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Background: Exposure to thousands of head and body impacts during a career

in contact and collision sports may contribute to current or later life issues related

to brain health. Wearable technology enables the measurement of impact exposure.

The validation of impact detection is required for accurate exposure monitoring. In

this study, we present a method of automatic identification (classification) of head

and body impacts using an instrumented mouthguard, video-verified impacts, and

machine-learning algorithms.

Methods: Time series data were collected via the Nexus A9 mouthguard from 60

elite level men (mean age = 26.33; SD = 3.79) and four women (mean age = 25.50;

SD = 5.91) from the Australian Rules Football players from eight clubs, participating

in 119 games during the 2020 season. Ground truth data labeling on the captures

used in this machine learning study was performed through the analysis of game

footage by two expert video reviewers using SportCode and Catapult Vision. The

visual labeling process occurred independently of the mouthguard time series data.

True positive captures (captures where the reviewer directly observed contact between

the mouthguard wearer and another player, the ball, or the ground) were defined as

hits. Spectral and convolutional kernel based features were extracted from time series

data. Performances of untuned classification algorithms from scikit-learn in addition to

XGBoost were assessed to select the best performing baseline method for tuning.

Results: Based on performance, XGBoost was selected as the classifier algorithm for

tuning. A total of 13,712 video verified captures were collected and used to train and
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validate the classifier. True positive detection ranged from 94.67% in the Test set to 100%

in the hold out set. True negatives ranged from 95.65 to 96.83% in the test and rest

sets, respectively.

Discussion and conclusion: This study suggests the potential for high performing

impact classification models to be used for Australian Rules Football and highlights the

importance of frequencies <150Hz for the identification of these impacts.

Keywords: Australian football, brain concussion, instrumented mouthguard, kinematics, impacts, machine

learning

INTRODUCTION

Concussion is a common injury in contact and collision sports
(Donaldson et al., 2013; Gardner et al., 2014a,b; Makdissi
and Davis, 2016; Dai et al., 2018; Ramkumar et al., 2019).
There has been considerable medical interest in improving
the identification and management of sport-related concussion
(McCrea et al., 2013; McCrory et al., 2017). A number
of professional sporting leagues, for example, the Australian
Football League (AFL) (Davis et al., 2019a), National Football
League (Ellenbogen et al., 2018; Davis et al., 2019a), National
Hockey League (Davis et al., 2019a), professional rugby union
(Gardner et al., 2018), and the National Rugby League (Davis
et al., 2019a), have implemented sideline video surveillance as
a strategy for improving the identification of concussion (Davis
et al., 2019a,b). This is an important strategy. However, concern
has also been raised that it may not only be concussion risk to
the health of contact and collision sport athletes, but also the
career accumulation of sub concussive impacts that may result
in current or future health issues (Gavett et al., 2011; Baugh
et al., 2012). Researchers have reported that sub concussive head
impacts are associated modest elevations of blood biomarkers
over a single practice session of American football (Rubin
et al., 2019), and college football players might sustain 1,000 or
more sub concussive impacts to the head over the course of a
season (Gysland et al., 2011; Bazarian et al., 2014). Cumulative
exposure to repetitive head impacts, over time during a single
season, might be a risk factor for sustaining a concussion during
that season in elite American college football players (Stemper
et al., 2018), but cumulative exposure to head impacts was not
associated with concussion risk in high school football players
(Eckner et al., 2011). Researchers have reported that repetitive
head impacts are correlated with changes on experimental
brain imaging over the course of a season (Merchant-Borna
et al., 2016), and cumulative repetitive head impact exposure is
associated with later in life deficits in cognitive functioning and
symptoms of depression (Montenigro et al., 2017).

A strategy for evaluating player impact loads as part of
an injury prevention program is the use of instrumented
technology (Wu et al., 2018; Patton et al., 2020). However, the
implementation in the field has been limited by the reliability
and validity of such technology (Patton et al., 2020). Using simple
peak linear acceleration thresholds to differentiate impacts from
normal motion is highly likely to be an insufficient method and
is fraught with complex challenges. For example, setting a low

magnitude acceleration threshold will increase the likelihood of
false positive data, whereas setting a high acceleration threshold
will likely result in filtering out some true impacts, and the
high acceleration false positives will still remain (Wu et al.,
2018). In addition, there are concerns that the majority of the
research using sensor-recorded events lack a verification method
to confirm the accuracy of the instrumented technology to
identify impact loads (Patton et al., 2020). As a result, the absence
of a verification method to confirm sensor-recorded events and
to remove false positives may be factor in overestimation of head
impact exposures (Press and Rowson, 2016; Cortes et al., 2017;
Carey et al., 2019; Patton et al., 2020).

Video review, while not infallible and reliant on the skill
of the reviewer, has been shown to be a reasonable method
for impact detection, with the significant drawback of being
labor-intensive (Caswell et al., 2017; Carey et al., 2019; Bailey
et al., 2020; Patton et al., 2020). Other detection methods
include using filtering algorithms or statistically modeling the
impact signature/characteristics (Baugh et al., 2012) to determine
whether or not the data is consistent with an impact. This
“classification” step, together with the video identification, can
be used to evaluate reliability, validity, and accuracy. With
the introduction of machine learning based models, high
performances for impact identification (>90% accuracy) can be
achieved (Baugh et al., 2012). However, these models tend to be
trained using single sport data [e.g., American football (Baugh
et al., 2012)], which may not be generalizable to other contact
or collision sports. The Nexus A9 mouthguard is capable of
capturing kinematic data from collisions, such as those that occur
in contact sport. To date, there are no statistical models present
in the literature to identify impacts in Australian Rules Football.
Therefore, the aim of this study was to develop and validate
an impact classification method (classifier) for Australian Rules
Football, with mouthguard events (captures) recorded using the
Nexus A9 mouthguard. Given previous work in this area (Wu
et al., 2018; Gabler et al., 2020), we hypothesized it would be
possible to develop a machine-learning-based classifier with high
performance for delineating hit and non-hit captures.

METHODS

Study Design
This study was conducted with elite level Australian Football
League AFL and Women’s AFL (AFLW) players. Consenting
participants were provided with custom fit, instrumented
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mouthguards at the beginning of the season and were requested
to wear them during match play. Each team was assigned
an account manager, who had the role of distributing the
mouthguards to the correct players before the match and
then collecting them post-match for cleaning, storage, and
uploading of the data from the mouthguard while they were
housed in the storage and recharging unit. All matches were
televised via the league’s contracted broadcasters, and footage
from the broadcasters were reviewed as part of the video
verification process (described in detail below). This study
was approved by the University of Newcastle Human Ethics
Committee (H-2019-0341).

Data Collection
Data for the classifier were collected from 64 elite level athletes
from eight clubs across 119 matches for which consenting players
were participating during the 2020 Australian Football League
(AFL) season. There were 60 male AFL players (mean age =

26.33; SD= 3.79) and four female players from theWomen’s AFL
(AFLW;mean age= 25.50; SD= 5.91). A total of 21,348 potential
impacts (captures) were generated of which 13,744 were used for
training and validation purposes (see Data Preprocessing).

Mouthguard Specifications
The HitIQ Nexus A9 instrumented mouth guard (HitIQ Pty.
Ltd.) used in this study contained three triaxial accelerometers
(Analog Devices ADXL372, range: ±200G, 12-bit) and a
gyroscope (Bosch BMG 250, ±2,000 dps range, 16-bit). These
were sampled at 3,200 and 800Hz, respectively. The circuit board
and components such as a battery and antenna system were
embedded in the mouthguard using a proprietary process. A
three-accelerometer array located in the left, central, and right
regions of the mouthguard was used to provide an estimate
of the angular acceleration independent of the gyroscope and
allowed for a crosscheck to remove spurious readings, such as
those originating from actions like mouthguard deformation
rather than head kinematics. TheNexus A9mouthguard has been
shown to have good concordance with reference sensors in drop
tests [LCCC= 0.997 (Stitt et al., 2021)].

Capture Recording
Recorded mouthguard events (captures) were identified based on
thresholding the normed signal from the left linear accelerometer
at 10 g’s or greater. This magnitude threshold was chosen because
below 10 g’s has been reported to be indicative of non-impact
events (e.g., walking, sitting, etc.) (King et al., 2016). A capture
consisted of a lead in the period of 20ms prior to the 10 g
threshold being reached and ended 80ms after the last trigger
event. This allowed for multiple impact events to be recorded in a
single capture. The capture was then stored in onboard memory
in the mouthguard.

Data Processing
Due to individual variation within linear accelerometer
sampling rates, time series for each axis of the three linear
accelerometer sensors were resampled to 3,200Hz. Gyroscope
data were upsampled from 800 to 3,200Hz. All resampling

was carried out using polyphase filtering as present in scipy’s
resample polyfunction.

Resampled data were triaged to decrease the number of
vocalization signals or those consisting of high frequency noise
(Wu et al., 2018). The normed signal from the left linear
accelerometer was low pass filtered at 300Hz using a Butterworth
second order non-phase corrected filter and subject to a 10 g
threshold. Captures that passed the triage were included in the
final training/validation data.

Data Labeling
Ground truth data labeling on the captures used in this
machine learning study was performed through analysis of game
footage by two expert video reviewers using SportCode (https://
www.hudl.com/en_gb/products/sportscode) andCatapult Vision
(https://www.catapultsports.com/products/vision). The visual
labeling process occurred independently of the mouthguard
time series data. Reviewers were provided with video footage
(720p, 50 frames per second) from four angles, namely a
broadcast view with a tight field of view on the ball, a side
view, and footage from behind the goals, to determine if a
capture represented a legitimate impact (hit). Time stamps of
captures were chronologically synchronized with video footage
with start and end times provided by the AFL. Obvious hit
events were used tomake fine adjustments to the synchronization
process (within ± 1 s). Capture events were viewed and labeled
according to several predefined labels. Study participants (i.e.,
those wearing the mouth guard) were identified from their
AFL guernsey numbers and from known physical characteristics.
Captures where the reviewer directly observed contact between
the mouthguard wearer and another player, or the ball, or the
ground were labeled as hits. Captures where no contact was
observed were given a general label (non-hit) and given a sublabel
based on the activity observed—hit, biting, chewing, drinking,
mouthguard insertion, mouthguard removal, mouthguard in
hand, mouthguard in sock, yelling, no video footage (on sideline),
and unknown (if video footage was available, but insufficient to
directly observe the event). Quantification of hits that failed to
reach the 10 g capture trigger threshold (see section Mouthguard
Specifications) was not undertaken.

Datasets
Data that passed the triage process (13,712 captures) were divided
into two sets, a classifier training and a validation set (Set 1)
and a separate hold out set (Set 2). Set 1 contained 13,417
captures (1,580 hits, 11,837 non-hits), which were balanced
by downsampling the majority class (non-hit) to the minority,
selecting captures to be included through pseudorandom
sampling using a uniform distribution. The balanced set (3,160
captures) was divided into training (70% of the balanced data),
validation (15%), and test (15%) subsets. Set 2 consisted of
captures acquired from a single match that were not included in
Set 1(Holdout; 57 hits, 238 non-hits).

The validation set was used to estimate the unbiased error
of the tuned hyperparameters. Test, rest, and holdout sets
were used to examine how the end model would perform
given hypothetical scenarios. The test dataset was used as an
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additional estimate of model performance given reasonably
balanced classes. Conversely, the rest subset consisted of non-hit
captures that were not included in the training, validation, or test
subsets (10,257 non-hit captures). Since our data showed a large
imbalance toward nonhits (roughly 10:1), the rest dataset was
used to examine the real-world specificity profile of the model.
The holdout set was used to examine model performance on
unseen data.

Feature Generation
Features were calculated on signals from all axes of the three
linear accelerometers and the gyrometer (12 signals total).
Signals were first aligned to cardinal axes using rotational
matrices derived from a proprietary calibration process unique
for each mouthguard.

Two families of features were generated to capitalize on
the shape and spectral characteristics of the signals. Random
convolutional kernels were generated (Rahimi and Recht, 2007),
with each signal standardized to the signal mean and standard
deviation. Three hundred kernels were generated, with the
maximum value of the kernel and number of values greater than
zero extracted per kernel. A total of 600 features were generated
per signal.

Spectral characteristics were examined by calculating the
power spectra density of each signal, using scipy’s (Oliphant,
2007) implementation of Welch’s method (Welch, 1967). Power
spectra densities were split into 10-Hz bins, the characteristic
value of the bin extracted, and then natural log transformed.
The 1,908 power spectra density and 720 convolutional kernel
features were then standardized to the mean and standard
deviation of the training set.

Classifier Selection
Selection of a classification algorithm to use for final modeling
was achieved by assessing performance of untuned algorithms
on the training dataset. All available classification methods
present in Scikit-learn (Abraham et al., 2014) were examined.
Due to its popularity and performance, the eXtreme gradient
boosting (XGBoost) algorithm was also included (Chen and
Guestrin, 2016). Default settings for each algorithm were used.
Performance was assessed based on the number of hits correctly
classified as hits (true positive; TP) and the number of non-hits
correctly classified (true negative; TN).

The estimator with the highest TP and TN performance
and the least difference between performance metrics in the
validation set was chosen for further tuning. The least difference
was included as a selection criterion to select a classification
algorithm that would be unbiased toward label type.

Classifier Training and Evaluation
Randomized Search CV was used to train the highest performing
estimator, optimizing using Matthew’s correlation coefficient.
Fifty candidate combinations of parameters were selected using
5-fold cross validation, for a total of 500 fits. The highest
performing combination of hyper parameters was used for
further performance validation.

Generalizability of classifier performance was assessed using
TP and TN metrics and the F1 score on the validation, test,
rest, and hold out data. Performance bounds were calculated
using bootstrapped 95% confidence intervals, generated across
10,000 shuffles, with data selected pseudorandomly using a
uniform distribution.

Model Interpretation
To assist with model interpretation, including insights into
feature importance and the impact of features on individual
observation, SHapley Additive exPlanations (SHAP)’s
TreeExplainer method was used (Lundberg and Lee, 2017;
Lundberg et al., 2020). The validation dataset was used to
generate SHAP values.

RESULTS

Classifier Selection Analysis
True positive, (TN), and the absolute difference between metrics
(TP – TN) for all valid classifier algorithms in SKlearn
and XGBoost are presented in Table 1. The mean classifier
performance for TPs and TNs was 77.84% (standard deviation=

31.77%) and 89.55% (standard deviation = 11.77%) respectively,
with TP values ranging from 0% (Gaussian process classifier, label
propagation, label spreading, quadratic discriminant analysis)
to 98.04% (passive aggressive classifier, perceptron) and TNs
ranging from 47.53% (dummy classifier) to 100% (Gaussian
process classifier, label propagation, label spreading, quadratic
discriminant analysis). Due to the mixed results between
histogram-based gradient boosting (HGB) and XGBoost for our
selection criteria, a second comparison was performed on fully
tuned models. The results (Table 2) showed no clear superior
algorithm between the two. HGB is also an experimental method
within sklearn that has not been fully tested. Therefore, we
decided to continue with analysis of the XGBoost-based model.

XGBoost Model (Classifier Performance
Output)
Estimated TP, TN metrics, and the F1 score (F1) were calculated
from labels estimated by the trained XGBoost against the
video-detected ground truth labels (Table 3). Point estimate
performance of the classifier was above 95% for all hit labeled
impacts across all the data subsets (excluding the rest set where
no TPs were present). Confidence intervals ranged from 92.51%
for the test to 99.60% for the validation set. Point estimate true
negative values ranged from slightly below 95% (94.54) for the
hold out set to 98.65% for the validation set, while 95% CIs
ranged from 91.49% (hold out set) to 100% (validation set). TP
CIs suggest that there was no difference between validation and
test sets, while performance on the hold out set was superior
(not corrected). Overlapping CIs for TNs suggests no significant
difference in classifier performance across datasets.

Model Interpretation
Figure 1 shows the top 50 features used by the XGBoost model.
Feature importance (y axis) goes from the most important
(top) in descending order of importance. Each feature has
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TABLE 1 | Untuned algorithm performance for true positive (TP), true negative

(TN), and difference between TP, and TN (TP – TN) performance on the training

set.

Algorithm TP (%) TN (%) TP – TN (%)

Gaussian process classifier 0 100 100

Label propagation 0 100 100

Label spreading 0 100 100

Quadratic discriminant analysis 11.91 90.48 78.57

Bernoulli NB 61.4 83.48 22.07

Passive aggressive classifier 82.03 69.13 −12.9

Perceptron 96.8 84.99 −11.82

Nearest centroid 84.26 75.65 −8.61

Complement NB 84.26 75.65 −8.61

Multinomial NB 93.94 87.13 −6.81

Extra tree classifier 84.43 78.55 −5.87

K neighbors classifier 94.61 89.14 −5.47

Logistic regression 81.56 76.54 −5.02

Bagging classifier 56.15 52.01 −4.14

Ridge classifier CV 82.79 78.69 −4.1

Linear SVC 91.8 95.65 3.85

Dummy classifier 95.62 92.02 −3.6

Linear discriminant analysis 90.21 93.7 3.49

Decision tree classifier 89.14 85.66 −3.48

SGD classifier 94.67 91.6 −3.08

AdaBoost classifier 72.49 69.57 −2.92

MLP classifier 93.99 91.18 −2.81

Gaussian NB 95.9 93.16 −2.74

Random forest classifier 92.53 95.22 2.68

Ridge classifier 95.11 92.44 −2.67

Calibrated classifier CV 93.88 92.02 −1.86

Extra trees classifier 94.08 92.61 −1.47

SVC 95.19 94.35 −0.85

Gradient boosting classifier 93.9 94.37 0.47

Logistic regression CV 95.4 95.22 −0.18

NuSVC 87.15 86.97 −0.17

Hist gradient boosting classifier 95.51 95.65 0.14

XGB classifier 95.66 95.52 −0.14

Positive difference values = TP > TN, Negative = TN > TP.

individual impacts plotted from left to right, with color
representing whether the value for that feature and observation
was “high” (above the mean from memory, red) or “low,”
lower than the mean (blue), with intensity as the distance. The
x axis shows impact on the model. Values above 0 indicate
contribution toward a positive label (hit), while values below 0 are
contributions to a non-hit label. In Figure 1, it can be seen that
the top 50 features were predominantly spectral in nature, with
dominant frequency bands being under 150Hz. Gyrometer and
central linear accelerometer sensors were shown to contribute the
majority of information to the classifier.

DISCUSSION

Our classification model that was developed using smart
mouthguard technology and video verified impacts of elite

Australian Rules Football players showed good performance,
being able to correctly identify over 90% hits and non-hit
captures. Additionally, we showed the importance of sub-
150Hz frequencies in developing the model from rotational and
linear information.

A recent systematic review of the impact sensor literature
(Patton et al., 2020) reported that the majority of eligible articles
(64%) did not employ an observer or video verification for
sensor-recorded events. This raises substantial concern that the
head impact sensor literature may inaccurately identify impact
events. Those articles that did not apply a verification method
may be overestimating the head impact exposure by including
false positive data (Patton et al., 2020). While 74% of eligible
articles applied a filtering algorithm to automatically remove false
positives, they did not also use an observer or video verification
method to reaffirm false positives that were removed from the
dataset (Patton et al., 2020). The sole use of a filtering algorithm
has not been considered to be a valid replacement for observer
and/or video verification of head impacts (Nevins et al., 2018),
largely because the algorithms were not derived from on-field
(i.e., game-play) data (Patton et al., 2020).

While most processing algorithms that are used to remove
false positive and other spurious events remain proprietary,
head impact telemetry system (Simbex, Lebanon, NH) has
previously reported that their system compares the sensor-
recorded kinematics to the expected acceleration signals for rigid
body head acceleration (Crisco et al., 2004). Another method
adopted by some authors in the field is to apply a threshold as
a filter (e.g., removing all impacts <10 g peak linear acceleration
and all impacts that surpass 200 g peak linear acceleration),
(Rahimi and Recht, 2007; O’Connor et al., 2017). Optimal
recording thresholds can only be determined via comprehensive
video confirmation approaches using unfiltered data (Patton
et al., 2020).

Video verification methods are not often used to establish
reliability and validity of impacts. Wu et al. (2018) have
previously reported on the training and validation of an
impact classifier for an instrumented mouthguard in a small
sample of seven collegiate football players and a total of
387 impacts collected from practice and games. The authors
reported achieving 87.2% sensitivity and 93.2% precision and
emphasized the importance of accurate impact detection. By
way of comparison, the current study employed a similar
methodology in a larger sample of male and female Australian
Rules Football players with a larger dataset of 13,712 video
verified body and head impacts, with the lowest sensitivity value
of 94.67% (sensitivity = true positives/(true positives + false
negatives)) and lowest precision of 94.42% (precision = true
positives/(true positives + false positives)). The between-study
differences in results can be related to multiple factors, including
sample size, sports (helmeted vs. unhelmeted), technology, and
statistical methodology.

A second study to report results of a mouthguard-based
classifier by Kieffer et al. (2020) utilized head injury metrics
as features with support vector machine and an artificial
neural network as their base algorithms (Benzel et al., 2016).
Performance of their impact classifier was evaluated using
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TABLE 2 | True positive (TP), true negative (TN), and difference between tuned histogram-based gradient boosting (HGB), and XGBoost (XGB) performance (difference)

on the validation set.

TP TN

HGB XGB Difference HGB XGB Difference

Train 100 100 0 100 100 0

Validation 96.96 96.95 0.01 96.76 96.31 0.45

Test 94.60 94.67 −0.07 95.42 95.65 −0.23

Rest 0 0 0 96.18 96.83 −0.65

Hold Out 100 100 0 95.62 96.21 −0.59

Positive difference values = HGB > XGB, Negative = XGB > HGB.

TABLE 3 | Train, validation, test, rest, and holdout set number of impacts included and performance of classifier for true positives (TP) and true negatives (TN) as a

percentage of correctly labeled data and F1 score (F1) with 95% confidence intervals (95% CI).

Subset Hits Non Hits TP (95% CI) TN (95% CI) F1 (95% CI)

Train 1,106 1,106 100 100 1.00

(100.00–100.00) (100.00–100.00) (1.00–1.00)

Validation 244 230 96.95 96.31 0.96

(94.59–99.08) (93.72–98.44) (0.95–0.98)

Test 244 230 94.67 95.65 0.95

(91.74–97.24) (92.83–98.12) (0.93–0.97)

Rest 0 10,257 0.00 96.83 0.00

(96.49–97.16) (0.00–0.00)

Holdout 57 238 100.00 96.21 0.92

(100.00–100.00) (93.62–98.37) (0.87–0.97)

positive predictive value (otherwise known as precision) when
players were both on and off the field (combined) and on field
from non-helmeted Rugby players. Combined PPV was 91.2%
while on field alone was 96.4%. The presented classifier showed
PPV ranging from 94.42% (test) to 100% (holdout) with both on
and off field data.

Machine-learning-based models have been criticized for their
opaque nature compared with traditional statistical modeling
methods (e.g., decision trees, logistic regression) (Lundberg
et al., 2020). Exploration of feature importance using SHAP
showed low frequency (<150Hz) rotational power spectra
density features to assist in helping model performance. Wu et al.
(2018) showed their support vector machine based classifier to
be utilizing low frequency components; however, they reported
most of the importance to be in linear accelerometer derived
features, at much lower frequencies (<30Hz). This difference
in reported feature importance may be due to several factors,
including the classifier method used, different feature types
used, and potentially different impact characteristics of helmeted
compared with non-helmeted sports. In this study, we used
a randomized tree based boosted method (XGBoost), which
makes inherent use of interactions within the data and generates
a multidimensional decision boundary in a stepwise fashion.
Conversely, Wu et al. (2018) used a radial kernel support
vector machine that attempts to find a linear decision boundary
between classes when the features have been projected to a higher
dimensional space. This tends to produce a smoother decision

boundary (Cortes and Vapnik, 1995). Additionally, Wu et al.
(2018) utilized several different groups of features, including
power spectra density and wavelet-transformed time frequency
information, time domain peak information, and biomechanical-
based features. In comparison, our classifier used power spectra
density based features and randomized kernels that can be used
to examine both frequency and shape-based characteristics of the
signal (Dempster et al., 2020).

Finally, Wu et al. (2018) developed a classifier for use in
American Football where players wear protective helmets to
guard against head injuries, while the presented classifier was
produced using AFL data, in which helmets are not worn. There
may be important differences in how impacts are represented
in the frequency domain between helmeted and non-helmeted
sports, with the helmet absorbing more of the higher frequency
components and allowing only sub 50Hz based kinetic energy to
be transferred into the head.

Limitations
This study has several limitations. While video review hits and
non-hit captures were noted by the video reviewers, there is
a possibility that hits that were not of sufficient magnitude to
reach the mouth guard’s 10 g threshold and were therefore not
captured during the process could have been present but not
noted. We did not attempt to identify these impacts during video
review. Although, our classifier showed high performance in
distinguishing between hits and non-hits, this performance may
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FIGURE 1 | Top 50 features used by the XGBoost model. Gyro, Gyrometer; LinAcc, Linear accelerometer; x, X axis; y, Y axis; z, Z axis; Kernel, Convolutional kernel;

max, Maximum value of kernel; ppv, Proportion of Positive Values in kernel. Values above 0 indicate contribution toward a positive label (hit), while values below 0 are

contributions to a non-hit label.
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only reflect impacts at 10 gs or greater. The classifier was also
applied specifically to the Nexus A9 mouthguard for classifying
the impact of male and female Australian Rules Football players.
Whether a similar performance level is achievable for other
contact sports using this classifier is unknown. The classifier was
applied to adult athletes and may not generalize to child and
adolescent athletes. Additionally, the classifier was applied to elite
level players and may not generalize to amateur and community
level athletes. Training of the classifier was accomplished using
data from four female and sixty male Australian Rules Football
players. Bias in machine learning/artificial intelligence methods
of classification are widely known. The lack of recorded data
from women in the training set may lead to inaccurate results
when attempting to classify impacts in professional women
athletes. Although standardization of the time series during
processing may remove bias that is present due to magnitude
differences between the sexes based on bodymass, other potential
sources of bias, such as differences in impact behavior, cannot
be ruled out. Finally, the classifier did not include data from all
possible positions in Australian Rules Football. Because different
positions have different impact probabilities and the form of
impact may vary, it is possible that some types of impact may not
have been recorded.

Practical Implications
Video verification is an essential element for collecting
reliable kinematic data from sensors. Establishing a method of
synchronization between video footage and the output from the
sensors is critical to the video verification process. An algorithm-
driven classifier, in conjunction with the video verification
method, optimizes the integrity of the data. Validating a classifier
that applies these two principals improves the reliability of the
data for making decisions around the suitability of an athlete
to remain in play, or to be removed for a medical assessment,
following a hard blow to the head. Additionally, this study
showed the importance of frequency ranges <150Hz in creating
a tree-based model to accurately identify impacts. Both linear
and rotational spectral information provided the majority of
information to develop the classifier as evidenced by SHAP,
suggesting that temporally based metrics (e.g., peak values) may
not be required.

CONCLUSIONS

It is essential for a valid verification method to be used to confirm
sensor-recorded events and to remove false positives. Video

verification in combination with an algorithm-driven classifier
can provide an accurate method for filtering data and optimizing
the integrity of the dataset. The current study showed that the
classifier for the Nexus A9 mouthguard is an accurate system
for identifying impacts to the body and head in elite level
Australian Rules Football players. Future research should focus
on further validation of impact sensor classifiers in other contact
and collisions sports, and also across the various levels of sport.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because of contractual obligations surrounding privacy of data
as well as the need to protect intellectual property. Consideration
will be made for access requests to data not implicated by these
obligations. Requests to access the datasets should be directed to
peter@hitiq.co.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

PG conceptualized the study, wrote the first draft of the
manuscript, and performed the statistical analyses. PG, BN, and
SA conceptualized the statistical analyses. All authors critically
reviewed the manuscript. All authors read and approved the last
version of this manuscript.

FUNDING

Funding for this study was provided by HitIQ Limited.

ACKNOWLEDGMENTS

The authors would like to thank all current and former staff
of HitIQ that contributed to the development of the Nexus
mouthguard, and the computational/informatics infrastructures
required to develop the classifier. We would especially like to
thank Jeremy Smith, Megan Trotter and Rohan Ahmad for their
sincerely appreciated work in this area. The authors would also
like to thank MEG for her assistance.

REFERENCES

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi,
J., et al. (2014). Machine learning for neuroimaging with scikit-learn. Front.
Neuroinform. 8:14. doi: 10.3389/fninf.2014.00014

Bailey, A. M., Sherwood, C. P., Funk, J. R., Crandall, J. R., Carter, N., Hessel,
D., et al. (2020). Characterization of concussive events in professional
American football using videogrammetry. Ann. Biomed. Eng. 48, 2678–2690.
doi: 10.1007/s10439-020-02637-3

Baugh, C. M., Stamm, J. M., Riley, D. O., Gavett, B. E., Shenton,
M. E., Lin, A., et al. (2012). Chronic traumatic encephalopathy:
neurodegeneration following repetitive concussive and subconcussive
brain trauma. Brain Imag. Behav. 6, 244–254. doi: 10.1007/s11682-012-
9164-5

Bazarian, J. J., Zhu, T., Zhong, J., Janigro, D., Rozen, E., Roberts, A.,
et al. (2014). Persistent, long-term cerebral white matter changes
after sports-related repetitive head impacts. PLoS ONE 9:e94734.
doi: 10.1371/journal.pone.0094734

Frontiers in Sports and Active Living | www.frontiersin.org 8 November 2021 | Volume 3 | Article 725245

mailto:peter@hitiq.co
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1007/s10439-020-02637-3
https://doi.org/10.1007/s11682-012-9164-5
https://doi.org/10.1371/journal.pone.0094734
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Goodin et al. Classifier for In-game Impact Detection

Benzel, E. C., Miele, V. J., and Bartsch, A. J. C. (2016).Classification of Impacts from

Sensor Data. US Patent 9,289,176.
Carey, L., Stanwell, P., Terry, D. P., Mcintosh, A. S., Caswell, S. V., Iverson,

G. L., et al. (2019). Verifying head impacts recorded by a wearable sensor
using video footage in rugby league: a preliminary study. Sport Med. Open 5:9.
doi: 10.1186/s40798-019-0182-3

Caswell, S. V., Lincoln, A. E., Stone, H., Kelshaw, P., Putukian, M., Hepburn, L.,
et al. (2017). Characterizing verified head impacts in high school girls’ lacrosse.
Am. J. Sports Med. 45, 3374–3381. doi: 10.1177/0363546517724754

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,”
in KDD’16: Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (San Francisco, CA), 785–794.
doi: 10.1145./2939672.2939785

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Cortes, N., Lincoln, A. E., Myer, G. D., Hepburn, L., Higgins, M., Putukian,
M., et al. (2017). Video analysis verification of head impact events
measured by wearable sensors. Am. J. Sports Med. 45, 2379–2387.
doi: 10.1177/0363546517706703

Crisco, J. J., Chu, J. J., and Grenwald, R. M. A. (2004). An algorithm
for estimating acceleration magnitude and impact location using multiple
non-orthogonal single-axis accelerometers. J. Biomech. Eng. 126, 849–854.
doi: 10.1115/1.1824135

Dai, J. B., Li, A. Y., Haider, S. F., Tomaselli, R., Gometz, A., Sobotka,
S., et al. (2018). Effects of game characteristics and player positions on
concussion incidence and severity in professional football.Orthop. J. SportMed.

6:2325967118815448. doi: 10.1177/2325967118815448
Davis, G. A., Makdissi, M., Bloomfield, P., Clifton, P., Echemendia, R.,

Falvey, E., et al. (2019b). International consensus definitions of video signs
of concussion in professional sports. Br. J. Sports Med. 53, 1264–1267.
doi: 10.1136/bjsports-2019-100628

Davis, G. A., Makdissi, M., Bloomfield, P., Clifton, P., Echemendia, R.
J., Falvey, É. C., et al. (2019a). International study of video review
of concussion in professional sports. Br. J. Sports Med. 53, 1299–1304.
doi: 10.1136/bjsports-2018-099727

Dempster, A., Petitjean, F., and Webb, G. I. (2020). OCKET: exceptionally fast and
accurate time series classification using random convolutional kernels. Data
Min. Knowl. Discov. 34, 1454–1495. doi: 10.1007/s10618-020-00701-z

Donaldson, L., Asbridge, M., and Cusimano, M. D. B. (2013).
Bodychecking rules and concussion in elite hockey. PLoS ONE 8:e69122.
doi: 10.1371/journal.pone.0069122

Eckner, J. T., Sabin, M., Kutcher, J. S., and Broglio, S. P. N. (2011). No evidence for
a cumulative impact effect on concussion injury threshold. J. Neurotrauma 28,
2079–2090. doi: 10.1089/neu.2011.1910

Ellenbogen, R. G., Batjer, H., Cardenas, J., Berger, M., Bailes, J., Pieroth, E., et al.
(2018). National football league head, neck and spine committee’s concussion
diagnosis and management protocol: 2017–18 season. Br. J. Sports Med. 52.
903-904. doi: 10.1136/bjsports-2018-099203

Gabler, L. F., Huddleston, S. H., Dau, N. Z., Lessley, D. J., Arbogast, K.
B., Thompson, X., et al. (2020). On-field performance of an instrumented
mouthguard for detecting head impacts in American football. Ann. Biomed.

Eng. 48, 2599–2612. doi: 10.1007/s10439-020-02654-2
Gardner, A. J., Iverson, G. L., Levi, C. R., Schofield, P.W., Kay-Lambkin, F., Kohler,

R. M. N., et al. (2014a). A systematic review of concussion in rugby league. Br.
J. Sports Med. 49, 495–498. doi: 10.1136/bjsports-2013-093102

Gardner, A. J., Iverson, G. L., Williams, W. H., Baker, S., and Stanwell, P. A. S.
(2014b). A systematic review and meta-analysis of concussion in rugby union.
Sport Med. 44, 1717–1731. doi: 10.1007/s40279-014-0233-3

Gardner, A. J., Kohler, R., McDonald, W., Fuller, G. W., Tucker, R., and
Makdissi, M. (2018). The use of sideline video review to facilitate management
decisions following head trauma in super rugby. Sport Med. Open 4:20.
doi: 10.1186/s40798-018-0133-4

Gavett, B. E., and Stern, R. A., McKee, A. C. (2011). Chronic traumatic
encephalopathy: a potential late effect of sport-related concussive
and subconcussive head trauma. Clin. Sports Med. 30, 179–88.
doi: 10.1016/j.csm.2010.09.007

Gysland, S. M., Mihalik, J. P., Register-Mihalik, J. K., Trulock, S. C., Shields, E. W.,
and Guskiewicz, K. M. (2011). The relationship between subconcussive impacts

and concussion history on clinical measures of neurologic function in collegiate
football players. Ann. Biomed. Eng. 40, 14–22. doi: 10.1007/s10439-011-0421-3

Kieffer, E. E., Begonia, M. T., Tyson, A. M., and Rowson, S. A. T. (2020).
Two-phased approach to quantifying head impact sensor accuracy: in-
laboratory and on-field assessments. Ann. Biomed. Eng. 48, 2613–2625.
doi: 10.1007/s10439-020-02647-1

King, D., Hume, P., Gissane, C., Brughelli, M., and Clark, T. (2016). The
influence of head impact threshold for reporting data in contact and collision
sports: systematic review and original data analysis. Sport Med. 46, 151–169.
doi: 10.1007/s40279-015-0423-7

Lundberg, S. M., Erion, G., and Chen, H. DeGrave, A., Prutkin, J. M., Nair, B.,
Katz, R., Himmelfarb, J., Bansal, N., Lee, S.-I. (2020). From local explanations to
global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67.
doi: 10.1038/s42256-019-0138-9

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting model
predictions,” in Proceedings of the 31st Conference on Neural Information

Processing Systems (NIPS 2017), eds I. Guyon, U. V Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Long Beach, CA).

Makdissi, M., and Davis, G. (2016). The reliability and validity of video analysis for
the assessment of the clinical signs of concussion in Australian football. J. Sci.
Med. Sport 19, 859–863. doi: 10.1016/j.jsams.2016.02.015

McCrea, M., Iverson, G. L., Echemendia, R. J., Makdissi, M., and Raftery, M.
(2013). Day of injury assessment of sport-related concussion. Br. J. Sports Med.

47, 272–284. doi: 10.1136/bjsports-2013-092145
McCrory, P., Meeuwisse, W., Dvorak, J., Aubry, M., Bailes, J., Broglio, S., et al.

(2017). “Consensus statement on concussion in sport,” in Proceeding of the 5th

International Conference on Concussion in Sport (Berlin).
Merchant-Borna, K., Asselin, P., Narayan, D., Abar, B., Jones, C. M. C., and

Bazarian, J. J. N. (2016). Novel method of weighting cumulative helmet
impacts improves correlation with brain whitematter changes after one football
season of sub-concussive head blows. Ann. Biomed. Eng. 44, 3679–3692.
doi: 10.1007/s10439-016-1680-9

Montenigro, P. H., Alosco, M. L., Martin, B. M., Daneshvar, D. H.,
Mez, J., Chaisson, C. E., et al. (2017). Exposure predicts later-life
depression, apathy, executive dysfunction, and cognitive impairment in
former high school and college football players. J. Neurotrauma 34, 328–340.
doi: 10.1089/neu.2016.4413

Nevins, D. D., Hildenbrand, K., Kensrud, J., Vasavada, A., and Smith, L.
(2018). Laboratory and field evaluation of a small form factor head
impact sensor in unhelmeted play. J. Sport Eng. Technol. 232, 242–254.
doi: 10.1177/1754337117739458

O’Connor, K. L., Peeters, T., Szymanski, S., and Broglio, S. P. I. (2017).
Individual impact magnitude vs. cumulative magnitude for estimating
concussion odds. Ann. Biomech. Eng. 45, 1985–1992. doi: 10.1007/s10439-017-
1843-3

Oliphant, T. E. P. (2007). Python for scientific computing. Comput. Sci. Eng. 9,
10–20. doi: 10.1109/MCSE.2007.58

Patton, D. A., Huber, C. M., Jain, D., Myers, R. K., McDonald, C. C., Margulies,
S. S., et al. (2020). Head impact sensor studies in sports: a systematic
review of exposure confirmation methods. Ann. Biomed. Eng. 48, 2497–2507.
doi: 10.1007/s10439-020-02642-6

Press, J. N., and Rowson, S. (2016). Quantifying head impact exposure
in collegiate women’s soccer. Clin. J. Sport Med. 27, 104–110.
doi: 10.1097/JSM.0000000000000313

Rahimi, A., and Recht, B. (2007). “Random features for large-scale kernel
machines,” in NIPS.

Ramkumar, P. N., Navarro, S. M., Haeberle, H. S., Luu, B. C., Jang, A.,
Frangiamore, S. J., et al. (2019). Concussion in American vs. European
professional soccer: a decade-long comparative analysis of incidence, return
to play, performance, and longevity. Am. J. Sports Med. 47, 2287–2293.
doi: 10.1177/0363546519859542

Rubin, L. H., Tierney, R., Kawata, K., Wesley, L., Lee, J. H., Blennow,
K., et al. (2019). NFL blood levels are moderated by subconcussive
impacts in a cohort of college football players. Brain Inj. 33, 456–462.
doi: 10.1080/02699052.2019.1565895

Stemper, B. D., Shah, A. S., Harezlak, J., Rowson, S., Mihalik, J. P., Duma, S.
M., et al. (2018). Comparison of head impact exposure between concussed
football athletes and matched controls: evidence for a possible second

Frontiers in Sports and Active Living | www.frontiersin.org 9 November 2021 | Volume 3 | Article 725245

https://doi.org/10.1186/s40798-019-0182-3
https://doi.org/10.1177/0363546517724754
https://doi.org/10.1145./2939672.2939785
https://doi.org/10.1007/BF00994018
https://doi.org/10.1177/0363546517706703
https://doi.org/10.1115/1.1824135
https://doi.org/10.1177/2325967118815448
https://doi.org/10.1136/bjsports-2019-100628
https://doi.org/10.1136/bjsports-2018-099727
https://doi.org/10.1007/s10618-020-00701-z
https://doi.org/10.1371/journal.pone.0069122
https://doi.org/10.1089/neu.2011.1910
https://doi.org/10.1136/bjsports-2018-099203
https://doi.org/10.1007/s10439-020-02654-2
https://doi.org/10.1136/bjsports-2013-093102
https://doi.org/10.1007/s40279-014-0233-3
https://doi.org/10.1186/s40798-018-0133-4
https://doi.org/10.1016/j.csm.2010.09.007
https://doi.org/10.1007/s10439-011-0421-3
https://doi.org/10.1007/s10439-020-02647-1
https://doi.org/10.1007/s40279-015-0423-7
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1016/j.jsams.2016.02.015
https://doi.org/10.1136/bjsports-2013-092145
https://doi.org/10.1007/s10439-016-1680-9
https://doi.org/10.1089/neu.2016.4413
https://doi.org/10.1177/1754337117739458
https://doi.org/10.1007/s10439-017-1843-3
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1007/s10439-020-02642-6
https://doi.org/10.1097/JSM.0000000000000313
https://doi.org/10.1177/0363546519859542
https://doi.org/10.1080/02699052.2019.1565895
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Goodin et al. Classifier for In-game Impact Detection

mechanism of sport-related concussion. Ann. Biomed. Eng. 47, 2057–2072.
doi: 10.1007/s10439-018-02136-6

Stitt, D., Draper, N., Alexander, K., and Kabaliuk, N. (2021). Laboratory
validation of instrumented mouthguard for use in sport. Sensors 21:6028.
doi: 10.3390/s21186028

Welch, P. (1967). The use of fast Fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified periodograms.
IEEE Trans. Audio Electroacoust. 15, 70–73. doi: 10.1109/TAU.1967.1161901

Wu, L. C., Kuo, C., Loza, J., Kurt, M., Laksari, K., Yanez, L. Z., et al.
(2018). Detection of American football head impacts using biomechanical
features and support vector machine classification. Sci. Rep. 8, 1–14.
doi: 10.1038/s41598-017-17864-3

Conflict of Interest: HitIQ Ltd. is a company with commercial and proprietary
interest in the mouthguard and classifier used in this study. PG, ND, BN, and SA
are employed by HitIQ Ltd. AG serves as a scientific advisor for HitIQ Ltd. BN
and SA are former employees of HitIQ Ltd. AG has a clinical practice. He has
been a consultant to Rugby Australia ltd. He has received travel funding from
professional sporting bodies and commercial organizations meetings, scientific
conferences, workshops, and symposiums. He has received research funding
from the National Rugby League (NRL) for the Retired Players Brain Health
research program. Grant Iverson serves as a scientific advisor for NanoDxTM
(formerly BioDirection, Inc.), Sway Operations, LLC, and Highmark, Inc. He
has a clinical and consulting practice. He has received research funding from
several test publishing companies, including ImPACT Applications, Inc., CNS

Vital Signs, and Psychological Assessment Resources (PAR, Inc.). He has received
research funding as a principal investigator from the National Football League.
He acknowledges unrestricted philanthropic support from ImPACT Applications,
Inc. and the National Rugby League. These entities were not involved in the study
design, collection, analysis, interpretation of data, the writing of this article, or the
decision to submit it for publication.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Goodin, Gardner, Dokani, Nizette, Ahmadizadeh, Edwards and

Iverson. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Sports and Active Living | www.frontiersin.org 10 November 2021 | Volume 3 | Article 725245

https://doi.org/10.1007/s10439-018-02136-6
https://doi.org/10.3390/s21186028
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1038/s41598-017-17864-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles

	Development of a Machine-Learning-Based Classifier for the Identification of Head and Body Impacts in Elite Level Australian Rules Football Players
	Introduction
	Methods
	Study Design
	Data Collection
	Mouthguard Specifications
	Capture Recording
	Data Processing
	Data Labeling
	Datasets
	Feature Generation
	Classifier Selection
	Classifier Training and Evaluation
	Model Interpretation

	Results
	Classifier Selection Analysis
	XGBoost Model (Classifier Performance Output)
	Model Interpretation

	Discussion
	Limitations
	Practical Implications

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


