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We present a data-driven model that rates actions of the player in soccer with respect

to their contribution to ball possession phases. This study approach consists of two

interconnected parts: (i) a trajectory prediction model that is learned from real tracking

data and predicts movements of players and (ii) a prediction model for the outcome

of a ball possession phase. Interactions between players and a ball are captured by a

graph recurrent neural network (GRNN) and we show empirically that the network reliably

predicts both, player trajectories as well as outcomes of ball possession phases. We

derive a set of aggregated performance indicators to compare players with respect to.

to their contribution to the success of their team.
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1. INTRODUCTION

Analyzing team and player behavior in soccer games is an inherently difficult task: coordination
among teammates is highly complex and even well-developed game plans can be negated by a single
bad pass. In these circumstances, the contribution of a single player to the success of a team is often
difficult to estimate. While obvious decisive actions, such as scoring and assisting a goal, losing
the important tackle just before the scorer takes the shot, can easily be measured and attributed
to those players1, other aspects are often left for evaluation by experts and coaches. For example,
does a player give too much space to the attacking midfielder in certain situations, or does a striker
regularly wait too long after losing the ball before they track back and try to slow down the attack
of the opponent?

Last but not least, there is a great deal of randomness in the game of soccer and the outcome
highly depends on chance. A good team may still lose the game simply because they hit the post
instead of the goal, while their opponents capitalize on an individual error. Still, the good teammay
have created more scoring opportunities and played better in general and when it comes to player
rating, the players of the good team should be rated accordingly.

Because of the complexity in which a soccer match develops, there has been a lot of research
on specific aspects of the game to analyze and measure their potential influence on the outcome.
For example, Spearman et al. (2017) developed a model for pass probabilities, Fernandez and
Bornn (2018) measured the space generated by players, Spearman (2018) and Link et al. (2016)
analyzed scoring opportunities, Dick and Brefeld (2019) learned general values of game situations,
and Fernández et al. (2019) analyzed the value of certain areas of the pitch depending on the game
situation. Another aspect that received attention is learning player movements from trajectory data.
Brefeld et al. (2019) learned general distributions of player movements without taking into account
any context including positions of other players or the ball, whereas Le et al. (2017b) and Yeh et al.
(2019) aimed at simulating player trajectories. While the former can be used to compute zones of
control of players, i.e., the zones that are defined as the area that a player will most likely occupy at

1e.g., https://www.bundesliga.com/en/bundesliga/stats/players.
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a certain time in the future, the latter can be used to perform
counterfactual analysis to compute how a player could have
influenced a situation if they had moved differently (Le et al.,
2017a).

In this article, we devise a model that predicts player
trajectories and estimates the expected outcome of a ball
possession phase. A ball possession phase is a time between
a team gaining possession of the ball and loosing it again.
Ultimately, the outcome of such a sequence could either be a
success by scoring a goal or a failure by losing possession to the
opponent. However, as goals are rather rare in soccer, success can
also be defined less precisely, e.g., by the expected goal value in
case of a shot or, even more general, by entering a certain area
on the pitch that potentially allows for a scoring chance. In this
article, we use the latter approach and consider a built-up play, a
success if the team enters a dangerous zone while retaining ball
possession. The basis for the model is a graph recurrent neural
net (GRNN) that models interactions between players and the
ball using a fully-connected graph, where all players and ball
are represented by nodes. Their interdependencies are given by
edges between the nodes and are, finally, learned by the GRNN
to predeict the outcome of a ball possession phase. To this extent,
the model also learns node features for every node to predict
the movement of the corresponding player or ball. This research
borrows ideas from Dick and Brefeld (2019) to learn developing
values from game situations but we show that using a graph
model significantly improves the ability to predict successful
outcomes. It also extends the study of Yeh et al. (2019) who use a
graph recurrent network to predict trajectories of soccer players.
In contrast with their models, we use a different way of realizing
multimodal movement distributions.

We learn and evaluate the model on data from 54 Bundesliga
matches where ball and player positions are captured at 25
frames per second2. Those data were augmented by event
data containing manually annotated information about passes,
shots, tackles, etc. Together, tracking and event data constitute
official match data and are provided by Deutsche Fuball Liga
(DFL) 3. We show empirically that the predictions of success
of this approach mirrors the likelihood of success during a
ball possession pretty well, both quantitatively and qualitatively.
Furthermore, this model can predict player trajectories that
can be turned into an “average” Bundesliga player. We derive
a set of performance indicators that can be used to assess
the performance of individual players’ objectively while going
beyond simple metrics, such as goals or assists. We also show
that success predictions can be used to query match databases for
important game segments where a single action, such as a pass
or a dribble, significantly changes the likelihood of a successful
attack, i.e., it allows for extracting potentially game-changing
individual plays automatically.

The remainder of the article is structured as follows. We
briefly review related work in the next section and present the
main contribution in section 3 on empirical results in section 4,

2c.f. Linke et al. (2020) for an empirical validation of the data.
3https://www.dfl.de/en/innovation/how-is-the-official-match-data-collected/.

and section 5 provides a discussion of practical applications in
section 5, and give conclusion in section 6.

2. RELATED WORK

Rating game states and player actions in soccer is a fairly
new topic that aims at quantitatively measuring how particular
actions, such as passes or dribbles, influence the outcome of a
game or how likely a game configuration consisting of ball and
player positions, control of the ball, or recent actions, among
others, may lead to a scoring opportunity. Data sources used to
groundmodels on observable data generally consist of event data,
such as information about shots and passes and/or trajectory data
that measures the position of players and the ball several times a
second. Due to the inherent complexity of soccer matches, most
work has focused on rather specific aspects of soccer to rate those
particular actions, such as passes or shots. Shot opportunities
were investigated using the expected goal (sometimes also called
xGoal or xG) value, e.g., in Lucey et al. (2014) with the control of
a team ON that point and in Spearman (2018) who developed a
model that estimates off-ball scoring opportunities by combining
scoring probabilities from a certain point on the pitch with the
control of a team that point and the probability that the ball
will reach the point. Link et al. (2016) developed a model that
estimates the dangerness of a game state by a combination of
position, pressure, control, and density of future positions. Work
on the analysis of passes in soccer included study by Power
et al. (2017), who compared the risk of a pass (probability of an
intercepted pass) vs. its reward, the likelihood that the attacking
team will take a shot at goal within 10 s after the pass. Goes
et al. (2019) estimated the effectiveness of passes by measuring
how many defensive players have to move and how much their
defensive organization reduces following a pass. Spearman et al.
(2017) developed a model that estimates the probability that a
pass to a teammate is successful. Other related work consists of
defining game indexes (McHale et al., 2012), measuring the space
occupation and generation by players and teams (Fernandez and
Bornn, 2018), and deploying frequency-related criteria to narrow
down the candidate space of interesting patterns (Haase and
Brefeld, 2014).

More general approaches include a study by Fernández
et al. (2019) who developed an expected possession value that
describes the likelihood that a ball possession ends in a team
scoring a goal. The value is decomposed into three potential
actions: passes, shots, and ball-drives. Models that estimate the
expected success after performing the actions are learned for each
action individually, though no further specifics of those models
were presented. The work is more focused on the application of
the model rather than technical detail, whereas this current work
instead focuses on presenting a concise method for computing
the value at any point in time during a soccer match, thereby
allowing to rate any action based on the difference between
values before and after it is performed. In that way, it is more
closely related to Decroos et al. (2019) who learned values for
actions, such as passes and dribbles, based on event data. The
probability of scoring a goal after a certain action is performed is
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estimated by learning a binary classifier on a set of handcrafted
features of actions. This work is similar in spirit to the model
presented in the current work but only uses event data instead of
trajectory data. Instead, the approach on learning to rate states
and actions is partly based on Dick and Brefeld (2019), who
used a convolutional neural network to learn ratings of game
situations using ideas from reinforcement learning.

Another aspect of soccer analytics that received attention is
the simulation of player trajectories. Peralta Alguacil et al. (2020)
partly combine rating player actions and movement prediction
by identifying potential runs or actions of players that maximize
a combination of three factors. Players may aim at running into a
position that maximizes the probability of receiving a pass, based
on the work of Spearman et al. (2017). Players may run into
a position that maximizes pitch impact, a proprietary measure
for how dangerous a position is, or they may want to maximize
the pitch control measure of Fernandez and Bornn (2018), the
amount of space controlled by a team. They use the physics-
based approach of Fujimura and Sugihara (2005) to estimate
which positions a player may reach in time for a pass and sample
from inside this area find optimal positions. This approach does
not have the aim to simulate real player behavior but instead to
compute alternative movements that can be presented to players
and coaches analyze collective behavior. Another way to model
general player movements is to use a counting-based approach
to estimate a probabilistic movement model that predicts the
density of future positions for short-time windows (Brefeld et al.,
2019). However, this approach cannot be used to simulate player
trajectories because it does not take into account any context of
other players or the ball.

Several studies instead investigated learning to predict player
trajectories in soccer and other sports, such as basketball (Le et al.,
2017a,b; Yeh et al., 2019; Zhan et al., 2019). A general problem
when learning coordinated movements of several agents, such as
players in a team, is that observed trajectories come as unordered
sets of individuals. When learning from a variety of games,
there is a need to incorporate different teams and players and,
consequently, the model has to work without a natural ordering
of the players. Le et al. (2017b,a) learned trajectories of players
by estimating their roles in a given episode and then use these
role assignments to predict future movements given the role.
A similar approach has been taken by Zhan et al. (2018, 2019)
who also used role assignments to predict future positions. Their
results for basketball players are computed using a variational
recurrent neural network (RNN) that allows for the inclusion
of macro goals. Similarly, Felsen et al. (2018) computed tree-
based role assignment to predict trajectories using a conditional
variational autoencoder.

In general, graph representations suggest themselves to model
interactions of players and ball. In one way or another, players
and balls are identified with nodes in a fully connected graph,
where edge weights correspond to their interaction and are
learned in the training process. For example, Yeh et al. (2019)
proposed to leverage graph neural networks (GNN), which are
naturally suited to model coordinated behavior because of their
invariance to permutations in the input. The authors proposed a
graph variational RNN to predict future positions of soccer and
basketball players and showed that graph networks outperform

other models when predicting player trajectories. Similarly,
Hoshen (2017) and Kipf et al. (2018) proposed graph-related
attention mechanisms to learn Basketball player trajectories.

Graph neural networks have been widely used to model
structured or relational data, refer to Battaglia et al. (2018)
for an overview. In cases where data is sequential in nature,
GRNN have been widely deployed, for an example, to mix graph
representations with recurrent layers (Sanchez-Gonzalez et al.,
2018; Yeh et al., 2019), such as gaited recurrent units (GRU, Cho
et al., 2014).

Due to the complex nature of movements in soccer, a natural
assumption on the distribution of future positions is its multi-
modality. Trivially, any probabilistic model that aims to predict
future positions in team sports needs to reflect the multi-modal
nature in some sense. Hence, Zhan et al. (2019), Zhan et al.
(2018), Yeh et al. (2019), and Felsen et al. (2018) use conditional
variational models (CVM) with Gaussian emission functions to
account for multi-modality in the data. However, Graves (2013)
has shown that learning a Gaussian mixture model (GMM) as
output distribution, by combining recurrent neural networks
(RNNs) with mixture density networks (MDNs) Bishop (1994),
yields good results for spatiotemporal tasks. Indeed, Rudolph
et al. (2020) has recently shown that combining GMM emissions
with recurrent graph networks performs at least on par withmore
complex CVM In this article, the approach for learning soccer
player trajectories is based on the study of Yeh et al. (2019) (s.a.)
in that we use a GRNN model with typed edges but instead of a
CVM approach we use anMDN output to model multi-modality.
That way, we make use of the findings of Rudolph et al. (2020)
and also of Yeh et al. (2019) who in their experiments found
out that variational models do not outperform non-variational
models on soccer data.

3. LEARNING TO PREDICT AND RATE
ACTIONS

At each point in time during a soccer match, all players and
the ball interact with each other. For example, a defender reacts
to a run of the closest opponent, the player in ball possession
passes the ball to a teammate, another player moves away from an
opponent to be available for receiving a pass, a defender positions
oneself to minimize the likelihood that a potential counterattack
would lead to a dangerous situation. Hence, each player decides
on their next action, a run with or without the ball, a tackle, or a
potential on-ball action, based on previous and current actions of
other players.

At the same time, actions of the palyer are aimed at
maximizing the likelihood of winning the game which, at a
specific point in time, could be best achieved by either a tackle,
a run into open space, a pass, a shot, or even by committing a
foul. It is, therefore, often beneficial to split a soccer game into
separate phases based on which team has possession of the ball.
Ultimately, such a ball possession phase ends when the team
either looses possession of the ball, when the ball is out of play,
or when a team scores a goal, thereby also loosing possession of
the ball. That way, the likelihood of winning the game can be split
into separate phases with likelihoods of scoring in each phase.
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Indeed, at each point in time during a ball possession phase,
there is a likelihood of scoring without losing the ball before.
Each player of the ball possessing team aims at increasing this
likelihood with their actions, whereas the players of the defending
team aim at decreasing it.

In this article, we focus only on the movement actions
of players with or without the ball and hence predict player
trajectories based on the trajectories of other players and the
ball. Regarding success prediction, goals are scarce in soccer
which causes a general problem of predictability of soccer match
outcomes. For example, during the 2017/18 Bundesliga season,
teams took on average 27 shots per game but only 2.79 were
converted into goals. We use data from 54 Bundesliga games
from that season 2017/18, with a total of 148 goals and 1450
shots (i.e., 1 goal out of 9.8 shots). Several of those shots and
goals originated from set pieces and are not suitable for use as an
outcome of a ball possession phase. As a consequence, we focus
on a proxy that appears more frequently in the data to facilitate
learning with more evenly balanced success signals. Thus, instead
of defining success simply by goals or shots, we propose to
consider ball possession phases “successful” that ends with the
ball possessing team entering a dangerous zone. In the remainder,
we use the area that spans until 2 m outside the penalty box as the
dangerous zone. This signal appears 1,879 times in the data and
serves a good proxy for success.

We will learn player actions and success prediction separately
but use the same underlying model for both so that they can be
used together to rate actions. The common basis for the model
is a GRNN. Graph networks have shown excellent results in
multi-agent prediction problems, e.g., for predicting movements
of soccer and basketball players (Yeh et al., 2019). The main idea
is to represent all agents, that is players and the ball, as nodes
in a (fully connected) graph. Interactions and interdependencies
between these agents are encoded by edges between pairs of
agents. In addition, we include a graph state of the graph which
encodes information about the whole graph, cmp. e.g., Battaglia
et al. (2018). The output of a graph network is a set of node
features that encode information about each agent and the graph
state features.

Overall, the model operates as follows: information about
players and the ball, such as position, velocity, and team
association, are fed into a GRNN which computes node and
graph state features. Node features associated with a particular
player are used to predict their movement. This prediction
of the next action is computed simultaneously for all players.
Graph state features are used to predict whether the current ball
possession leads to a success. The GRNN is described in detail in
the next subsection, and section 3.2 presents how movement and
success predictions are learned from observed data.

Let the state of player i at time index T be denoted by S i
T .

The state S i
T contains position of the player xi ∈ R2 in xy-

coordinates, velocity of the player, and indicators whether the
team of the player is in possession of the ball or the player
itself has currently ball possession. In addition, the state encodes
whether the team of the player plays in positive x-direction or
vice versa or the player is a goalkeeper. Superscript 0 is reserved to
index the state of the ball S0

T with its position and velocity at time

T. We sometimes aggregate states of all players and ball at time T,
denoted by S0 :N

T , where usually N = 22, as well as consecutive
state sequences from the beginning of a sequence until T by S i

:T .

3.1. Graph Model
Graph models encode information about all players and the ball
using a fully connected graph representation. Each player or ball
i is represented by a node vi and nodes i and j are connected
by directed edges eij. In addition, state features u represent
information about the whole graph.

This GRNN consists of several graph layers (GL) that each
encodes the whole graph and transforms node and state features
based on information of the previous time step and input
features. Figure 1 shows a graphical representation of the GRNN
and GL. The input to the GRNN is a sequence of player and ball
states S0 :N

:T , and the outputs consist of sequences of node features
v0 :N
:T , where each viT denotes features of player i at time T. In
addition, the GRNN outputs a sequence of graph state features
u:T .

The big picture is as follows: At each time step, input features
S0 :N
T are fed into initial feature functions φI and ρI to create

initial node and graph state representations v0 :N0,T and u0,T . Those
initial features are passed through multiple recurrent GL to
output final node features v0 :NT and graph state features uT . To
provide more details, we begin by presenting the basic steps that
are performed in a single GL ℓ.

At first, all edge features e
ij
ℓ,T are computed using an

attention mechanism from the corresponding node v
j
ℓ−1,T and

state features uℓ−1,T from the previous layer ℓ − 1 and

input features S i
T ,S

j
T . Edges are assigned a type according to

whether they connect player to player, player to ball, or ball
to player, as proposed in Yeh et al. (2019). Each edge type
has its own set of parameters. The edges are aggregated into
intermediate node features v̄i

ℓ,T which are fed into standard
(GRU, Cho et al., 2014) to produce transformed node features
vi
ℓ,T . In addition, intermediate node features of all nodes are
aggregated into intermediate state features ūℓ,T using another
attention mechanism which is also fed into a GRU unit to
compute transformed state features uℓ,T . Equations (1) to (5)
show the detailed computations to compute transformations
(v0 :N

ℓ,T , uℓ,T) = GL(v0 :N
ℓ−1,T , uℓ−1,T , v

0 :N
ℓ,T−1, uℓ,T−1, S

0 :N
T ).

e
ij
ℓ,T = φ

type
e

(

S
i
T ,S

j
T , v

j
ℓ−1,T; θℓ

)

= α
type
ℓ

([

S
i
T − S

j
T , uℓ−1,T

])

⊙ v
j
ℓ−1,T (1)

v̄iℓ,T = φv

({

e
ij
ℓ,T , j = 0, ...,N

})

= fv





N
∑

j=0

e
ij
ℓ,T



 (2)

ūℓ,T = φu

({

v̄iℓ,T , j = 0, ...,N
}

, S0 :N
)

=

N
∑

i=0

αv
ℓ

(

S
i
T

)

⊙ v̄iℓ,T (3)

viℓ,T = GRU(v̄iℓ,T , v
i
ℓ,T−1) (4)

uℓ,T = GRU(ūℓ,T , uℓ,T−1) (5)
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FIGURE 1 | Graphical representation of the graph recurrent neural net (GRNN).

Attention functions, αtype and αv, and function, fv, are
implemented with multilayer perceptrons (MLP) with ReLU
activations and ⊙ denotes the element-wise product. The initial
node and state features, vi0,T and u0,T , that serve as input to the
first GL are computed by Equations (6) and (7) from the input
features,

vi0,T = φI(S
i
T) (6)

u0,T = ρI(
{

vi0,T , j = 0, ...,N
}

) =

N
∑

i=0

vi0,T (7)

where feature function φI is realized by a two-layer MLP. Overall,
the GRNN transforms input features to node and graph state
features, i.e., (v0 :N

:T , u:T) = GRNN(S0 :N
:T ).

3.2. Prediction
Movements: The prediction of the movement of player i at time
T is based on node features viT . In accordance with Rudolph et al.
(2020), the movement distribution is given by anMDN to predict
the relative movement1x of i in time t, that is1xiT = xiT+t−xiT ,

where xiT is the xy-position of player i at time T. MDNs model
the output distribution with a GMM with K mixtures is given by
the Equation (8)

pi(1x|t,S i
T) =

K
∑

k=1

π(k|t, viT)N (1x|µk(t, v
i
T), σk(t, v

i
T) · I) (8)

The categorical mixture distribution π is modeled using a
two-layer MLP with ReLU activations and a standard softmax
output. Similarly, Gaussian means µk(t,S

i) ∈ R2 and variances
σk(t,S

i) ∈ R2 are predicted using two-layer MLPs with
ReLU activations and linear and exponential output activation
functions, respectively, where I is the identity matrix. The model

is learned by minimizing the log-likelihood of observed relative
movements.
Success: Predicting the success during a ball possession phase
demands information about all contributing parties and the
natural choice is to use the graph state uT to estimate whether
the attacking team can successfully conclude the phase. The
approach is to use ideas from reinforcement learning and learn a
value function (V) that maps states to the expected (discounted)
reward of a possession phase. The reward R(S0 :N

T ) ∈ {−1, 0,+1}
in state S0 :N

T is defined as +1 if the team playing in positive
x-direction completes their ball possession, i.e., the ball S0

T is
in a position inside the dangerous area and the team is in ball
possession; and −1, if the team playing in the other direction
completes successfully; and 0, otherwise. A V is defined as
the expected discounted future reward from state S0 :N

T , that

is, V(S0 :N
T ) = E

S
0 :N
T :TE

[
∑TE−T

t=0 γ tR(S0 :N
T+t )]. The expectation is

taken over all possible futures how the ball possessionmay unfold
from time T until it ends at some time TE and γ ∈ (0, 1) is a
discount factor. The effective V range thereby is between –1 and
1. We model the V using the graph state as V(S0 :N

T ) = φV (uT),
where φV is a two-layer MLP with ReLU activations and linear
output. The model is learned with the lambda-return algorithm
(Sutton and Barto, 1998; Dick and Brefeld, 2019) on observed ball
possession phases.

4. EMPIRICAL RESULTS

We evaluate the performance of the model on trajectory data
from 54 games of the 2017/18 season of men’s Bundesliga. For
each game, we have access to the sequence of x and y-coordinates
of all players and the ball sampled at 25 frames per second. We
approximate the speed and direction of players and ball at each
frame by computing the differences in positions over the last 0.12
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s. In addition, we have access to event data that includes passes,
tackles, etc.

We extract all episodes of open play where one team
continuously retains ball possession without the game being
halted. Each such ball possession phase ends with the team
controlling the ball either losing the ball or the play is stopped,
or with that team performing a “success action.” An episode is
considered successful if the team carries the ball into an area that
extends 2 m outside the penalty box of the opponent. In case of a
successful action, the episode is labeled with a positive reward of 1
if the team in possession of the ball plays from left to right (in the
positive x-direction), a reward of -1 if the team plays from right
to left, and a zero reward otherwise. Overall, the data consists
of 10,626 ball possession phases with an average length of 10.6
s 1,879 of those possession phases have a non-zero success signal.
We report averages of 5-fold cross-validations; error bars indicate
SE.

The architecture of the GRNN used in the experiments consist
of two GL, where both layers have a GRU width of 1, 024 and

the attention function, α
type

l
, αv

l
, as well as function, fv, possess

a single hidden layer with 512 units. Input feature function φI

has two layers with 128 and 256 units, respectively. The MDN
consists of a Gaussianmixture with k = 6 components andGMM
functions, π ,µk, and σk, each have two layers with 512 units. The
same holds for φV .

4

We focus on the evaluation on three aspects: section 4.1
verifies whether the learned V translate to actual dangerous
situations; section 4.2 evaluates the quality of the predicted player
trajectories; and section 4.3 shows how both aspects can be
combined to allow the assessment of player performance.

4.1. Value Function and Success
The V assigns values to situations on the pitch. The higher the
absolute value of the V, the more likely a team should be able to
successfully finish a ball possession phase.

Trivially, the potential for a successful ball possession highly
depends on the ball position: the closer to the goal of the
opponent’s, the higher the likelihood of success. This can be
verified in Figure 2 (left) by visualizing the V depending on the
position of the ball. The closer the ball to the goal is, the higher the
V will be. This correlates highly with the true average success rate
of attacks that went through certain areas on the pitch shown in
Figure 2 (center). This observation is in line with other studies
on dangerous in soccer, e.g., Link et al. (2016). On the other
hand, the V is not very informative by itself, and we are more
interested in whether high values correlate with higher success
likelihoods on a per-attack basis. A sensible V should evaluate
game situations based on the full configuration of player and ball
positions and their recent past.

We test for both demands by relating the V to successful
outcomes of ball possession phases by measuring the area under
the ROC curve (AUC). To evaluate for predictability of success
independent of ball position, we compute AUCs for small areas of
the pitch individually. That way, ball position is roughly the same

4The model was implemented using TensorFlow and learning of a model took

about 5 h on an Nvidia V100 GPU.

inside an area and differences in V stem only from ball and player
positions and trajectories of the recent past. The results are shown
in Figure 2 (right).

The figure displays higher AUC values for areas closer to
the goal. An intuitive explanation is that, being so close to the
dangerous zone, chance has less effect on the outcome of the
ball possession phase as only a few more actions are required
to successfully transfer the ball into that zone. Interestingly, the
AUC never falls below 0.64, even well inside the own half of the
attacking team (center-line is at 52.5 m). This may at first be
considered a surprisingly good result, given that soccer is a highly
unpredictable game where little things can change the outcome
of a ball possession phase significantly. However, studying the
results more carefully discloses that counterattacks, in general
have high values accompanied by high success rates and often
start deep inside the own half of the attacking team, which partly
explains those good AUC values. Figure 3 shows examples of
game situations and corresponding V including counterattacks
that are rated with high values by the model.

We also compare the approach to a baseline ConvNet
originally presented in Dick and Brefeld (2019). The major
difference between the two approaches is that the baseline learns
a V using a convolutional neural network instead of the proposed
GRNN. Figure 4 (right) clearly shows that this graph model
significantly outperforms the baseline in terms of AUCs between
true outcomes and the learned value functions. The results show
that AUCs depend on the distance between the ball to the goal
line (the x-coordinate), in contrast to the evaluation in Figure 2

(right) where the y-coordinate of the ball position was also
considered. This evaluation is in line with the one presented in
Dick and Brefeld (2019).

4.2. Movement Model
We now evaluate predictions of player trajectories of the model.
The simulated movements should naturally be close to the real
movements of a player in the same situations and depend on the
movements of teammates, opponents, and the ball. Simulation is
done by iteratively predicting the positions of players in 0.08 s (2
frames) and feeding those new positions back into the GRNN.

We empirically quantify deviations of simulations vs. ground
truth by measuring the mean distance of xy positions of
predicted trajectories and observed trajectories. Figure 4 (left)
shows average deviations over future time intervals between 0.5
and 12 s.

Since we expect results to vary across different player roles,
we provide different curves in the figure. The curves labeled
defender, midfielder, winger, and attacker show the deviations
of players of that category. Every curve shows averages and
SE over several players but only one player is simulated at
a time. This way, the differences in playing positions become
obvious. Defenders need to be synchronized and their movement
predictions are close to their real positions. Interestingly,
simulating all defending players simultaneously, shown by the
curve labeled backline, has the same deviation as the one for only
a single defender. Forward players like wingers and strikers are
themost difficult ones to predict, which is in line with the findings
of Le et al. (2017a).
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FIGURE 2 | Value function (V) and observed success depending on ball position. Depicted are the distance from the goal line (y-axis) and distance from the sideline

(x-axis). (Left) average V per ball position. (Center) true average success rate of attacks after the ball passes through an area. (Right) AUC values comparing V as a

predictor for true success.

FIGURE 3 | Exemplary game situations and corresponding V from different games. Red is always in ball possession and plays from left to right, the ball is shown in

black and always at the same position in each row. (Top row): red is starting a 5 vs. 4 counter-attacks (left, V = 0.6); the defending team is more organized and has

more players behind the ball, but red player 27 is available for potential through ball (center, V = 0.12); the defending team is fully organized and the chance of a

successful attack is slim (right, V = 0.02). (Bottom row): the beginning of a counter-attack, where the left flank of team red potentially allows for a 3 vs. 1 situation

(left, V = 0.65); potential counter-attack but both strikers are well covered and blue defender 11 is available to cover an attacker (center, V = 0.24); a fully organized

defense (right, V = 0.04).

The curve whole team shows the results for predicting
trajectories of all players at a time. On average, a team has about
three to five defenders, three midfielders, two wingers, and one
to three strikers. The collective prediction ranges between that
of individual wingers and strikers and works reasonably well.
For all depicted curves, the average distance between predicted
and real positions is roughly linear and less than a meter for
2 s, less than 2 m for 4 s, and so on. We compare the results
to the best model of Yeh et al. (2019) in Table 1. The authors
perform an extensive experimental evaluation, and the results

suggest that the best model for predicting soccer trajectories is
a graph network with Gaussian output; however, as Rudolph
et al. (2020) show, using an MDN network can actually improve
performance when used in conjunction with GRNNs on low-
dimensional data like in this study. These results show that this is,
indeed, true when predicting soccer player trajectories. For each
of the six different settings, this model significantly outperforms
the approach by Yeh et al. (2019), according to a paired t-test with
p < 0.01. Figure 5 shows an example for collective predictions
over 9 s.

Frontiers in Sports and Active Living | www.frontiersin.org 7 July 2021 | Volume 3 | Article 682986

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Dick et al. Rating Player Actions in Soccer

FIGURE 4 | (Left) average distance between real and simulated player trajectories. (Right) comparison of AUC values of rating baseline (Dick and Brefeld, 2019) and

this model along the length of the soccer pitch.

TABLE 1 | Average ℓ2-distances and SE between observed and simulated

players.

First 4 seconds

Role This Model Yeh et al. (2019) Cohen’s d (95% CI)

Winger 1.89± 0.07 2.09± 0.06 −2.33 (−3.47,−1.19)

WholeTeam 1.91± 0.07 2.16± 0.07 −2.44 (−3.35,−1.52)

Striker 1.97± 0.06 2.19± 0.07 −1.01 (−1.74,−0.27)

Midfielder 1.68± 0.06 1.93± 0.06 −1.36 (−2.13,−0.59)

Defender 1.53± 0.04 1.67± 0.04 −2.38 (−3.28,−1.47)

Backline 1.51± 0.04 1.70± 0.05 −3.28 (−4.34,−2.22)

First 8 seconds

Role This Model Yeh et al. (2019) Cohen’s d (95% CI)

Winger 3.89± 0.14 4.36± 0.13 −2.10 (−3.19,−1.00)

WholeTeam 3.81± 0.14 4.66± 0.16 −4.01 (−5.21,−2.80)

Striker 3.77± 0.11 4.18± 0.12 −0.92 (−1.64,−0.19)

Midfielder 3.25± 0.10 3.67± 0.11 −1.44 (−2.22,−0.66)

Defender 2.73± 0.10 3.23± 0.11 −2.19 (−3.07,−1.32)

Backline 2.73± 0.10 3.32± 0.11 −4.15 (−5.38,−2.92)

4.3. Quantifying Player Performance
Scouts, game analysts, and media experts are often interested in
individual player behavior and try to measure each contribution
of player to the outcome of ball possession phases and, ultimately,
the game. On-ball actions are often easier to valuate, e.g.,
by measuring simple metrics, such as pass completion rates,
turnovers, assists, and goals. But those metrics may not tell
the whole story and decisive actions, such as an opening pass
that leads to a good shooting chance three passes later may be
overlooked.

Off-ball actions, such as, running into open space, creating
space for teammates by moving away from certain areas of the
pitch, reducing passing options by intelligent runs by defenders,
or simply good man-marking, can be even harder to rate, even

for professional analysts and coaches. While rating some of those
actions may only be possible by the coaching staff because they
strongly depend on team tactics and a specific task of the player in
a given situation, we still hypothesize that rating a contributions
of the player to the team based on the overall likelihood of success
of the team, measured by the V, can introduce a new objective
means in the assessment of performance of the player.

4.3.1. On-Ball Actions

On-ball actions have the most influence on the outcome of a ball
possession phase. Passing a dangerous through-ball, dribbling
past a defender, or simply finding an open teammate for a simple
back-pass decide the development of a ball possession phase.
This is mirrored in the V which is highly influenced by the ball
position. As a consequence, on-ball actions are well captured
by the temporal development of V values. Figure 6 shows an
example of such a temporal development of the V during a
successful dribble. The example shows that a successful dribble
can change the V significantly, and these changes can be largely
attributed to the corresponding actions (Besides general defender
positioning and poor defensive behavior of the blue player 24).
Figure 7 on the other hand, exemplifies the evolution of the V
during a successful pass. Again, the change in value can be largely
attributed to the ball action.

We, now, aggregate situative “dribble effectiveness” and “pass
effectiveness” scores of all players in the data, who took part in
at least two full games. For that matter, we define a “dribble”
by a player as the interval between the reception of the ball
until loses the possession of the ball, usually by passing to a
teammate. We define a “good dribble” as one that increases the
V by at least 0.06 between the start and the end of the dribble.
Smaller values introduce noise into the ranking, higher values
simply thin out the number of situations that are taken into
account. Analogously, a “good pass” increases the V by at least
0.06 between the time of the pass and the reception.

Tables 2, 3 show the 10 best players according to their dribble
and pass effectiveness, respectively. We like to stress the point
that this dataset consists of only 54 games, and several players
simply do not have enough games in the dataset to qualify for
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FIGURE 5 | Real (Top row) vs. simulated (Bottom row) trajectories of the blue team.

FIGURE 6 | Temporal development of the V for a dribble. Red is attacking from left to right. Player 8 receives a pass from the left-wing; blue player 24 moves toward

ball, V = 0.16 (Left). Blue player 24 attacks the ball carrier, though from a non-optimal angle, yielding V = 0.24 (Center). The ball-possessing player dribbles past the

defender and the V jumps to V = 0.45 (Right).

FIGURE 7 | Temporal development of the V for a passing action. Red is attacking from left to right. Player 9 is about to pass the ball to player 8 (Left). There is no

immediate pressure on player 9 and the V is 0.34. Player 8 receives the ball under heavy pressure by blue player 5, which yields V = 0.51 (Center). Receiver 8 was

able to retain possession of the ball and is dribbling into the dangerous area, reflected by V = 0.91 (Right).

the ranking. Also, the model is trained to estimate whether a
ball possession phase reaches the dangerous zone just outside the
penalty box, so that many strikers may not appear on the lists,
just because they typically operate closer to the goal. Hence, the
listed players mainly operate as wingers or attacking midfielders,

and the only exceptions being two strikers, a defensive midfielder,
and a full back.

The first thing to note is that FC Bayern Munich dominates
the rankings, whichmay not come as a surprise. Kingsley Coman,
Arjen Robben, Franck Ribery, Thiago, Corentin Tolisso, and

Frontiers in Sports and Active Living | www.frontiersin.org 9 July 2021 | Volume 3 | Article 682986

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Dick et al. Rating Player Actions in Soccer

TABLE 2 | Dribble Ratings.

#Good

Dribbles
#Dribbles

Minutes

Played

Good Dribbles

per Minute

Kingsley Coman 66 416 845 0.078

T. Ito 43 274 687 0.063

A. Rebic 36 186 615 0.059

Jadon Sancho 11 104 207 0.053

A. Robben 45 388 848 0.053

F. Rib?ry 20 229 429 0.047

L. Rupp 18 156 389 0.046

A. Harit 39 340 847 0.046

N. Amiri 38 390 969 0.039

N. Schulz 46 495 1,190 0.039

Good Dribbles” are defined in the text.

TABLE 3 | Pass Ratings.

#Good

Passes
#Passes

Minutes

Played

Good Passes

per Minute

Jadon Sancho 12 51 207 0.058

Thiago 39 413 718 0.054

L. Rupp 21 90 389 0.054

K. Demirbay 30 178 603 0.050

V. Grifo 15 93 346 0.043

L. Stindl 37 235 897 0.041

S. Rudy 31 296 759 0.041

C. Tolisso 30 349 807 0.037

Michael Cuisance 19 142 519 0.037

A. Robben 31 197 848 0.037

“Good Passes” are defined in the text.

Sebastian Rudy have played for Bayern Munich during that
season and make up a good portion of both top tens. To get a
better understanding of the rankings, we compare them to ratings
from the leading German soccer magazine kicker5, who rates all
players of the Bundesliga two times each year. Indeed, Kingsley
Coman was rated the second-best winger during winter rating
of the kicker’s, and Frank Ribery took the same position in the
summer rating, with Arjen Robben being third in both cases.
Thiago was considered the fourth-best attacking midfielder and
Corentin Tolisso in the sixth. Sebastian Rudy, however, was only
rated as the 12th best holding midfielder but was still able to have
good pass effectiveness according to this model. Jaden Sancho
of Borussia Dortmund, who appears in both top ten lists, only
had seven full games during that season as a 17-year-old, and was
thus not eligible for a kicker rating, but is considered one of the
best young wingers in the world at the moment. Ante Rebic was
named the fourth best striker and Lars Stindl the eighth despite
becoming a German international the previous year.

Amine Harit was voted third-best attacking midfielder in the
summer with Karim Demirbay at 12th. Nico Schulz is the only
defensive player in our rankings and was ranked best full-back in

5www.kicker.de.

TABLE 4 | Pass Receiver Ratings.

#Good

Passes
#Passes

Minutes

Played

Good Passes

per Minute

PlayerID

Breel Embolo 28 86 484 0.058

R. Lewandowski 67 210 1,174 0.057

A. Kramaric 60 249 1076 0.056

James Rodr?guez 33 246 611 0.054

A. Finnbogason 13 35 245 0.053

G. Burgstaller 61 198 1,152 0.053

A. Rebic 31 112 615 0.050

T. M?ller 44 231 887 0.050

V. Grifo 17 101 346 0.049

Thorgan Hazard 51 281 1,128 0.045

“Good Passes” are defined in the text.

the summer. Four players could be considered surprise entries,
Tatsuya Ito, Michael Cuisance, Vincenzo Grifo, and Lukas Rupp,
who also appeared in both lists. Tatsuya Ito had his breakthrough
season at Hamburger SV as a 20-year-old where he played his first
nine professional games in the second half of the season. Despite
only playing half of all possible games, he was voted tenth-best
winger in the summer. Michael Cuisance was 18 during that
season and the second-youngest player ever to play for Borussia
Monchengladbach. He was transferred to Bayern Munich at the
end of the following season. Vincenzo Grifo played mainly as
a winger for Borussia Monchengladbach and debuted for the
Italian national team after the season. Lukas Rupp only played
17 games with at least 45 min of playing time during that season
and his grades rank him in midfield among all midfielders of the
Bundesliga; however, his position as an attacking midfielder for
TSG Hoffenheim, who finished the season as third in the table,
still helped him being ranked well according to this model.

4.3.2. Off-Ball Actions

Off-ball actions are naturally harder to evaluate objectively,
though there are player actions that can be readily evaluated
using the V such as a lost defensive dribble, that could be
identified by a negative gain in the V during that action. Another
example is a successful pass reception where the receiver could be
attributed with the gain in V during the pass because movements
of receiver (at least in part) led to him being available for the pass.

In analogy to the previous tables, Table 4 shows the top
10 pass receivers in this data. Not surprisingly, only forwards
make up the list, with James Rodriguez and Thorgan Hazard
playing, in general an attacking midfield role and Thomas Müller
playing all attacking positions. According to kicker ratings,
Robert Lewandowski was considered the best striker with runner-
up being Andrej Kramaric, Alfred Finnbogason being fifth and
Guido Burgstaller being 7th. Thomas Müller was considered
the best winger in the summer, James Rodriguez best-attacking
midfielder and Thorgan Hazard was considered the fourth best
winger. Breel Embolo was only considered the 15th best striker by
kicker as a 20-year-old. A special mention may go to Leon Bailey,
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TABLE 5 | Average value function difference between simulated and observed

trajectories categorized by approximate position.

Mean Difference in V (×10−4)

Role Non-successful possession Successful possession

Defense –0.0 0.4

Midfield 0.1 1.0

Striker 0.2 0.8

Winger 0.2 1.0

Only players of the defending team are considered.

who did not qualify for the list because he only played 164 min in
this data, but would have been top of the table otherwise (0.062
good receptions per minute). He was considered the best winger
in the winter.

For many other circumstances, assigning a value to actions of
thee player are less obvious and alternative approaches have to be
used. One way to estimate a contribution of the player toward
the potential for success of a game situation is by evaluating
positioning of the player on the pitch, something which is often
done during televised match analyses. The idea is to analyze how
a decisive action, such as a forward pass, would have developed,
or if it would have happened at all, if a certain player, often a
defender, would have been positioned otherwise. We show that
this model can be used to estimate quality of individual player
movements and positioning and thereby quantify a influence of
the player on the V.

The simplest way to use this model in that way would be
to change the position of the player in the data artificially, i.e.,
change the xy coordinate of that player for the specific frame,
and use the new V prediction of the model to estimate whether
the new positioning would potentially affect the outcome of
the ball possession phase. However, as the deep graph model
employs recurrent GRU units, simply changing a position of the
player could change the outcome of the prediction in undesired
ways because the “simulated" trajectory would be physically
impossible, e.g., by changing the position between two frames
(0.04 s) by 2 m. Manually simulating trajectories of the player are
possible but can be tedious.

Instead, we propose to evaluate off-ball actions of players
by comparing their movements to movements of the average
(Bundesliga) player that is naturally approximated by this
model. As described above, this model is able to predict player
trajectories realistically and can be used to simulate how a player
could have acted instead. Comparing the temporal development
of value functions between observed player trajectories and those
where a trajectory of the player is replaced by the simulated one
can be used to evaluate the (relative) quality of the observed
actions.

Figure 8 shows an example of developing value functions of
observed and simulated trajectories. In this article, we compare
an observed trajectory of player 10 of the blue team to a simulated
player and track the differences in V. The sequence starts after red
gained ball possession (we omitted the first 2 s of the sequence in
the plots for better readability). Immediately, both, the real player

and the simulated player move back (left); however, the simulated
player aims at taking a more defensive position and runs back
quicker. The effect of this can be seen in the central figure, where
the simulated player has a head start on the blue attacker 16 which
reduces the V significantly for the simulation (27 instead of 47).
The right figure shows that the observed player actually has no
chance in putting pressure on the attacker and decides to cover
red 27 instead. The simulated player, on the other hand, would
have had a chance to get possession of the ball and stop the attack,
leading to a lower V (20 instead of 40).

Table 5 shows how much movement of a single player’s from
the defending team can change the predicted outcome of a ball
possession phase. During a ball possession phase, we simulate
player trajectories and compute the difference in absolute V
values between the ball phase with the observed player vs.
the possession with the simulated player. A positive difference
denotes that the average absolute value including the observed
player is larger than the one including the simulated player. The
first thing to note is that average distances of V are very small
(≈ 10−4), which again shows that simulated players behave very
similar to observed ones; however, while during non-successful
ball possessions—i.e., successful from the point of view of the
defender, the average values of simulated players are more or less
indistinguishable from observed one, simulations are on average
a bit better during successful ball possession phases, unsuccessful
from the point of view of the defender. In other words, during
successful attack, players of the defend team sometimes behave
worse than the average player and thereby increase the likelihood
of the other team running a successful attack. Interestingly,
according to the model, midfielders, wingers, and attackers a
had stronger negative influence on the outcome than defenders.
Figure 9 shows the reason. The figure shows the six instances
where a midfielder or attacker behaved worst compared with
the average player. In all six cases, the suboptimally behaving
player does not track back immediately after the opposing team
gets ball possession, whereas the simulated average player would
run back at high speed. We like to note that accelerations and
speeds are always well within realistic bounds, as e.g., defined in
Peralta Alguacil et al. (2020) and learned implicitly by this model;
however, Figure 10 shows that there are instances where the
observed midfielders and wingers reacted faster than the average
player, which leads to better V. The figure depicts the three
instances where the observed player behaves the best relative to
the simulated one, as measured by V difference.

5. APPLICATIONS

The previous section shows that these contributions accurately
predict the movements of players as well as the potential for
success of a game situation. We also indicate that there are
various use-cases, where temporal changes in the V can be
credited to a player or team performance; however, there are
certainly many more applications where the use of this approach
could be beneficial.

The previous section also indicates the potential for
computation of novel KPIs, such as the conversion rate of
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FIGURE 8 | Temporal development of the V for observed trajectories (Top) and when one player (10, blue) is simulated (Bottom).

FIGURE 9 | Simulated and observed trajectories of midfielders (Top) and wingers (Bottom) with the largest difference between observed and simulated V. The

simulation starts 8 frames (0.32 s) after the opponent gaining possession of the ball and spans 4 s. Simulated players are depicted in green and V with simulated

players are also labeled in green. In all cases, simulated players immediately tracked back after a loss of ball, whereas observed players either did not track back at all

or reacted too late. The simulated player lost the ball in panels 1 (23, blue), 2 (21, red), 3 (11, red), and 4 (14, red). In panel 5, red player 21 lost the ball and 8 of red is

simulated, whereas in panel 6, blue no. 12 (partly occluded) intercepted a pass and red no. 17 is simulated.

dangerous situations into goals and/or shots, attributed to both
teams and players. Other performance metrics could measure
where most of potentially dangerous attacks of a team originate
or in which areas a team is most dangerous. Those metrics
are more general than common indicators that measure where
successful (in the sense of a shot or goal) attacks originate or
develop.

The V and derived performance indicators can also be used
in retrieval systems to quickly find situations of interest. While

trivial situations like corner and free kicks, shots, or passes
are already annotated in the event data, complex events, such
as a pressing situation or possibilities for counter-attacks are
often tedious to identify and require human effort. Particularly
for opponent analysis or scouting, this approach may come in
handy since queries asking for the dangerous situations in a
certain part of the pitch or good actions of a certain player
can be processed automatically. As an example, potentially
dangerous counter-attacks could be retrieved by querying for
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FIGURE 10 | Simulated and observed trajectories of midfielders and wingers with largest negative difference between observed and simulated V. The simulation starts

8 frames (0.32 s) after the opponent gaining possession of the ball and spans 4 s. Simulated players are depicted in green and V with simulated players are also

labeled in green. In all cases, the simulated player tracked back slower after the opponent gained ball possession, yielding worse value function from the perspective

of the defending team. In panel 1, observed red 26 added additional pressure on the ball carrier, whereas the simulated player is too far away. Panel 2 shows an

instance where blue 13 is again closer to the ball-possessing player and reduces options for the players. In the last panel, red 7 runs back in full speed to put pressure

on the ball carrier, whereas the simulated player runs back slower, effectively having no impact on the developing ball possession phase.

high V values inside a own half of a team. On the other hand,
querying for situations where a team gains possession of the
ball just inside their own half (and e.g., only 4 players of the
opponent behind the ball) but low V could return sets of game
situations that show how well a team is positioned against
counter-attacks.

A limitation of this approach is clearly the data. Players
are represented only by their coordinates on the pitch while
their pose is ignored. Hence, it is not always clear whether
players are standing or lying, walking forward or backward,
and a player who looses the ball due to a tackle may be
pushed to the ground (without being fouled) in the course
of the action. In that case, the player is physically not able
to track back immediately, a fact that is unknown to the
model.

Due to the conceptual approach, this model provides the
same solution for all players in the same situation. It is not
personalized in the sense that it remembers players across
games or takes history of a player’s during a game into
account. Thus, it is oblivious to a state of the player regarding
mental and physical fatigue. On one hand, personalization
would require access to additional data sources, such as for
measurements of the mental or physical state of the player
including load monitoring, self-perception of fatigue, stress,
hours of sleep, muscle pain; however, the incorporation of
such “orthogonal” data also opens up new possibilities, since
the model could learn about individually preferred movements
and physical and mental strength. Such additional information
could easily be integrated into the model by either incorporating
a player embedding layer for personalization or by adding
additional physiological data into the input function φI

(Equation 6).

6. CONCLUSION

We presented a data-driven model for predicting player
trajectories and estimating the potential success of a game
situation in soccer. The model employs a GRNN that effectively
captures relations about all players and the ball and enabled us to

make predictions based on the state of the game. Empirically, we
observed that the model learned realistic movements of players
and significantly outperformed a baseline approach and that
learned V are a good predictor of the outcome of ball possession
phases. We derived novel performance indicators by inspecting
temporal developments of the V and showed that those correlated
well with human expertise. In addition, by combining trajectory
and success prediction, we were able to identify the sub-optimal
behavior of players.
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