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Markerless motion capture systems are promising for the assessment of movement in

more real world research and clinical settings. While the technology has come a long

way in the last 20 years, it is important for researchers and clinicians to understand

the capacities and considerations for implementing these types of systems. The current

review provides a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis

related to the successful adoption of markerless motion capture technology for the

assessment of lower-limbmusculoskeletal kinematics in sport medicine and performance

settings. 31 articles met the a priori inclusion criteria of this analysis. Findings from

the analysis indicate that the improving accuracy of these systems via the refinement

of machine learning algorithms, combined with their cost efficacy and the enhanced

ecological validity outweighs the current weaknesses and threats. Further, the analysis

makes clear that there is a need for multidisciplinary collaboration between sport

scientists and computer vision scientists to develop accurate clinical and research

applications that are specific to sport. While work remains to be done for broad

application, markerless motion capture technology is currently on a positive trajectory

and the data from this analysis provide an efficient roadmap toward widespread adoption.
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INTRODUCTION

Markerless motion capture systems have emerged as a promising tool to assess movement in
both research and clinical settings. As we continue to develop and evolve the current standard
of 3D motion capture, the emergence of markerless systems has provided the means to accurately
measure patterns ofmotion in amanner that is neither invasive nor cumbersome, and that also limit
the risk of measurement-induced artifacts common with marker-based systems (Mündermann
et al., 2006a). Continued advancements in motion capture capabilities have supported the
development of more accessible and cost-effective motion capture systems that can uniquely
target a wide range of questions surrounding human movement. In the area of sports medicine
and movement science, markerless motion capture offers a technological solution for evaluating
unrestricted sport-specific movement patterns to better inform an athlete’s risk of injury, assess
rehabilitative progression, and evaluate their readiness to return to play, as well as refine skilled
performance through efficient motor behavior.
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One of the most exciting aspects of markerless motion
capture is that can facilitate a new understanding of human
movement by removing the environmental constraints of
marker-based data collections (Mündermann et al., 2006a)
and enable the cultivation of truly large databases of human
movement (Mathis et al., 2020). In the realm of sports
medicine, for example, changes in movement patterns due to
injury can have a profound impact on the progression of
musculoskeletal pathology, as well as the treatment of such
pathologies—e.g., changes in gait mechanics following ACL
injury and subsequent reconstruction have been shown to
influence the progression and severity of knee osteoarthritis
(Andriacchi et al., 2004; Pietrosimone et al., 2016). The ability
to provide a robust kinematic assessment to address current and
emerging clinical questions about factors that influence normal
patterns of movement, and particularly sport-related movement,
would further our understanding of human movement and
provide researchers and clinicians the information necessary
to enhance injury prevention, rehabilitation and general
training programs.

As the accessibility of markerless motion capture software
and systems seems to be markedly increasing, it is important
for both researchers and clinicians to understand the up-to-
date capacities of these technologies as well as areas that may
require additional consideration for implementation—e.g., the
computational and methodological approaches that have been
taken to successfully achieve markerless motion capture. A
SWOT (Strengths, Weaknesses, Opportunities, and Threats)
analysis is a tool developed for strategic analysis that serves to
reveal the internal strengths and weaknesses of a given entity
and evaluate the external factors (opportunities and threats) the
entity will face (Scholes et al., 2002). Appropriately, SWOT is
an acronym for strengths, weaknesses, opportunities, and threats
and is an analysis framework commonly employed to inform
decision making and development. While a SWOT analysis
is most commonly associated with applications in business,
this framework has been applied to healthcare (Helms et al.,
2008), athlete training (Düking et al., 2018), and rehabilitative
technologies (Rizzo and Kim, 2005). A structured examination
using a SWOT analysis of markerless motion capture systems
and their application in the field of sports medicine would
provide guidance and direction to the implementation of
this technology.

In this SWOT analysis, the various markerless motion capture
approaches used to assess lower extremity biomechanics were
collectively examined to provide a broad discussion on the use
and application of portable, low-cost markerless motion capture
in the field of sports medicine. Ultimately, the goal of this
analysis is to provide clarity on what is currently available and
to identify areas for development to ensure a successful future
for this technology. SWOT analyses are often criticized for their
subjectivity (Pickton and Wright, 1998), and while this may be
a limitation of this type of analysis, each SWOT factor has been
extensively investigated through a thorough review of the current
literature. To ensure a systematic review of the literature was
conducted to build the foundation of the SWOT analysis, the
following electronic databases were searched for relevant studies

from their inception through February 2021, and a second time
through December 2021: PubMed, ProQuest Health & Medical
Collection, CINAHL, and Google Scholar. These electronic
databases were searched using combinations of key words related
to the scope of the review (search terms: lower extremity,
kinematics, ankle, knee, hip, pelvis, markerless motion capture)
and Boolean operators OR and AND were used to combine
search terms. Of note, based on the two searches conducted,
there has been a 24% increase in the research conducted within
this specific scope within the last year (134 articles found during
the first search in February 2021 and an additional 33 articles
found in the December 2021 search), illustrating the exponential
progress in this area of research. The inclusion criteria for this
review were studies (a) with full- text articles available, (b)
published in peer-reviewed journals, (c) in English, (d) utilizing
a quantitative study design, excluding systematic reviews, (e)
with human participants, (f) that evaluated the validity and/or
reliability of a markerless motion capture system against a
marker-based system and/or clinical assessment tool, (g) assessed
lower extremity (pelvis/hip, knee, and/or ankle) kinematics, and
(h) the total cost of the markerless system, cameras and software
must be under $5,000.00. Thirty-one articles met all the inclusion
criteria and were reviewed by the authors for the content to
build and conduct the SWOT assessment (see Table 1 for study
characteristics from literature review and Figure 1 for summary
of SWOT analysis).

STRENGTHS

Agreement Between Markerless and
Marker-Based Systems
In assessing the validity and limits of markerless motion capture,
many studies have concurrently compared markerless systems
to marker-based systems (Clark et al., 2013; Sandau et al.,
2014; Mentiplay et al., 2015; Perrott et al., 2017; Harsted et al.,
2019; Tanaka et al., 2019; Tipton et al., 2019; Wochatz et al.,
2019; Drazan et al., 2021). In such studies, markerless motion
capture has shown great promise. Specifically, focusing on the
ability to detect lower extremity movement, multiple studies have
indicated that markerless motion capture can efficiently capture
spatiotemporal joint kinematic variables (Clark et al., 2013;
Sandau et al., 2014; Mentiplay et al., 2015; Rocha et al., 2018)
with moderate-to-high agreement during tasks such as a single
leg squat (Perrott et al., 2017; Kotsifaki et al., 2018; Tipton et al.,
2019), vertical jump (Drazan et al., 2021), countermovement
jump (Kotsifaki et al., 2018), stair climbing (Ogawa et al., 2017),
walking (Ceseracciu et al., 2014; Sandau et al., 2014; Kanko et al.,
2021; Pagnon et al., 2021; Stenum et al., 2021; Takeda et al., 2021;
Vafadar et al., 2021), running (Corazza et al., 2006; Macpherson
et al., 2016; Pagnon et al., 2021), gymnastics tasks (Corazza et al.,
2006, 2010; Mündermann et al., 2007), and clinical evaluations
(Eltoukhy et al., 2017; Mauntel et al., 2021). To date, the highest
accuracy with markerless motion capture has been achieved
when fitting a prior articulated model to a 3D surface visual
hull reconstruction using matching algorithms (Corazza et al.,
2006, 2007, 2008, 2010; Mündermann et al., 2006b, 2007).
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TABLE 1 | Characteristics of validation studies.

References Camera(s) used for

Markerless System

Markerless set-up Validation methods Task Lower limb kinematics

Capecci et al. (2016) Kinect (v2) Single camera Marker-based (BTS

Bioengineering System)

Squat Knee and hip

Ceseracciu et al. (2014) BTS Bioengineering

cameras

Multi-camera Marker-based (BTS

Bioengineering System)

Walking overground Ankle, knee, and hip

Chakraborty et al. (2020) Kinect (v2) Single camera Marker-based (Optotrak

System)

Walking on treadmill Knee, hip, and pelvis

Corazza et al. (2006) Color video cameras Multi-camera Virtual environment

validation

Running overground Ankle, knee, and hip

Corazza et al. (2007) VGA cameras Multi-camera Marker-based Hip abduction-adduction

and flexion-extension

Joint center hip

Corazza et al. (2008) VGA cameras Multi-camera Meshes from laser scan of

marker-based methods

Walking overground Ankle, knee, and hip

Corazza et al. (2010) AVT Pike VGA color

cameras

Multi-camera Marker-based (Qualisys

System)

Gymnastic movements,

walking, running, and

balancing tasks

Joint centers ankle, knee,

and hip

Eltoukhy et al. (2017) Kinect (v2) Single camera Marker-based (BTS

Bioengineering System)

Star Excursion Balance

Test

Ankle, knee, and hip

Gray et al. (2017) Kinect (v2) Single camera Marker-based (Vicon

System)

Drop vertical jump Knee

Guess et al. (2017) Kinect (v2) Single camera Marker-based (Vicon

System)

Drop vertical jump and hip

abduction

Knee and hip

Harsted et al. (2019) GoPro cameras Multi-camera Marker-based (Vicon

System)

Squat, vertical jump, box

drops, drop vertical jump,

and standing broad jump

Ankle, knee, and hip

Kotsifaki et al. (2018) Kinect (v2) Multi-camera Marker-based (BTS

Bioengineering System)

Single leg squat, single leg

jump, and

countermovement jump

Knee and hip

Macpherson et al. (2016) Kinect (v1) Single camera Marker-based (Vicon

System)

Walking and running on a

treadmill

Pelvis

Mauntel et al. (2017) Kinect (v1) Single camera Expert raters of the LESS Jump landing Knee

Mentiplay et al. (2015) Kinect (v2) Single camera Marker-based (Vicon

System)

Walking overground Ankle, knee, and hip

Nakano et al. (2020) GZRY980 video cameras Multi-camera Marker-based (Motion

Analysis Corp)

Walking overground,

countermovement jump

and ball throwing

Ankle, knee, and hip

Perrott et al. (2017) Organic motion Multi-camera Marker-based (Vicon

System)

Knee flexion test and

single limb squat

Knee

Sandau (2015) Camera Link cameras Multi-camera Marker-based Walking overground Ankle, knee, and hip

Sandau et al. (2014) Camera Link cameras Multi-camera Marker-based (Ariel

Performance Analysis

System)

Walking overground Ankle, knee, and hip

Schmitz et al. (2015) Kinect* Single camera Marker-based (Motion

Analysis Corp)

Squat Knee and hip

Tanaka et al. (2019) Kinect (v2) Single camera Marker-based (Vicon

System)

Functional reach test Ankle and hip

Tipton et al. (2019) Kinect (v2) Single camera Marker-based (Vicon

System)

Single and double limb

drop landing, Single limb

hop

Knee

do Carmo Vilas-Boas

et al. (2019)

Kinect (v1 and v2) Single camera Marker-based (Qualisys

System)

Forwards and backwards

walking overground

Ankle, knee, and hip

Wochatz et al. (2019) Kinect (v2) Single camera Marker-based (Vicon

System)

Squat, hip abduction, and

lunge

Knee and hip

Xu et al. (2015) Kinect* Single camera Marker-based (Optotrak

Certus System)

Walking on a treadmill Ankle, knee, and hip

*Version or model not specified.
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FIGURE 1 | Summary of SWOT analysis for markerless motion capture.

More recently, however, the application of deep learning
algorithms, keypoint detection approaches for biomechanical
assessment are beginning to show similar or greater accuracies
and illustrate significant promise for the future of markerless
motion capture in the sports medicine domain (Drazan et al.,
2021; Kanko et al., 2021; Needham et al., 2021; Pagnon
et al., 2021; Stenum et al., 2021; Vafadar et al., 2021). It
is important to note that the majority of validation studies
utilizing markerless motion capture to assess joint kinematics
evaluate relatively slow movements such as walking, or single
plane motions such as the sagittal plane during jumping. To
continue to verify the utility of these approaches for sport
applications, a thorough evaluation of quicker, sport-specific
movements—such as rapid change in directions, and non-
linear movements—is necessary to confirm the applicability
to a broad range of sports. In addition, it is important to
note that with this agreement between systems, there has been
some evidence to suggest that during trials using marker-
based and markerless motion capture systems concurrently, the
reflective markers used for tracking marker-based assessments
may distort the results gleaned from cameras used for markerless
motion capture (Naeemabadi et al., 2018), therefore systems
compared to marker-based approaches may be better than we
currently realize.

Elimination of Marker Dependency and
Environmental Restrictions
A prominent source of measurement error when using marker-
based motion capture systems is skin movement artifact
(Leardini et al., 2005). Soft tissue movement introduces errors of
similar frequency to the actual bone movements and therefore it
is difficult to parse the movement artifacts through filtering and
smoothing of the data (Leardini et al., 2005). A systematic review
by Peters and colleagues revealed that this artifact can be as great
as 30mm on body segments, such as the thigh, when compared
to more precise methods, such as intra-cortical bone pins or X-
ray radiation (Peters et al., 2010). Artificial stimuli information
is also introduced with marker-based systems. Methods such
as wrapping limb segments to secure clusters on the thigh
or shank, the insertion of bone pins, or the attachment of
numerous reflective markers introduce an artificial stimulus to
the neurosensory system that can yield changes that deviate
from a natural movement pattern that may mask underlying
movement deficits (Mündermann et al., 2006b). The application
of machine learning pose estimation algorithms offers the
promise of reducing experimental error(s) either due to soft
tissue movement artifact, as described above, or variability of
marker placements (Szczerbik and Kalinowska, 2011), whichmay
lead to more accurate data. Through the implementation of
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sophisticated pose-estimation algorithms, rather than the use of
markers or clusters on the body, markerless motion capture offers
a means to eliminate soft tissue artifact without requiring the
use of potentially more invasive marker-based techniques (e.g.,
the use of intra-cortical bone pins). This affords more seamless
data capture and may lead to faster and more ecologically valid
data collections. In short, markerless motion capture affords the
measurement of natural movement patterns that could lead to a
more robust analysis of human kinematics.

Use of Machine Learning Algorithms
One of the greatest challenges of markerless motion capture
is the complexity of acquiring accurate three-dimensional
kinematics without the spatial correspondence that markers
deliver to marker-based systems. Fortunately, machine learning-
based discriminative algorithms provide an avenue to estimate
human motion. Previously captured data are used to inform
a specific model (the representation of the human body) or
to train the machine learning algorithm. The captured data
are then input into the machine learning algorithm that is
used to extract specific features from the captured image(s) to
deduce explicit motions. A wide variety of machine learning
algorithms have been proposed to estimate human motion
(Gavrila and Davis, 1996; Bregler and Malik, 1998; Deutscher
et al., 2000; Grauman et al., 2003; Baker and Kanade, 2005;
Corazza et al., 2006; Moeslund et al., 2006; Poppe, 2007; Ionescu
et al., 2013). Unfortunately, the research into the development
and improvement of these algorithms is outside the scope
for most biomechanics research and, thus, the applicability of
several of these algorithms for biomechanical use is still widely
unknown (Mündermann et al., 2006a; Colyer et al., 2018). That
being said, more recently researchers have begun to evaluate
the more popular human pose estimation algorithms (e.g.,
OpenPose, DeepLabCut, AlphaPose) for their accuracy when
applying them to the humanmovement sciences domain (Drazan
et al., 2021; Needham et al., 2021; Pagnon et al., 2021; Stenum
et al., 2021; Takeda et al., 2021) and perhaps with the growing
popularity of applying markerless motion capture to the sports
medicine domain, there will be a push for more biomechanically
accurate algorithms. The benefit of using machine learning-
based algorithms for estimating human movement is that
these algorithms can be continually refined. Specifically, data
can be used to train and refine the existing algorithms
to drive more accurate estimations of joint kinematics. In
addition, the application of machine learning pose estimation
algorithms offers the promise of reducing experimental error(s)
either due to variability of marker placements (Szczerbik and
Kalinowska, 2011) or skin movement artifact (see previous
section Elimination of soft tissue artifacts and artificial stimuli)
which, in turn, would result in more accurate data.

Application to Clinical Settings
One of the goals of having a markerless system is the ease of
use for compatible devices in a clinical setting to provide a valid
clinical measurement tool. For a clinician, the important concern
is implementation and integration into practice. If this is not
supported by the technology, these systems will not be utilized.

As such, researchers have investigated the ability of these systems
to capture clinically relevant information for tests, such as the sit-
to-stand (Otte et al., 2016), Landing Error Scoring System test
(LESS;Mauntel et al., 2017, 2021), and the Star Excursion Balance
Test (SEBT; Eltoukhy et al., 2017). For example, Eltoukhy et al.
(2017) validated the performance of a markerless motion capture
system on its ability to measure consistent results compared to
manual assessment of SEBT reach results, as well as agreement
with a marker-based motion capture system. The results of
this study showed that the markerless system provided high
agreement (ICC < 0.90) when assessing reach distance, with an
error of <2 cm between systems. The conclusion was that this
technology was efficient for the assessment the SEBT (Eltoukhy
et al., 2017). An additional advantage of these systems for clinical
assessments is their potential to provide an automated and
consistent means of rapidly and accurately identifying aberrant
movement patterns relevant to the clinician. For example,
Mauntel et al. (2017) assessed the reliability of a markerless
system used concurrently with movement assessment software
in scoring the LESS as compared to scores rated by expert
raters. The results showed that the markerless system was able
to reliably score the LESS test and provided consistently accurate
results (Mauntel et al., 2017). This finding is of great clinical
relevance as it demonstrates a means toward greater throughput
to clinically relevant movement assessments by (a) limiting the
amount of time for the clinician to conduct such assessments
(especially for an assessment such as the LESS) and (b) reducing
analysis and, thus, evaluation times. These gains can also facilitate
individualized interventions and enhance the quality of clinician-
patient contact during treatment.

Enhanced Ecological Validity
One of the biggest criticisms of marker-based motion capture
research conducted within a laboratory setting is degree of
relevance or similarity that a laboratory-based assessment
has to natural movements performed on-field/on-court. While
traditional laboratory- and marker-based motion capture has
provided invaluable information about the characteristics of
movement and movement-related deficits, the question remains
whether these assessments can accurately determine if an
athlete is able to return to sports without the risk of
injury due to aberrant movement patterns. Research has
shown that athletes can improve mechanics based on these
assessments and related motion capture methods to, ultimately,
reduce their risk of second injury (e.g., Paterno et al., 2010;
Ardakani et al., 2019). However, the greatest predictor of a
new injury is a history of previous injury (e.g., Guskiewicz
et al., 2000; Salmon et al., 2005; Paterno et al., 2010;
Roos et al., 2017; Losciale et al., 2019), and this indicates
existing assessments and tools may not provide the most
clear indication of “real world” movement function. Markerless
motion capture affords the possibility to design studies to
assess unrestricted movement, and to incorporate real world
task contexts by assessing these movements in a sport setting.
There are a number of examples illustrating the application of
markerless motion capture that enhance the ecological validity
by assessing movement in relevant functional environments
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(Parsons and Alexander, 2012; Abrams et al., 2014; Moon et al.,
2019). In addition, with the continued technological advances
and improved algorithms, the experimental rigor required for
accurate biomechanical analysis can still be maintained while
integrating the complex challenges experienced by athletes in a
more natural environment (Alderson, 2015; Moon et al., 2019;
Nakano et al., 2020). Thus, the data captured using markerless
motion capture derived from more natural settings could have
greater clinical relevance for the types of movements required of
athletes on the field or court.

Cost Efficacy—Expanding Motion Capture
Accessibility
Two of the deterrents of marker-based 3D motion capture
systems are the financial and time-related costs associated with
such systems. Research-grade marker-based motion capture
systems can cost in the tens to hundred thousands of dollars,
not including the annual maintenance contracts for system
hardware and software, or the employment of researcher
assistants or personnel (e.g., students or technicians) who are
trained to use these systems. Markerless systems provide a
low-cost alternative for motion capture, providing researchers
and clinicians with motion capture capabilities previously not
available to them. For example, a single depth-sensing camera
(often termed RGB-D camera for its capability to capture color
and depth)—the latter a type of technology that comprises
the Microsoft Kinect sensor (Microsoft, Redmond, WA, USA)
and available on an Intel RealSense camera (Intel Corp., Santa
Clara, CA, USA), for example—can be purchased for anywhere
between $100 and $200. This is significantly less expensive
technology that can greatly expand access to motion capture
capabilities outside of the traditional laboratory setting. For
example, portable markerless systems that use RGB-D cameras,
or in other circumstances an off-the-shelf camera or mobile
phone camera, can be deployed outside a laboratory to sport
performance enhancement domains such as rehabilitation clinics
or even in-home to facilitate telerehabilitation. Further, with less
infringement on their personal space, patients, or participants
can feel more comfortable during testing, whichmay lead tomore
diverse populations that would not have otherwise participated
in motion capture research. By eliminating the preparatory
time needed with marker-based systems, assessments are more
time-efficient such that clinicians could feasibly utilize these
technologies within their practice (Mündermann et al., 2006b),
and may even be preferable in a situation with a high volume
of participants [e.g., pre-season injury risk screening (Kotsifaki
et al., 2018)].

The Power of Data
One of the greatest potentials for markerless motion capture for
biomechanics research lies in the potential for building data-
driven tools for inferencing/predicting based on large databases
(Mathis and Mathis, 2020), instead of providing observational
quantitative results from relatively small samples (as seen in
marker-based studies thus far). Markerless motion capture has
the potential for developing truly large databases of human
movement (i.e., with N in the thousands), which may lead to

better statistical and predictive models of human movement
(Schmidhuber, 2015; Litjens et al., 2017).

WEAKNESSES

Not All Markerless Systems Are Equivalent
I—Hardware and Software Considerations
Movement analysis for clinical application requires accurate
representations of joint-specific information. While markerless
motion capture has been widely applied to surveillance and
gaming industries, its application to the biomechanical, clinical,
and sport performance enhancement domains have been limited
by the accuracy of the current methods. For instance, while the
studies referenced above in the “Strengths” section (Agreement
between markerless and marker-based systems section) have
reported good to high agreement between markerless and
marker-based motion capture systems, the range of the error
recorded within the literature suggest that markerless motion
capture systems overall are still not compatible with accurate
biomechanical analysis. That said, there have been some systems
that have demonstrated sufficient biomechanical accuracy,
especially with respect to joint positions and sagittal plane joint
angles validated against marker-based systems, but this accuracy
is at times plane dependent (e.g., Macpherson et al., 2016; Yeung
et al., 2021).

These differences could be explained by the differences in the
methods and tools used for markerless motions capture. There
are different computational and methodological approaches that
have been taken to successfully achieve markerless motion
capture, however whether these approaches are biomechanically
and clinically applicable remains an open question. There are
five components that need to be considered when evaluating
a markerless motion capture system: (1) the number of
cameras utilized, (2) the features of the captured image(s)
used, (3) the model utilized to define a human body, (4)
the machine learning algorithm employed to determine the
desired variables from the body model (Colyer et al., 2018),
and (5) as a result of components 3 and 4, errors due to
variability in anthropometrics. Given the great variety of camera
configurations, model types, and algorithms that have been
proposed, several variations of these markerless motion capture
features can be found throughout the literature. As discussed
in the single vs. multi-camera configurations section below, it
can be expected that more cameras allows for more features
to be tracked and will lead to better biomechanical results.
However, this limits the generalizability of studies as it limits
our ability to compare data across different markerless systems,
presenting an additional challenge of clarifying the advantages of
specific configurations.

Not All Markerless Systems Are Equivalent
II—Methodological Considerations for
System Accuracy
There are additional methodological factors that can influence
the accuracy of a markerless system that need to be taken into
consideration. Specifically, four areas in particular should
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be highlighted. These include: (1) lighting, (2) camera
range/resolution/positioning, (3) task complexity, and (4)
collection environment. Current hardware limitations across
available markerless systems limit their application to sports
biomechanics due to a need to either (1) a need for controlled
lighting conditions—e.g., markerless systems that emit light
information for the acquisition and representation of human
movement (Mündermann et al., 2006b), or (2) an inability to
accurately capture data in direct sunlight [e.g., depth cameras
such as the Kinect 1 and 2 (Zennaro et al., 2015)]. While more
recent camera technologies (and algorithms) are becoming more
robust to these limitations, the problem is not completely solved.
An additional hardware limitation of systems such as Kinect-
based markerless motion capture is that their effectiveness is only
within a limited capture range (e.g., the Kinect 2 has a range of
0.5–4.5m). Outside of the hardware limitations, several studies
have noted a reduced accuracy, of the Kinect specifically, as task
complexity increases (Mündermann et al., 2007; Tipton et al.,
2019; Wochatz et al., 2019; Ressman et al., 2020), limiting the
ability to capture and assess natural sport-specific movements
of athletes. Another consideration is camera resolution—with
greater resolution comes better tracking and keypoint detection.
One of the weaknesses of greater resolution is the increase in
the cost of the camera used as well as the processing costs.
Ideally, there is a balance that needs to be met with regards to
resolution and the hardware and processing costs associated.
Thirdly, there is the limited generalizability of markerless motion
capture models to include all body types. A challenging issue
with markerless motion capture and the use of discriminative
algorithms is simply if the available data is insufficient, the
2D and 3D reconstructed poses and motion trajectories will
not be suitably represented. While more sophisticated models
and reconstructions have been described (Corazza et al., 2010),
there is a tradeoff in accuracy and processing time—increasing
the accuracy also typically increases the computational burden
(more time required for offline processing). Finally, one of the
most attractive aspects of markerless motion capture for sports
medicine is the ability to capture movement, non-invasively,
during normal training environments. However, there are still
environmental considerations with some markerless motion
capture technology that need to be considered: (1) sunlight and
(2) access to power supply and remote access such as the cloud.
As previously mentioned, one consideration is sunlight. Due to
its infrared properties, sunlight can introduce noise into capture
devices that utilize an infrared camera (e.g., the Kinect). On a
similar note, another issue would be darkness—RGB cameras
are not able to track a person if it is too dark. The second
environmental consideration when outside of the laboratory
setting are access to a power supply for associated hardware and
access to a portable hotspot in order to store data on the cloud.
The latter point is going to become increasingly more important
as camera resolution and subsequent data size continue to
increase exponentially. As the field of sports medicine and sports
science aims to leverage and validate markerless motion capture
technology, these are all considerations that need to be taken
into account and assessed.

Single vs. Multi-Camera Configurations
While the most accurate markerless systems tend to have a
multi-camera configuration, much literature surrounding the
use of markerless motion capture for biomechanical and/or
clinical assessment often only consider a single dimension via a
single-camera setup [predominantly, theMicrosoft Kinect sensor
(Pfister et al., 2014; Xu et al., 2015; Eltoukhy et al., 2017; Guess
et al., 2017; Mauntel et al., 2017, 2021; do Carmo Vilas-Boas
et al., 2019; Tanaka et al., 2019)]. Undoubtedly, ease of use
surrounding this system relative to other similar single-camera
systems (e.g., the set-up, preparation, and data acquisition of
these systems) is the driving factor behind researchers trying to
determine its application in the sports medicine arena; however,
the single camera featuremight be one of the leading obstacles for
these systems matching the accuracy of marker-based systems.
Single-camera systems like the Microsoft Kinect were designed
to capture human movement for activities performed within a
limited space (capture volume of the Kinect v2 ranges from 0.5
to 4.5m) with the human facing the device. The efficiency of
these systems is thus highly dependent on camera placement
relative to the subject being captured (Chakraborty et al., 2020).
Accordingly, the Microsoft Kinect seems to produce comparable
kinematic data [results ≤5◦ in the sagittal plane are assumed
by this review to be clinically negligible (McGinley et al.,
2009); it is important to note that not all kinematic errors are
equivalent and thus the kinematic plane should be considered
when evaluating accuracy] to a marker-based system when
performing tasks within the optimal capture volume such as
squats (Schmitz et al., 2015; Perrott et al., 2017; Mentiplay
et al., 2018), or a Functional Reach Test (Tanaka et al., 2019).
Movement that is outside of this optimal capture volume leads to
greater difficulties for this system. Specifically, previous studies
have found large differences for the estimated joint kinematics
captured between a Kinect system and marker-based motion
capture systems during walking (Pfister et al., 2014; Mentiplay
et al., 2015; Xu et al., 2015; Guess et al., 2017; do Carmo
Vilas-Boas et al., 2019), and jumping tasks (Mentiplay et al.,
2018; Harsted et al., 2019; Tipton et al., 2019). Due to the
complex and highly variable nature of humanmovement, a single
camera is not properly equipped to provide sufficient 3D pose
information, providing a challenge when presented with self-
occlusion, or identification of another occluding object within the
environment (Mündermann et al., 2006b). When compared to a
single-camera system, multi-camera systems have demonstrated
improved agreement and reliability in capturing the dynamic
characteristics of human movement (Núñez et al., 2017; Ryselis
et al., 2020). In addition, by re-identifying positions across
multiple view-points, the use of multi-camera capture has shown
to increase classification rates (i.e., the accuracy of the systems in
identifying movements) to more than 90% (Huang et al., 2012).
The robustness of markerless systems can then be increased by
increasing the number of cameras. Increasing the number of
cameras increases the data available to solve the given number of
degrees of freedom and provide more biomechanically accurate
assessments (Mündermann et al., 2006b). Algorithms are starting
to more accurately identify 3D kinematics from a 2D image,
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but cannot replace biomechanically accurate kinematic data from
markered systems.

OPPORTUNITIES

Enhancing Injury Risk Evaluation and
Return-to-Play Assessments
Computer vision-based machine learning approaches provide
a powerful framework that allow for automated inferences for
multiple variations of postures and movements. There is a need
for the development of markerless motion capture that is easy
for clinicians and biomechanists to implement and apply. The
use of markerless motion capture in a natural sport environment
could allow training and rehabilitation specialists on the field
(such as skill coaches and athletic trainers) to determine if an
athlete is at risk of injury during practice or a game situation.
For example, fatigue during sport performance is associated
with compensatory movement patterns believed to predispose
athletes to an increased risk of injury (Shaw et al., 2008; Small
et al., 2010; De Ste Croix et al., 2015; Schütte et al., 2018). The
implementation of markerless motion capture could index such
fatigue related risk and apply this information to individualized
injury prevention and training protocols.

Telerehabilitation
Telemedicine has emerged over the past century as a means to
extend patient care and provide access to healthcare beyond a
doctor’s office. Broadly, the term telemedicine encompasses a
wide range of telecommunications and information technologies
used to facilitate the access of provider-patient (and provider-
provider) health information, heath care, health education, and
health care-based administrative services (Bashshur, 1995). One
of the components within telemedicine is telerehabilitation—
providing a range of rehabilitative services (therapeutic
intervention, progression monitoring, education) to individuals
without easy access to rehabilitation specialists (Theodoros et al.,
2008) and can provide individualized rehabilitation outside of a
hospital setting, allowing for continuous monitoring of patient
progress. Research into the use of markerless motion capture
systems for telerehabilitation has shown tremendous promise
(Antón et al., 2013, 2016; Vukićević et al., 2015; Eichler et al.,
2019; Steiner et al., 2020). To highlight a few, Antón et al. (2013)
have presented a telerehabilitation system called KiReS (Kinect
Rehabilitation System), a Kinect-based telerehabilitation system
that allows for rehabilitation specialists to record exercises for
a patient to perform and the patient can receive immediate
feedback on their performance of the defined exercise (Antón
et al., 2013). Vukićević et al. (2015) proposed a telerehabilitation
platform based on Internet of things (IoT)—a contemporary
technology aimed at improving healthcare by revamping
classical methods of medical care (Jog et al., 2015)—that utilizes
markerless motion capture to track and detect body movement
(Vukićević et al., 2015). There is currently a gap in the literature
with respect to lower limb telerehabilitation applications, with
the majority of these studies only assessing posture and/or upper
limb motor tasks. This may be due to the fact that current
portable markerless motion capture systems seem to have better

accuracy with detecting upper limb motor tasks over lower
limb motor tasks (Capecci et al., 2016). In addition, despite
the great potential markerless motion capture can have for
telerehabilitation, the transition of telerehabilitation systems
from proof-of-concept application into healthcare solutions
has been challenging. One of the main challenges, highlighted
by Tsiouris et al. (2020), is the lack of interoperability of these
telerehabilitation platforms, beginning with the limited evidence
supporting its efficacy. In order to utilize markerless motion
capture to its full potential in telerehabilitation, a strong focus
on developing advanced analytics for more precise outcomes
and treatment plans in a user-friendly product is needed to
optimize home-based rehabilitation. Markerless motion capture
offers a window into addressing clinical and biomechanical
challenges associated with prevention and recovery, as well as an
opportunity to increase accessibility for patients to high-quality
healthcare from home.

Emerging Technologies
The recent advancements over the past decade in 3D motion
capture technology and the availability of low-cost devices that
afford these capabilities (e.g., Microsoft Kinect) has made the
collection of 3D data more feasible than ever. This increase
in 3D data has encouraged researchers to take advantage
of this richer content and address several computer vision
problems. For instance, the eventual hope of markerless
motion capture is to have real-time 3D reconstructions of
the captured data for clinical application. One of the largest
obstructions technologically to real-time 3D reconstruction
using markerless motion capture is local processing power
capabilities. While the processing power of a computer is
able to handle single camera 2D reconstructions without issue,
tracking movement from multiple video camera streams is
a significant challenge in the computer vision domain. The
processing power bottle neck can be an issue with multicamera
solutions and high-FPS single camera requirements. In both
instances, solving the pose estimation may take place at lower
frame rates than needed, especially when capturing movements
at >90Hz. There are a couple of strong trends, however,
toward technological developments that improve markerless
motion capture performance with either local or remote
processing power.

The first is the push toward improving onboard processing
with computer graphics processing units (GPUs). Historically,
the primary drive for GPU development has been for videogame
applications or animation and graphical rendering (Luebke,
2008; McClanahan, 2010). This makes GPUs ideal for computer
vision applications (Greengard, 2016) and this has helped drive
relevant enhancements in the markerless motion capture space
(e.g., the development of CUDA by NVIDIA in 2007; Sanders
and Kandrot, 2010). This has been accelerated by a number of
secondary market factors, and the rapid evolution of local GPU
performance, including high-end mobile GPUs, will continue
to allow researchers to exploit the possibilities of 3D motion
capture technologies: improving 3D object classification, 3D
object recognition, and 3D shape retrieval (Ioannidou et al., 2017)
on a local device.
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Another alternative is the push for the use of cloud computing
to run computer vision algorithms when limitations in local
processing power do not allow for real-time 3D reconstructions.
Cloud computing development over the past decade has gained
considerable attention and has provided a platform for massive
data processing and data-intensive computing (Lin et al., 2013).
The fundamental concept of cloud computing is that computing
takes place in the “cloud;” i.e., referring to a network of
services accessed over the internet rather than from the local
infrastructure of one system. This reduces the need of purchasing
the physical infrastructure while providing access to data storage,
computing resources, and processing capabilities that would be
otherwise unattainable even with the latest in current physical
technology. Efficient cloud computing requires the availability
of high bandwidth network communication through which
the cloud architecture provides services for large data storage
and large-scale data processing. This is an important step for
markerless motion capture given the computational burden
required for a processing system to detect, recognize, track, and
retrieve 3D data for real-time processing. Companies such as
Microsoft (Microsoft Azure), Amazon (Amazon Web Services,
or AWS), and Google (Google Cloud Computing Services) all
provide cloud services that emphasize machine learning with
strong video-based analysis options. An important benefit of
these services are the reduced storage costs for longer-term
(aka cold) storage (i.e., once videos are processed, they can
be stored long-term if they are only accessed occasionally), as
these large scale platforms have a greater capability to subsidize
storage costs than local or university-wide servers. Alternatively,
one of the current downsides of these cloud platforms is the
potential for ongoing subscription-level service costs associated
with processing time. In addition, these platforms are less user-
friendly to set up and manage for those not familiar with
this technological infrastructure. However, these companies are
working quickly to democratize these platforms and reduce such
barriers. Overall, cloud computing platforms provide an avenue
to improve 3D data processing by allowing for more rapid
processing with less expensive devices, while also facilitating
efficient deployment outside research and development spaces
and to the end-user.

Interdisciplinary Collaborations
The driving force behind the development of markerless motion
capture originates from computer vision and machine learning
fields for character animation, virtual reality, smart surveillance,
and the identification, recognition and tracking of humanmotion
(Wang et al., 2003). That is to say, pose estimation algorithms
were not built around biomechanical analysis or sports in general.
As demonstrated by this manuscript, researchers and clinicians
have expressed the value of such an application to sport or clinical
settings; however, the original applications tried to fit computer-
vision-based human motion analysis to non-optimized settings.
Thus, the earlier pose estimation systems generally do not
have the fidelity necessary for the resolution of motion capture
tracking required for accurate and clinically valid biomechanical
analysis. This has provided and continues to provide a unique
opportunity for biomechanists and rehabilitation scientists to

partner with the field of computer vision to enhance the current
pose estimation solutions to increase the fidelity for the types
of motions that are most pertinent to sports medicine and
performance. Collaborations with computer vision specialists
are critical for the development of biomechanically accurate
algorithms as these professionals would have the expertise to
understand the various pose estimation algorithms and models
that could allow for refinement in accuracy and optimizing
the relevant performance capabilities of these systems. This,
in turn, would afford greater accessibility of these systems to
clinicians and researchers and allow them to focus on their
areas of expertise without concern for algorithmic and hardware-
specific details of the technology itself. Additionally, these
interdisciplinary partnerships are crucial and will continue to
be very important as users of markerless motion capture begin
to face new challenges, such as the organization and storage of
very large video databases, building efficient database structures
for human movement data, processing and reprocessing large
amounts of data, and storing video data as protected health data.
Such an interdisciplinary partnership wouldmake these solutions
more applicable, and may help catalyze meaningful development
in this space.

THREATS

Ethical Challenges
The feasibility of assessing athletes’ movements during a sporting
event or practice has radically advanced in the last decade, and
it is expected to continue to evolve for the foreseeable future.
Along with these technological advances in the sports medicine
domain come ethical considerations that are critical to the use of
technology and the end-users. As the adoption of this technology
increases, scientists and health care providers will face many
challenges related to information privacy and confidentiality.
Specifically, the ethical dilemma becomes the protection and
confidentiality of the information that can be attained through
the 2D video that enablesmarkerlessmotion capture. Researchers
and clinicians must be equipped with the appropriate safeguards
to protect and maintain the storage of video recordings, and the
transmission of images and other patient record information to
avoid privacy violations. It is paramount for the considerations
to be discussed as this technology evolves to ensure that the
personal data collected using markerless motion capture must be
protected from misuse and HIPPA violations. Importantly, a few
of the cloud services discussed in the previous section are well-
equipped to handle these issues through the implementation of
face-filter blurring, and data security practices that meet HIPPA
and, in some cases, national security level approvals. Regardless,
this is an important consideration for those who wish to adopt
and implement this technology.

Data Ownership and Legal Considerations
Along a similar thread as the foreseeable ethical challenges
mentioned above, as these systems become more widely used in
sports settings, the legal considerations surrounding ownership
of the data obtained from markerless motion capture technology
should be examined. In the United States, while a few states have
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state regulations regarding biometric privacy [e.g., California:
California Consumer Privacy Act (CCPA) and the California
Privacy Rights Act (CPRA); New York: Stop Hacks and Improve
Electronic Data Security (SHIELD) Act; Illinois: Biometric
Information Privacy Act (BIPA)], there is no comprehensive
federal law regulating the collection and use of biometric data.
The EuropeanUnion and the United Kingdom have done a better
job with the regulations they have in place (for more detail,
see Tikkinen-Piri et al., 2018), however, as markerless motion
capture becomes feasible and applied in sports, the issue of data
ownership will be a challenging hurdle. Because this information
holds considerable interest to teams and stakeholders, this is a
particularly relevant threat to collegiate and professional athletes.
The collection of such data raises unprecedented concerns
surrounding confidentiality and data privacy, raising important
questions such as who owns the data, who has access to that data,
and howwill this information impact an athlete’s career (Karkazis
and Fishman, 2017).

Acceptance by Sports Medicine
Researchers
From a researcher perspective the cost of these systems can
prove quite economical, but the current computational burden
and expense for biomechanically accurate markerless motion
capture may be a deterrent for biomechanists. The priority
for technological progression at this moment is in the honing
of algorithmic techniques for markerless motion capture to
enhance pose estimation accuracy at a resolution that enables the
detection of subtle variations required by many biomechanical
applications. This requires buy-in from the field of computer
vision and sports medicine to see the potential of this application
and begin those collaborations mentioned in the “Opportunities”
section. Markerless motion capture is the future for human
movement analysis; however, the speed at which we get there
is strongly dependent on interprofessional collaboration and
investment into the research and development that integrates
biomechanical accuracy and pose estimation algorithms.

Challenging Error Sources and the
Potential for Misuse
One of the advancements that come with markerless motion
capture systems is the elimination of soft tissue artifacts and
errors due to marker placement found when using marker-based
systems (Mündermann et al., 2006b). However, the caveat is that
measurement errors in markerless data are more challenging
to detect, discern, and study than those from marker-based
systems. The accuracy of the machine learning algorithms is
decisively determined by the choice of the underlying model
as to its accuracy to functional movement (Begon et al., 2018).
This includes biases that arise from training datasets, and other
unknown biases due to the “black box” nature of machine
learning algorithms (Mathis et al., 2020). Additionally, with the
reduced cost and increased accessibility of markerless motion
capture, it allows biomechanical data to be obtained, used, and
interpreted by users with insufficient technical backgrounds.
The lack of an adequate understanding, skill, and experience

in biomechanics could propagate to errors in the reporting of
kinematics and kinetics potentially leading to biomechanical data
and findings that lack proper scientific rigor.

Clinical Cost/Benefit
While the research findings of markerless motion capture
offers several benefits for adoption into rehabilitative and
preventative programs, these systems first must prove their value
to rehabilitation specialists for adoption into everyday practice.
Specifically, cost- and time-effective movement assessments are
ideal so that clinicians can quickly and accurately identify
movements that place an individual at a greater risk of injury
or that impede recovery progress. While several existing camera
and camera-like devices provide a cost-effective component
of markerless motion capture, the concern comes with time
efficiency of these devices in the set-up, acquisition and
dissemination of movement information. The development of
applications that allow clinicians to use markerless motion
capture for specific movement assessments would prove quite
beneficial and encourage the initial adoption of these systems.
For instance, Mauntel et al. (2017) applied markerless motion
capture technology to automate scoring of the LESS, a tool used
to identify individuals at risk of lower extremity injury. Such an
application was observed to reliably assess the LESS as expert
raters and reduce the time requirements of a clinician conducting
this assessment (Mauntel et al., 2017). However, the paucity of
studies similar to this one limits the current understanding of
clinical costs and benefits and, at present, negatively impacts
mainstream markerless motion capture adoption.

LIMITATIONS

The purpose of this SWOT analysis was to provide clarity
surrounding the currently available markerless motion capture
approaches and identify specific areas for future development for
this technology with regards to lower extremity biomechanical
assessments in sports. However, this review is not without
limitations that should be considered. First, as was previously
mentioned, SWOT analyses are often criticized for their
subjectivity (Pickton and Wright, 1998). However, the SWOT-
analysis was developed as a tool for strategic analysis, as such,
each factor within this review has been thoroughly reviewed
by each author. A second consideration lies within the current
subject matter—markerless motion capture and its related
technologies is an active area of research that progresses rapidly,
thus devices and their implementation techniques can quickly
become outdated. In a similar thread, there are markerless
systems that have been developed that have yet been evaluated
for biomechanical accuracy (e.g., the Intel3D athlete system).
Therefore, while this review is based on the current technologies
to date, this is an important consideration. Finally, the discussion
of this review is limited to those included within the inclusion
criteria framework implemented. There may be additional
markerless systems available or in development that were missed
based on the scope of the current review.
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SUMMARY

Markerless motion capture systems show considerable promise
for enhancing our understanding of human movement, and
specifically providing unrestricted movement assessments in
natural sport contexts. The emergent theme from this SWOT
analysis is that despite nearly 20 years of development and
discussion, markerless motion capture is still in its development
stage for full application to the field of sports medicine.
The success of several variants of system configurations and
the encouraging initial results as well as clinical applications
serve as the foundation for the future of biomechanically
accurate markerless motion capture. Certain limitations still
exist regarding accuracy, however these do not threaten the
viability of this technology when considering the opportunities
that this technology provides in the long run. The existing
threats are not catastrophic as they are addressable and serve
to provide valuable insight as markerless motion capture
continues to develop. With thoughtful system design grounded
in multidisciplinary collaborations, markerless motion capture
will develop accurate clinical and research applications to
expand current motion capture capabilities as well as its reach.

The trajectory of this technology is positive and the future
remains bright.
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