for injured_2.

Probability Fight-Flight-

Freeze

System_1

Negative

life events

_2

Stiffness

_2

Heart rate

variability_2

Balance

_2

Highest

0.53 Low Low High Low High

0.46 Low High High Low High

0.41 Low Low High High High

Lowest

0.06 High High Low Low Low

0.05 High Low Low High Low

0.04 High High Low High Low

→ stiffness had a strengths of 0.60 and 0.56 respectively Similarly,
the arc between HRV → FFFS was 0.58. The arcs between
BIS → FFFS and HRV → FFFS were examined further by
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FIGURE 4 | Network structure of the changes within variables between time points.

drawing random observations from the conditional probability
distribution and examining the relationship in a Bayesian linear
regression model. A separate linear regression examined the
interaction between BIS and HRV.

Results from the Bayesian linear regression model are
presented in Table 8 and include 95% credible intervals (CrI).
Increases in BIS were associated with increases in FFFS (b =

−0.19, 95% CrI = [−0.25, −0.13]), whereas positive changes in
HRV were associated with decreased changes in FFFS (b = 0.41,
95% CrI = [0.36, 0.47]). There was no clear interaction between
HRV and BIS (b=−0.02, 95% CrI= [−0.08, 0.03]).

TheMarkov blanket for the “injured” node contained previous
injury, gender, training hours per week and stiffness and negative
life events (NLE; Figure 5). For stiffness and NLE, the values
in the nodes represent the standardised change between time
points. Combinations of NLE and stiffness at one SD below the
mean change, at the mean change, and 1 SD above the mean
change are presented in Table 9. Increases in muscle stiffness
was found to increase the risk of injury, which was further

TABLE 8 | Estimate, error, and 95% credible intervals for the fixed effects in the

linear model containing Fight-Flight-Freeze System, Behavioural Inhibition System,

and Heart rate variability.

Term Estimate Error 95% CI

Intercept 0.00 0.03 [−0.05, 0.06]

Behavioural Inhibition System (BIS) 0.41 0.03 [0.36, 0.47]

Heart rate variability (HRV) −0.19 0.03 [−0.25, −0.13]

BIS:HRV −0.02 0.03 [−0.08, 0.03]

increased when there were increases in NLE stress. Changes in
both NLE and stiffness of 1SD above the mean change resulted in
a high probability of being injured (0.71) over the duration of the
study. With stiffness held at the mean change, the probability of
“injured” rose notably from 0.35 to 0.64 with NLE at 1 SD below
an 1 SD above, respectively.

Table 10 shows the three highest and lowest probabilities for
injury for all variables in the Markov blanket (full results in
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FIGURE 5 | Markov blanket for the injured node in the network reflecting changes within variables between time points.

Supplementary Table 7). The combination of 1 SD above the
mean change for negative life events (NLE) and stiffness and
“High” hours per week and previous injury resulted in the highest
probability that an injury would be sustained during the study
(0.77). In contrast, below average changes in NLE and stiffness
combined with “Low” hours per week and no previous injury
resulted in the lowest probability of an injury (0.11).

DISCUSSION

The study investigated the multifaceted interactions of stress-
related variables and injury occurrence using the stress-injury
frameworks presented by Williams and Andersen (1998) and
Appaneal and Perna (2014), and a prospective, repeatedmeasures
design applied to a large cohort of athletes. Relationships between
stress-related psychosocial and physiological factors and injury

were investigated using two Bayesian network structures; the
first was a two-time network that investigated the relationships
between variables across time points in the study, and the
second network used differential equations to model the changes
in variables between time points. The latter facilitated the
development of new insights into the interactions of stress-
related factors with injury occurrence, exploring changes in both
psychosocial and physiological factors that may occur preceding
an injury.

The first network revealed several links between the injured
nodes and other variables in the network. A combination
of high stiffness and poor balance resulted in the highest
probability of injury in the Markov blankets for “injured”
nodes. The presence of these factors at both injured nodes
indicated that the interaction of these variables is important for
determining an athlete’s risk of injury. In the second network,
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TABLE 9 | The probability of injury with values of stiffness and negative life events

held at 1 SD below the mean change, at the mean change and 1 SD above the

mean change.

Probability Negative life events Stiffness

0.71 +1 SD +1 SD

0.64 +1 SD Mean

0.62 +1 SD −1 SD

0.52 Mean +1 SD

0.44 Mean Mean

0.43 Mean −1 SD

0.42 −1 SD +1 SD

0.35 −1 SD Mean

0.35 −1 SD −1 SD

TABLE 10 | Highest and lowest probability of injury, conditional on all the variables

in the Markov blanket for “injured”.

Probability Training hours Previous injury Negative life events Stiffness

Highest

0.77 High Injury +1 SD +1 SD

0.74 High No injury +1 SD +1 SD

0.72 Low Injury +1 SD +1 SD

Lowest

0.15 Low No injury −1 SD +1 SD

0.13 Low No injury −1 SD Mean

0.11 Low No injury −1 SD −1 SD

the highest probability of injury was observed when increases in
stiffness and negative life events were both greater than average,
indicating that the combination of changes in psychosocial and
physiological stress-related factors may combine additively to
increase the risk of injury (Appaneal and Perna, 2014).

Of all the variables measured in the study, muscle stiffness
appeared to be most strongly related to injury. Both “High” levels
of stiffness in the first network, and greater than average increases
in stiffness in the second network were found to increase the
risk of injury. However, high stiffness may only increase the
risk of injury if other factors are also present. To elaborate, the
combination of high stiffness and poor balance was found to
result in the greatest probability of injury. In contrast, athletes
with high stiffness and good balance were less likely to be injured,
suggesting that improved postural stability may counteract the
potential harmful effects of high levels of muscle stiffness. Several
studies have identified how balance (Trojian and McKeag, 2006;
Romero-Franco et al., 2014) and muscle stiffness (Pickering-
Rodriguez et al., 2017; Butler et al., 2003) are separately related
to injury. The BN structures examined in this study provided
insight into these two stress-related factors and their relation to
injury occurrence.

The findings also facilitated an understanding of the
interaction between balance and injury. At both injured nodes in
the first network, balance was linked to injury. Despite the weak
arc strength at both injured nodes, a “High” balance score, which

is considered indicative of impaired postural stability (Romero-
Franco et al., 2014), was found to increase the probability of
injury. This finding is consistent with previous research that has
reported an association between decrements in postural stability
and increased injury risk (Trojian and McKeag, 2006; Riemann
et al., 1999; Romero-Franco et al., 2014). Postural stability is
often used as an indicator of athlete performance level, with
higher level athletes demonstrating better postural stability over
their lower level counterparts (Paillard et al., 2006). Athletes
who competed at a higher level were also more likely to have
good balance (“Low” balance), compared to their lower level
counterparts. These findings suggest that better postural stability
is associated with both a higher level of performance and a lower
probability of sustaining an injury, reinforcing the importance
of postural stability as a feature of athletic training programmes
designed to prepare athletes for the demands of high intensity
training and competition (Hrysomallis, 2011).

Negative life events captured at a single time point have
previously been reported to be most strongly associated with
injury (Ivarsson et al., 2017; Williams and Andersen, 2007). The
repeated measures approach combined with the second network
analysis employed in this study demonstrated that greater than
average increases in negative life event stress between time points
increased the probability of being injured during the study
period. However, negative life event stress had almost no effect
on the probability of injury in the first network, which indicated
that the relative change in life events may be more important
than the absolute score for life events, despite the latter being
commonly used in sports injury research to date. For example,
an athlete who reports a negative life event score of 1 during the
first time point, but then a score of 5 at the second time point
will have a 400% increase in their life event score. Although the
absolute score would be “Low,” the relative increase between time
points may have been caused by a significant event in the athlete’s
life that had a considerable psychological and physiological effect
(Appaneal and Perna, 2014). Future research should therefore
consider study designs and analyses that enable relative changes
in an individual athlete’s life events to be assessed (Ivarsson et al.,
2014).

The majority of research has however, consistently identified
major life events, particularly those events with a negative
valence, as the strongest predictor of injury in Williams and
Andersen’s model (Ivarsson et al., 2017). During the initial
network structure development, no arcs between the negative life
event nodes and injured nodes were found by the Tabu search
algorithm. Given the reported association between negative life
events and injury, an arc was fixed between these variables
to allow this relationship to be examined more closely. When
negative life events were “High” the probability of injury showed
a negligible change at the injured_1 node and decreased by
−0.04 at the injured_2 node. One possible explanation for these
findings may be due to the use of the LESCA questionnaire in
a repeated measures design. In the original LESCA, participants
are asked to report major life events that have occurred over
the previous 12-months (Petrie, 1992). In this study, athletes
completed the LESCA at three time points with an approximate
4-month interval after baseline. Athletes were asked to report
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any events which had occurred since the previous data collection
session in order to avoid inflated scores caused by reporting
the same event on multiple occasions. While modifications were
made to the LESCA to tailor the items to the study cohort, the use
of a shorter 4-month time interval between data collections may
have reduced the likelihood for life events listed in the LESCA
to have taken place. For example, at the second and third time
points, 26% of participants reported 0 negative life events for
the preceding 4-month period. Simply, it may be that the items
on the LESCA are less suitable for repeated measurements with
durations shorter than the advocated 12-months than a measure
that captures minor life events (Fawkner et al., 1999).

Williams and Andersen’s (1998) model proposed a number
of coping resources that were either directly related to injury
or moderated the relationship between life stress and injury
occurrence; for example, general coping strategies (e.g., good
sleeping habits and self-care), social support systems and stress
management skills. Although coping was not measured in the
current study, several studies have found high levels of social
support can reduce the risk of injury (Petrie, 1993; Johnson et
al., 2014; Petrie et al., 2014). The lack of association between
major/negative life events and injury reported here may be
attributed to athletes in this study having the necessary coping
resources to mitigate against the effects of any negative life
event stress they experienced. Therefore, future research should
consider including a measure of coping alongside that of life
event stress to help explain the possible moderating effect.

Despite the uncertainty regarding the relationship between
injury and heart rate variability (HRV) in the first network,
“Low” HRV increased the probability of injury from 0.17 (“High”
HRV) to 0.26 (“Low” HRV). This finding is consistent with
previous research that has found reduced HRV indices to be
indicative of illness or maladaptation to training due to decreased
parasymapthic activity, which often precedes injury (Bellenger
et al., 2016; Gisselman et al., 2016; Williams et al., 2017). An
arc between FFFS_1 and injured_2 (arc strength = 0.40) was
also observed in the first network, where the risk of injury was
increased from 0.13 to 0.29 with FFFS in the “High” and “Low”
states, respectively. Interestingly, the “Low” FFFS score was
also related to injuries at subsequent time points. One possible
explanation for this finding could be that those athletes who
reported “Low” FFFS score were less fearful, and may therefore
engage in more risk taking behaviours, increasing the probability
of injury. The RST theory proposes that higher levels of FFFS
increase avoidance motivation (Corr et al., 2016), and therefore
“High” FFFSmay have acted as a deterrent from taking risks while
training and competing, reducing exposure to situations that
could have resulted in injury. The RST theory further proposes
that the combination of high BIS and high FFFS is likely to result
in a more anxious disposition due to high levels of avoidance and
high goal conflict characterised by high levels of FFFS and BIS
(Corr, 2013). The first network reported an association between
“High” FFFS and “High” BIS, while the second network found an
association between increases in FFFS and increases in BIS. High
levels of anxiety and anticipation of stressful situations have been
linked to reductions inHRV indices including RMSSD (Chalmers
et al., 2014; Pulopulos et al., 2018). This association along with the

proposed actions of the RST theory (Corr et al., 2016) provides a
potential explanation for the negative relationship between FFFS
and HRV identified in the second network. To elaborate, high
levels of BIS are proposed to be the result of goal conflict, an
example of which would be simultaneous triggering of the FFFS
(avoidance) and BAS (approach) systems. The goal conflict is
likely to elicit a physiological response (e.g., decreased HRV) in
preparation to engage in the required behaviour to resolve the
goal conflict (Corr et al., 2016). In the present study, however,
the role of BAS was limited, as evidenced by the initial network
structures in which the BAS had limited connectivity with other
components of the network. Consequently, a more detailed
examination of the role of RST in the injury process is warranted.

This study had a number of strengths. A major critique of
the sport injury literature has been the use of only one wave
of measurement that may not be reflective of the dynamic
nature of the variables that are associated with injury (Johnson
et al., 2014). The longitudinal repeated measures design of the
current study allowed changes over time and between time points
to be captured and explored. Although there are unique and
significant challenges with research employing such designs, a
more fine-grained understanding of the dynamic relationships
between stress-related factors and injury occurrence in athletes
was achieved when compared to traditional cross-sectional,
single time point research. As advocated by Johnson et al.
(2014), future research should continue to use repeated measure
designs, including designs with more frequent monitoring, such
as daily and weekly measures to gain further insight into the
dynamic interplay between stress-related factors and injury.
Sport injury research has also been criticised for adopting
analytic approaches that are reductionist in nature (Bittencourt
et al., 2016) that fail to account for the complex, emergent
behaviour that is characteristic of injury occurrence. The
use of an interdisciplinary framework combined with a BN
modelling approach in the study facilitated extended insight
into the complex interplay that exists between psychosocial and
physiological markers of stress and injury occurrence. The BN
networks allowed several markers of stress that were free to
interact with each other, as well as injury, to be explored.

While the BNs provided a contemporary approach that
improved upon traditional methods such as logistic regression
(Olmedilla et al., 2018), a number of assumptions were made that
potentially limited the approach employed in the study. Firstly,
the choice was made to binarise variables in the first network
so only “Low” and “High” states were observed. Although
binarising variables is a common procedure in BN analysis and
has several advantages, Qian and Miltner (2015) highlighted that
both a loss of statistical accuracy and potential difficulty in the
subsequent interpretation of the model may arise. For example,
the meaning of a “Low” and “High” value in this study was
only meaningful for the population studied, and there could be
additional levels within each category that were not investigated.
The use of a median split to determine the “Low” and “High”
states could also be improved by using known cut-off scores that
are associated with a higher risk of injury. While the measures
used in the current research did not have any clear cut-off
scores supported by the literature, future research should aim to
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identify potential cut-off scores that would consequently enable
a more meaningful splitting procedure compared to using the
group median. Furthermore, in order to collect data on a large
sample of participants, suitable measures were required to ensure
the viability of the data collection. However, a reduction in the
sensitivity of some of these measures may have inhibited our
ability to detect more subtle variation in the athletes’ responses.
For example, a more sensitive measure of postural stability
may have been achieved with the use of a force plate, which
is considered the gold standard to provide detailed data and
enable a more fine-grained analysis (Ross et al., 2011). However,
the video-capture approach employed in the study ensured an
accessible, non-invasive and readily applied method of capturing
the respective measure.

The ability to capture large sample sizes of injured athletes
has been recognised as a significant challenge in sports injury
research (Ruddy et al., 2019) and affects the success to which
stress-injury interactions can be identified and understood.
This is further exacerbated in studies that employ longitudinal
prospective repeated measures designs where high levels of
participant retention are required. Consistent with Williams and
Andersen’s (1998) stress-injury model, we therefore employed
a global definition of injury as the primary outcome measure,
to optimise sample size of injury occurrences across the
repeated measures prospective study design. As suggested
by Ruddy et al. (2019), a larger number of observations
and injury events is needed to improve the ability to
identify and to make more meaningful predictions. Further
conventional injury exposure measures (sport type, training
load) were subsequently discretised or reduced for the data
capture, which caused some loss of information and has
been suggested to limit the ability to capture risk profiles
(Carey et al., 2018). Using pooled or discretised definitions
for some measures hindered a detailed causal-effect insight
into injury-specific risk factors. However, the more holistic,
interdisciplinary approach adopted in this study was benefited
by the ability to gain and substantiate a more complete picture
of the complex, multifaceted stress-injury interactions that exist
in sport.

The multifactorial, interdisciplinary approach employed in
the study required the selection of stress-related measures
derived from a psychosocial and physiological perspective.
The variables used in the present study were not definitive.
Additional measures relating to coping, injury prevention
behaviours, injury-specific biomechanics and stress hormones
such as cortisol, which been found to be a marker of both
psychological and training-related stress (Perna and McDowell,
1995; Appaneal and Perna, 2014), could help to further elucidate
the relationship between stress and injury. Future research should
continue to explore the relationship between these measures,
as well as their effect on the risk of injury. In particular,
there is scope to build upon Appaneal and Perna’s (2014)
biopsychosocial model of stress, athletic injury and health which
provides a framework for examining the interplay between
psychological, behavioural, and training-related factors. Future
developments in the capture of life event stress using the

LESCA are also warranted. Although the LESCA is the most
widely used measures of major life events in sports injury
research, modifications, including adjustment to the scoring of
items are potentially justified to facilitate extended insight into
the reported responses. For example, the LESCA may negate
vastly different psychological and physiological effects between
moderately negative and extremely negative events since there
is no way to differentiate between an athlete who has answered
four items as moderately negative, and one item as extremely
negative. Therefore, future research could develop a modified
version of the LESCA that could distinguish between these types
of responses and their effects.

Finally, the findings of this study have important practical
implications for athletes, coaches, and clinicians in relation
to the additive and interactive effects of multiple sources of
stress on injury occurrence. Specifically, the study evidenced
a combined effect of psychosocial and physiological stress-
related factors that could increase the probability of injury to
a greater extent than any isolated factor. When assessing an
athlete’s training plan, readiness to engage in, and recovery from
training, coaches and clinicians should employ a risk profile that
integrates multifaceted sources of stress. For example, in addition
to monitoring training loads and using tools to determine an
athlete’s physiological status, coaches need to also consider an
athlete’s psychological state. In particular, when an athlete is
facing significant life event stress, adjusted training intensity and
volume may be necessitated to support athlete’s coping with
the additional duress and to subsequently safeguard optimal
health and well-being. In essence, injury risk is exacerbated when
an athlete is experiencing psychological stress due to exposure
to negative life events and exhibiting physiological responses
associated with an increased injury potential. The identification
of such a “high risk” profile is subsequently important in
helping to monitor and reduce injury risk for athletes. For
example, while high muscle stiffness is important for optimal
performance (Pruyn et al., 2015), this study demonstrated it
can heighten injury risk, which is likely to be exacerbated
when accompanied by the experience of negative life events
by an athlete. In order to understand how an athlete’s injury
risk may increase over time, it is important to acknowledge
the breadth and interaction of stress-related factors that could
heighten susceptibility and be receptive to training and life
experience changes.

To summarise, this study provided novel insights into
the multifaceted nature of the stress-injury relationship
using a novel interdisciplinary approach coupled with
Bayesian Network analytical techniques. Muscle stiffness
and increases in negative life event stress were identified as
strong predictors of injury within the multifaceted athlete
cohort, while other factors including personality characteristics
and postural stability were also found to contribute to the
probability of injury occurrence. Future research combining
a repeated measures approach and complex analyses of the
interactions between multifaceted stress-related measures are
advocated to enhance understanding of the injury occurrence
in sport.
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