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A need for speed: Objectively
identifying full-body kinematic
and neuromuscular features
associated with faster sprint
velocities
Chris L. Vellucci and Shawn M. Beaudette*

Spine Biomechanics and Neuromuscular Control Lab, Faculty of Applied Health Sciences, Brock
University, St. Catharines, ON, Canada

Sprinting is multifactorial and dependent on a variety of kinematic, kinetic, and
neuromuscular features. A key objective in sprinting is covering a set amount of
distance in the shortest amount of time. To achieve this, sprinters are required
to coordinate their entire body to achieve a fast sprint velocity. This suggests
that a whole-body kinematic and neuromuscular coordinative strategy exists
which is associated with improved sprint performance. The purpose of this
study was to leverage inertial measurement units (IMUs) and wireless surface
electromyography (sEMG) to find coordinative strategies associated with
peak over-ground sprint velocity using machine learning. We recruited 40
healthy university age sprint-based athletes from a variety of athletic
backgrounds. IMU and sEMG data were used as inputs into a principal
components analysis (PCA) to observe major modes of variation (i.e., PC
scores). PC scores were then used as inputs into a stepwise multivariate
linear regression model to derive associations of each mode of variation with
peak sprint velocity. Both the kinematic (R2= 0.795) and sEMG data (R2=
0.586) produced significant multivariate linear regression models. The PCs
that were selected as inputs into the multivariate linear regression model
were reconstructed using multi-component reconstruction to produce a
representation of the whole-body movement pattern and changes in the
sEMG waveform associated with faster sprint velocities. The findings of this
work suggest that distinct features are associated with faster sprint velocity.
These include the timing of the contralateral arm and leg swing, stance leg
kinematics, dynamic trunk extension at toe-off, asymmetry between the right
and left swing side leg and a phase shift feature of the posterior chain
musculature. These results demonstrate the utility of data-driven frameworks
in identifying different coordinative features that are associated with a
movement outcome. Using our framework, coaches and biomechanists can
make decisions based on objective movement information, which can
ultimately improve an athlete’s performance.
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Introduction

Sprint performance is reliant on a variety of kinematic,

kinetic, and neuromuscular features which require an athlete

to coordinate their upper and lower body to achieve a faster

sprint velocity. This suggests that whole-body kinematic and

neuromuscular coordinative strategies may exist which are

associated with improved sprint performance. Despite this,

many studies have assessed specific sub-regions of the body

and have selected discrete parameters a-priori for statistical

analysis. For example, many studies compare differences in

muscle activation or changes in range of motion of a joint at

a specific time point such as toe-off or touchdown (1–5).

Such studies disregard aspects of whole body coordination

which suggest that intricate multi-segment coordination is

required to complete a motor task (6). Further, these

approaches have led to researchers traditionally focusing on

the biomechanics of the lower extremity when assessing sprint

performance, resulting in a reduced emphasis on the

mechanics of the upper extremities and trunk. However, as

sprinting is a complex whole-body movement, it is unlikely

that the lower extremity biomechanics alone are associated

with faster sprint velocities. Thus, there is a need for a

comprehensive and holistic understanding of the multi-

segment whole-body dynamics associated with faster sprint

velocities.

At its simplest, sprint velocity is the by-product of the

interaction between stride length and stride rate (7). Stride

length and stride rate are mutually dependent variables with

an inverse relationship. To accomplish a faster sprint velocity,

one must either rely on an increase in stride length or stride

rate. These features have been reported to be influenced by a

variety of different factors. For instance, stride length appears

to be positively influenced by explosive strength, muscle mass,

lower extremity length, biological sex, ground reaction force,

ground contact duration, and dynamic flexibility of the hips

(7–11). Comparatively, stride rate appears to be influenced by

rate of force development which can be affected by motor

neuron excitability, inter- and intramuscular coordination,

fatigue, horizontal velocity of the COM during stance, leg

angle touch down, leg angle at take-off, and leg length (7, 8).

To facilitate proper multi-segment coordination, sprinting

requires the proper sequencing and timing of various muscles

to effectively optimize sprint technique. During sprinting the

CNS coordinates the activation and relaxation of various

muscles in a rhythmic nature. This requires the use of a pre-

set motor program which is refined through the integration of

sensory information from systems such as the visual,

proprioceptive, and vestibular systems (12). It’s previously

been shown that sprinters undergo a dynamic control strategy

that shifts from ankle dominant to hip dominant strategy

when velocities exceed 7.0 m/s. This demonstrates that
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intricate changes occur in the lower extremity which are

associated with faster sprint velocities. What remains

unknown is how the musculature of the trunk, specifically

those that attach to the thoracolumbar fascia, display timing

and magnitude differences as a function of sprint velocity.

This is particularly relevant, as a strong theoretical foundation

exists that suggests these muscles play an important role in

the pendulum like action of the contralateral arm and leg

swing during locomotion and may be particularly important

during faster sprint velocities (13–15).

To optimize an individual’s sprint performance a coach

must manipulate an individual’s whole-body coordinative

strategy to improve sprint velocity. This requires the coach to

identify key movement features associated with improved

sprint performance using their coaching eye, which lacks the

objectivity and sensitivity to truly optimize an individual’s

health and performance. Recently, the objective quantification

of movement technique has grown in popularity. This is

largely due to the pressure on the biomechanical community

to create an objective framework that can be used to help

provide objective insights into how to optimize an individual’s

movement technique to improve a performance outcome (16).

A PCA-based framework has previously been used to create a

discriminative model to quantify the effect age, body mass

index, biological sex and emotion has on human walking.

Further, this framework has since been adapted to model

differences in ski technique and classify athletes as novice or

advanced (17, 18). One of the main benefits of PCA in

biomechanics is its ability to provide easily interpretable

models using single component reconstruction (SCR) (19).

Using SCR, a full-body avatar can be reconstructed to provide

athletes and coaches with an easy-to-use technique to

communicate key technical differences between individuals

and/or to provide longitudinal feedback to an athlete or coach.
Purpose

The purpose of this research is to leverage wearable sensor

technology and data-driven tools to objectively assess the

kinematic and neuromuscular determinants of over-ground

sprint velocity through the analysis of a large dataset of

university-aged sprinters. This hypothesis-generating study

will serve as the foundation for future work related to the

development of customizable data-driven sprint coaching

tools to discriminate along biomechanically relevant axes of

ability performance ability and rehabilitation status.
Hypothesis statement

It was hypothesized that several distinct kinematic and

neuromuscular features would be present as significant
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contributors to the prediction of sprint velocity. These expected

discriminative features included differences in the

spatiotemporal coordinative strategy of the thorax and pelvis,

and the timing and activation of the muscles attached to the

thoracolumbar fascia.
Materials and methods

Participants

41 participants (27 male, 14 females; mean ± standard

deviation age: 21.8 ± 3.2 years; height: 176.8 ± 8.4 cm) from a

variety of team sports and track and field events were

recruited for this study. Demographic information is

presented in Table 1. One participant was removed from the

sample due to issues with data quality. Participants were

required to be recreationally active at least twice a week in a

sprint-based sport. Participants must not have reported any

neurological, cardiovascular, or muscular disorders that may

impact their sprint performance and have no known allergies

to rubbing alcohol or adhesives. The current protocol was

approved by the institutional research ethics board in

accordance with the Canadian Tri-Council Policy Statement

(TCPS 2) on the Ethical Conduct for Research Involving

Humans.
Experimental protocol

Each participant completed a single experimental visit

lasting approximately two hours. All participants were

instrumented with two types of wearable sensors. Full-body

kinematics were collected using a 17-sensor IMU suit, and

sEMG were recorded using wireless sensors. IMU sensors

(XSens, Awinda) were placed bilaterally on the feet, shank,

thigh, upper arm, forearm, hands, and shoulders, with single

sensors placed on the sternum, pelvis, and head. All

equipment was placed and calibrated as per manufacturer

instructions. All kinematic data were acquired at a frequency

of 60 Hz. Muscle activation was recorded for nine muscles

located from the lower body to upper body. Bipolar surface
TABLE 1 Mean ± SEM participant demographics.

Demographic Sample size Age

Rugby 6 21 ± 2.5

Sprinting 4 20 ± 1.8

Soccer 15 21.9 ± 3.7

Ice Hockey 7 22.3 ± 3.0

Other 8 23 ± 3.0
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electrodes and sensors (Noraxon, Ultium) were placed

according to SENIAM guidelines on the right lateral

gastrocnemius (GAS), right biceps femoris (BF), right gluteus

maximus (GMAX), right gluteus medius (GMED), right

vastus lateralis (VLO), right rectus femoris (RF), left lumbar

erector spinae (LES), left latissimus dorsi (LD), and left

external obliques (EO). All sEMG data were acquired at a

frequency of 2000Hz. For a visual overview of the

experimental setup please refer to Figure 1.

Following instrumentation, the participant underwent a

self-directed warm-up for 5 min. Once the participant

completed the warmup, they then completed three 60 m over-

ground sprints on synthetic track, each separated by a period

of at least 5 min of passive rest to avoid any influence of

neuromuscular fatigue. During these over-ground sprints, 3D

whole-body kinematics and neuromuscular activity were

recorded simultaneously. The trial with the fastest peak sprint

velocity achieved was selected and used for all further analyses.
Kinematic data analysis

3D kinematic data were high definition (HD) reprocessed

using XSens MVN Analyze software and a 64-marker point-

cloud was exported into a .c3d file. The .c3d file was imported

into MATLAB (2021b) using Biomechanical Tool Kit 5 (20).

The origin of the coordinate system for the imported data was

reset so that the x, y, z positions of the right ankle at the

beginning of the sprinting trial represented the origin. To

correct positional drift during the sprinting trials, PCA was

used to re-align the global coordinate system (GCS) of all

sprinting trials to ensure that all positional data were aligned

across all sprints, and for all participants. Specifically, PCA

was used to obtain the three highest 3D components of

variation in the XYZ, 64-marker dataset, across all timepoints,

for each sprint. Next, 3D rotations were computed between

each 3D loading vector and the original global coordinates to

derive a 3D rotational offset. Once obtained, this rotational

offset was applied to all markers such that the new x-axis

corresponded to the axis of progression (i.e., PC1), the new y-

axis corresponded to the mediolateral axis (i.e., PC2), and the

new z-axis corresponded to the vertical axis (i.e., PC3) for
Male Female Height

4 2 178 ± 20.5

3 1 175 ± 14.2

10 5 174.6 ± 3.7

3 4 178.0 ± 9.4

8 0 180.4 ± 4.1
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FIGURE 1

An example of the IMU and sEMG setup on the participant.
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each participant/sprint. This allowed 3D coordinate data for all

participants and sprints to be registered to the same 3D

coordinate axes prior to further analyses, while also offsetting

any effects of IMU sensor drift, or GCS misalignment (during

calibration) with respect to the axis of sprint progression.

Once all data were realigned, all data were cropped to only

include 60 m of sprinting. This was done by determining the

frame which the x-position of the T8 marker reached 60 m.

Following 3D point cloud registration, sprint velocity during

the 60 m sprint was calculated by first calculating the Euclidean

norm of the T8 marker and then calculating its first derivative.

The magnitude and point of the maximal velocity was then

identified, which was used to inform the selection of the five

cycles (about peak velocity) used for our analysis. To facilitate

the segmentation of individual cycles, the local minima of the

z-position of the right ankle marker was used. After five

separate strides were partitioned, they were then each time

normalized to 101 frames using a polynomial spline function

and subsequently de-biased by subtracting the location of the

T12 marker (x, y, z) from all 64 markers in the dataset. This

was done to ensure that there was no forward progression of

the sprinter, thereby removing any effects of forward

progression on the assessment of spatiotemporal coordination.

After stride segmentation, time-normalization, and bias

removal, the five strides about maximal velocity were then

ensemble averaged, and subsequently scaled by dividing each

participants height and reshaped to a 1 × 19,392 (64 markers *

3 axes * 101 data points) vector. The 1 × 19,392 vector for

each participant (representing an average stride about peak

velocity during the fastest sprinting trial) was then used to
Frontiers in Sports and Active Living 04
construct a PCA matrix, where each row represented a

participant, and each column represented the time-varying

series of the x, y, and z position of each marker. The result

was a 40 × 19,392 data matrix (40 participants * 64 markers *

3 axes * 101 data points) which was used as an input for the

PCA (Equation 1).

M1 x; y; zð Þ1
1�101

M2 x; y; zð Þ1
1�101

M3 x; y; zð Þ1
0�101

M1 x; y; zð Þ2
1�101

M2 x; y; zð Þ2
1�101

M3 x; y; zð Þ2
1�101

M1 x; y; zð Þn
1�101

M2 x; y; zð Þn
1�101

M3 x; y; zð Þn
1�101

2
64

�
M4 x; y; zð Þ1

1�101
. . . M64 x; y; zð Þ1

1�101

M4 x; y; zð Þ2
1�101

. . . M64 x; y; zð Þ2
1�101

M4 x; y; zð Þn
1�101

. . . M64 x; y; zð Þn
1�101

3
75 (1)

A visual depiction of the analytical steps taken in the

processing of any raw kinematic data is depicted in Figure 2.
sEMG data analysis

Raw sEMG data were imported into MATLAB (2021b). All

sEMG data were full wave rectified and low pass filtered using a

dual pass 2nd order Butterworth filter with a cut-off of 250 Hz.

The filter cut-off was determined using a residual analysis (See

Supplementary Figure S1 and Table S1) (21). The filtered data

were amplitude normalized by averaging the maximum of the

three highest peaks in the first 20 m of the sprint. It has been

suggested that this technique may be superior over
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https://doi.org/10.3389/fspor.2022.1094163
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 2

Summary of experimental workflow for both the kinematic and sEMG data set. A similar process was complete for both kinematic and sEMG data to
create two different PCA frameworks.
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normalization to maximum voluntary isometric contraction

(MVIC) due to the sEMG values being obtained in similar

neural condition (i.e., dynamic sprinting) as MVICs fail to

reflect the neural drive in dynamic high velocity contractions

and can create challenges in interpretation (22). Following

amplitude normalization, the analyses of the sEMG signals

mirrored the approach taken for the kinematic data. The

normalized sEMG data was then partitioned into five cycles

and time normalized using a polynomial function to 2000

data points. These cycles were selected about the point of

maximal velocity. The data was then reshaped to a 1 × 18,000

vector (9 sEMG channels * 2000 data points). Each

participant’s vector was then complied into a 40 × 18,000 data

matrix which was used as an input for the PCA (Equation 2).

EMG11
1�2000

EMG21
1�2000

EMG31
0�2000

EMG12
1�2000

EMG22
1�2000

EMG32
1�2000

EMG1n
1�2000

EMG2n
1�2000

EMG3n
1�2000

2
4

EMG41
1�2000

. . . EMG91
1�2000

EMG42
1�2000

. . . EMG92
1�2000

EMG4n
1�2000

. . . EMG9n
1�2000

3
5

(2)

Feature selection and regression analysis

Following the application of the PCA to the kinematic and

sEMG data matrices, PCs that explained >95% of the variance in

the dataset were retained for further analysis. Simple linear

regressions were performed on the PC scores against maximal

sprint velocity (m/s). After it was determined that multiple

PCs had weak-to-moderate correlations with sprint velocity, a

stepwise multivariate linear regression analysis was completed.

Dependent variables for the kinematic and sEMG stepwise

regression models included age, sex, height, and the retained

PCs for each model (i.e., kinematic and sEMG). The stepwise

linear regression function used both forward and backward

stepwise search mode. The stepwise regression had a tolerance

criterion of p > 0.10. If the variable added had p-values that
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exceeded the exit tolerance, then the variable with the largest

p-value was removed. Any PC variables that were determined

to be significant contributors to the kinematic and sEMG

stepwise linear regression model were subsequently

reconstructed using single (i.e., SCR) and multicomponent

component reconstruction (MCR). Specifically, SCR and MCR

were used to reconstruct an upper and lower limit that

provides insight into functional meaning of each PC included

within the multivariate linear regression models. SCR provide

a functional interpretation of the biomechanical meaning of

each PC by representing how each feature is scaled an

individual PC (i.e., Equations 3, 4). MCR (i.e., Equations 5, 6)

was implemented to understand how all the PCs included in

our stepwise potentially interacted in the representation of

sprint performance. This provided a more holistic insight into

the scaling of features that are represented in the stepwise

linear regression models.

x̂U ¼ �x þ uR � z95 (3)

x̂L ¼ �x þ uR � z05 (4)

x̂U ¼ �x þ u1 � z95 þ u2 � z95 þ u3 � z95

þ . . . un � z95 (5)

x̂L ¼ �x þ u1 � z05 þ u2 � z05 þ u3 � z05

þ . . . un � z05 (6)

Results

The mean peak velocity during the 60 m sprint was 7.94 ±

0.69 m/s (males = 8.13 ± 0.58, females = 7.24 ± 0.56)

(Figures 3A,B, 4A,B).
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Principal component analysis and linear
regression (kinematics)

In the assessment of the kinematic data, the first 21 PCs

were retained, which explained a cumulative variance of

95.4% in the kinematic dataset (Figure 5A). Stepwise

linear regression revealed that PC 1 (p = 0.0002), PC 3

(p = 0.0119), PC 9 (p = 0.0055), PC 11 (p = 0. 0066), PC 12

(p = 0.0772), PC 13 (p = 0.0130), PC 16 (p = 0.00004) and

biological sex (p = 0.0255) were significantly associated with

the dependent variable, which was maximal horizontal

sprint velocity. The linear regression model displayed a

R2 = 0.795 with a root mean squared error (RMSE) = 0.351,

and p-value <0.0001. A summary of the model can be

found in Table 2.

Y ¼ PC 1þ PC 3þ PC 9þ PC 11þ PC 12þ PC 13

þ PC 16þ SEX (7)

Principal component analysis and linear
regression (electromyography)

In the assessment of the sEMG data, the first 33 PCs were

retained, which explained a cumulative 95.7% of the variance

in the sEMG data set (Figure 5B). Individually, these PCs
FIGURE 3

(A) the distribution of peak sprint velocities for both males and females. (B) T
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displayed a weak-moderate linear correlation with sprint

velocity (R = 0.01–0.33), as with the kinematic data, this

suggested that there are multiple neuromuscular factors that

influence peak sprint velocity. Stepwise linear regression

revealed that PC 1 (p = 0.011), PC 5 (p = 0.019), PC 21

(p = 0.016), PC 22 (p = 0.105) and sex (p = 0.0001) were

significantly associated with the dependent variable, which

was maximal horizontal sprint velocity. The linear regression

model displayed an R2 = 0.586 with a RMSE = 0.444, p-

value = 1.64e-05. A summary of this model is presented in

Table 3.

Y ¼ PC 1þ PC 5þ PC 21þ PC 22þ SEX (8)

Functional interpretation of
kinematic PCs

A summary of the biomechanical meaning of each

individual PC, as obtained via SCR, can be found in Table 4,

and a detailed analysis of each PC is presented in the

Supplementary Figures (S2–S8). MCR was completed using

PC 1, 3, 9, 11, 12 and 15, together these PCs represent 42.7%

of the total variance in our data set.

Reconstructed motion data using MCR allowed

visualization of the differences between a slow sprint
he mean sprint velocity for Male, female, and all participants.
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FIGURE 4

(A) the velocity profile of the fastest sprinter (dark blue), slowest sprinter (light blue) and median sprinter (grey) for the entire 60 m. Peak velocity is
represented by the orange dot on each velocity profile. (B) The mean and standard deviation velocity profile over the 60 m sprint and the mean and
standard deviation of the position of the maximal velocity.
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velocity and a fast sprint velocity. For example, during the

gait cycle fast sprint velocity MCR displayed better

coordination between the upper and lower body (Figure 6).

Specifically, this was noted with a more in-phase

contralateral arm and leg swing during touch down and toe
Frontiers in Sports and Active Living 07
off, a dynamic trunk extension at toe off. Additionally, the

fast sprint velocity MCR revealed a faster knee drive, higher

heel recovery, asymmetrical leg swing, less horizontal head

acceleration and an earlier onset of thoracic rotation,

amongst others (Figures 6A–C).
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FIGURE 5

(A) scree plot for principal components derived from kinematic data,
(B) scree plot for principal components derived from sEMG data.

TABLE 3 Description of sEMG stepwise linear regression model.

Feature Estimate SE t Statistic p-value

(Intercept) 7.306 0.154 47.306 <0.0001

PC 1 −0.0008 0.0002 −3.105 0.0107

PC 5 −0.001 0.0004 −2.873 0.0189

PC 21 −0.0018 0.0007 −2.535 0.016

PC 22 0.002 0.0008 2.709 0.105

Sex 0.703 0.162 4.342 0.0001

TABLE 4 Summary of explained variance and biomechanical
interpretation for PCs retained from the kinematic dataset.

PC Explained
Variance (%)

Biomechanical Interpretation

1 25.2 Timing and sequencing of the contralateral

Vellucci and Beaudette 10.3389/fspor.2022.1094163
Interpretation of electromyography PCs

A summary of the biomechanical meaning of each PC can

be seen in Table 5, and a detailed description is presented in

the Supplementary Figures (S9–S12). MCR was completed
TABLE 2 Description of kinematic stepwise linear regression model.

Feature Estimate SE t Statistic p-value

(Intercept) 7.6141 0.13203 57.6 <0.0001

PC 1 −0.0002 <0.0001 −4.23 0.0002

PC 3 −0.0001 −2.6740 −2.67 0.0119

PC 9 −0.0003 −2.9866 −2.99 0.0055

PC 11 −0.0003 −2.9122 −2.92 0.0066

PC 12 0.0002 0.0001 1.83 0.0772

PC 13 0.0003 0.0001 2.64 0.0130

PC 16 0.0007 0.0002 4.73 <0.0001

Sex 0.3877 0.16523 2.35 0.02551
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using PC 1, 5, 21 and 22 together these PCs represented

21.9% of the total variance in our data set. MCR revelated

that PCs scaled the GAS, GMAX, LD, EO, VLO and RF as a

difference feature (Figure 7).

Reconstructed sEMG waveforms using MCR allowed for

the visualization of the difference between slow and fast

sprint velocities. Faster sprint velocities were associated

with greater activation of the BF earlier in the gait cycle,

an earlier peak magnitude of the LES, greater of the GAS

prior to touchdown, greater activation of the GMAX during

the swing phase and less during the stance phase, greater

activation of the LD during the stance phase and less

during the swing phase, greater EO activation throughout

the entire gait cycle, less VLO activation during the stance

phase and greater activation during the swing phase, less

activation of the RF during the early swing phase, greater

GMED activation during the late stance and swing phase

(Figure 7).
upper body mechanics relative to the lower
body mechanics

3 10.3 Height of heel recovery
Horizontal acceleration of head

Range of motion of the elbow, shoulder, and
spine

9 2.7 Transverse plane asymmetry of the lower
limb during the swing phase and horizontal

head acceleration

11 1.7 Trunk inclination across the entire gait cycle

12 1.7 Transverse plane asymmetry of the lower
limb during the stance and early swing phase

and dynamic trunk extension

13 1.7 Trunk inclination and frontal plane shoulder
range of motion

16 1.1 Mid stance heel width
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FIGURE 6

Multi-component reconstruction of PCs 1, 3, 9, 11, 12 and 6 derived from kinematic data. (A) Sagittal plane view; (B) Frontal plane view and (C)
Transverse plane view. The red avatar represents the 5th percentile (slow), black represents the mean and blue represents the 95th percentile (fast).
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Discussion

This study aimed to identify key neuromuscular and

kinematic determinants of peak horizontal sprint velocity in a

large group of university-aged athletes. After collecting full-
Frontiers in Sports and Active Living 09
body kinematics and nine channels of sEMG on a large

heterogeneous group (n = 40) of sprint-based athletes, PCA was

used as a data reduction strategy for the kinematic and sEMG

data sets separately. The retained PCs, biological sex, height,

and age were used as independent variables into stepwise linear
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TABLE 5 Summary of explained variance and biomechanical
interpretation for PCs retained from the EMG dataset.

PC Explained
Variance (%)

Biomechanical Interpretation

1 13.1 Phase shift feature for the musculature of the
posterior chain

Magnitude scaler for EO
Difference feature for VLO and RF

5 5.9% Difference features for the GAS, GMED, LD,
EO, VLO, RF and GMAX

21 1.5% No biomechanical meaning

22 1.4% No biomechanical meaning
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regression to find a correlation with peak sprint velocity.

Significant multivariate regression models were generated for

both kinematic (R2= 0.795) and sEMG (R2= 0.586) features

identified using the retained PCs and biological sex.
Sprinting kinematics

The features derived from the kinematic data set

outperformed those from sEMG data set in the association
FIGURE 7

Multi-component reconstruction for PCs 1, 5, 21 and 22 derived from the sEM
VLO, (I) RF. Blue represents the 95th percentile sprinter (fast), Red represents t
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with peak sprint velocity, as noted by a higher R2 value in the

multivariate regression derived from kinematic features. This

discrepancy may exist due to a number of complimentary

factors. (1) The kinematic data set consists of fewer PCs to

explain >95% of the variance in the data set, compared to the

sEMG data set. It is possible that this is linked with the

stochastic nature of sEMG signal. (2) The kinematic data set

consists of a more complete data set, as it included the time

varying position of 64 markers, which defined the position of

all joints and segments in the body. While in contrast, the

sEMG data set consisted of the time-varying activation

patterns of only 9 muscles, spanning across the contralateral

lower body and upper body. (3) Dynamic sEMG has several

limitations due to the biophysics of the signal. For instance,

the sensor is attached to a muscle, which displays viscoelastic

properties, which can result in a non-uniform shape

throughout a dynamic movement such as sprinting. This

means the signal is susceptible to inconsistent pick-up volume

and motion artifact, which results in physiologically irrelevant

variance and can reduce the predictive power of a data set.

(4) The human movement system is a complex system that is

constructed through the interaction of many different

subsystems, sEMG provides information on the

neuromuscular activity of a muscle, however this is only one

subsystem that may influence sprint performance. Specifically,
G for (A) GAS, (B) BF, (C) GMAX, (D) GMED, (E) LES, (F) LD, (G) EO, (H)
he 5th percentile sprinter (slow), and grey represents the stance phase.
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sEMG signals do not capture any potential contributions of

passive tissues (i.e., thoracolumbar fascia) which may affect

the performance of a sprinter. In contrast, kinematic data

represents human movement on a macroscopic level, which

allows for the behaviour of all-sub-systems (i.e., passive,

active, neural) to be analyzed. This may allow for kinematic

data to be a better predictor of sprint velocity, since the data

collected are a more holistic evaluation of the behaviour of

the human movement system.

To improve sprint performance, an athlete must optimize the

coordination of their entire body, to achieve peak horizontal

sprint velocity. To do this the sprinter must absorb and then

produce force during the stance phase. An effective transition

between the two phases of the stance phase minimizes time on

the ground and maximizes forward acceleration of the centre of

mass. During the early stance phase, it has been shown that

faster sprinters produce a larger amount of vertical ground

reaction force. Previously, it has been shown the increased body

mass (11) and hip angular velocity (23) appear to aid in the

generation of vertical ground reaction force. Further, another

important characteristic of increased force production may be

the total sum of downward acceleration represented at the

center of mass. Thus, it is possible that the timing of the

contralateral arm and leg swing may also impact the total

amount of vertical ground reaction force during the early stance

phase, as it is possible that by optimizing the relationship

between the upper and lower body there could be a force

summation effect that is driven by the additional acceleration of

the upper body. In reviewing the kinematic features, PC 1 and

PC 3 demonstrated differences in the timing and magnitude of

the arm swing. PC 1 represented differences in the timing of

the arm swing, relative to the lower leg swing, meanwhile PC 3

represented differences in the timing of the arm swing. These

differences also exist in the MCR which demonstrated a greater

in-phase coordination between the contralateral arm and leg

swing. Specifically, during tough down it can be seen that as the

foot attacks the ground, the contralateral arm completes a

downward motion that better aligns with foot strike in faster

sprinters. It is possible that this may have a summative effect

on the ground reaction force characteristics as the acceleration

of the arm swing can be utilized to create a high ground

reaction force, and in turn sprint velocity.

Vertical take-off velocity at toe-off has been shown to be

associated with sprint velocity, through an increase in stride

length (7). Similar to the early stance phase coordination

between the upper and lower body, a similar effect was

observed at toe-off in the visual appraisal of the MCR. During

toe-off it was observed that as the stance side leg pushes off

the ground, the contralateral arm swings upwards to aide in

the projection of the centre of mass. This may also have a

summative effect on centre of mass dynamics, where the

acceleration generated from the upward arm swing can lead

to an increase in vertical take-off velocity, increase stride
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length and thus improve sprint velocity. Although the relative

timing of the contralateral arm and leg swing has not been

studied in isolation, it has been shown that the arm swing can

play an important role in the generation of greater vertical

impulse (24), stride length (25) and horizontal velocity (25).

Vertical take-off velocity may be further enhanced by the

dynamic trunk extension we noticed in PCs 1, 3, 12 and our

MCR. Specifically, we observed that the extension of the trunk

occurred about toe-off, which suggests that this may aid in

generating vertical take-off velocity. While this is the first

study to our knowledge that has established a link between

trunk coordination and sprint velocity, it is worth noting that

some work has been done in this area and has shown positive

correlations between a smaller inclination angle of the thorax

and sprint velocity (4).

Ultimately, what goes up must come down, and in sprinting

the forces associated with ground contact are estimated to be up

to 5× the person’s body weight (26). As a result, force

attenuation is a key component in the skill of sprinting.

Previously it has been shown that running can disrupt

information to the vestibular and visual system (27) which

can ultimately change an individual’s full body coordinative

strategy during running (28). Force attenuation during

sprinting presents an interesting challenge to the CNS, as it is

thought that knee flexion plays a large role in force

attenuation during sub-maximal running (29). However, in

sprinting knee flexion is minimized to facilitate increases in

sprint velocity (7) which suggests that other joints and

segments must be optimized to attenuate force. Interestingly,

the data presented here corroborate some of these

observations. As the movements associated with faster sprint

velocities minimize the acceleration of the head by keeping it

horizontal throughout the sprint. Interestingly, the horizontal

tilting of the head on the slower MCR occurs asymmetrically,

which also mirrors the asymmetry seen in the lower limb.

Specifically, a more internally rotated trunk and pelvis and an

arm swing away from the body was observed. It appears that

these strategies may allow for the acceleration of the head to

remain more constant, which has been previously reported as

a compensatory strategy to attenuate force during running

and walking (28, 30–32). While this is largely speculative at

this point, these findings do warrant further investigation into

whether these strategies are associated with the minimization

of horizontal head acceleration.

The findings from our study suggest that a variety of key

coordinative features are associated with improved sprint

velocity. Specifically, the findings demonstrate that improved

coordination between the upper and lower body may be

related to the optimal force production strategies associated

with improved sprint velocity (33, 26). Future work in this

area should validate these assumptions by understanding the

link between the contralateral arm and leg swing, and the

dynamic trunk extension strategy demonstrated here and its
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impact into well-known biomechanical determinants of sprint

performance. This includes determinants such as high vertical

ground reaction forces during the early stance phase (26),

direction of the ground reaction force (33), stride length (7)

and stride rate (7).
Sprinting electromyography

Although the predictive capacity of the sEMG data set was

inferior to that observed from the kinematic data, several novel

findings were observed. Specifically, PC 1 displayed a systematic

phase shift feature in the posterior muscles that attach to the

thoracolumbar fascia (Supplementary Figure S9). This

systematic shift in the activation of the posterior musculature

to later in the gait cycle may serve to maximize the

acceleration of the lower leg during touch-down. Previous

work by Clark and colleagues (2020) has shown that the

angular kinematics of the thigh and ankle are closely related.

This close relationship was proposed to be advantageous

because the velocity gained from the hip was transferred to

the shank at impact. This increase in foot velocity at touch

down can be advantageous as it has been shown to create a

larger vertical ground reaction force (23), which has been

demonstrated to be differentiator between sprinters and non-

sprinters (26). To our knowledge, this is the first study to

evaluate the impact the muscles that attach to the

thoracolumbar fascia have on sprint performance. These

preliminary findings along with a strong theoretical

foundation warrant further exploration into the role the

coordination of these muscles have on sprint performance.

Specifically, future studies should aim to understand the

significance of this pattern by these muscles through muscle

force modelling, synergist analysis, and co-contraction indices

in addition to the SCR and MCR analyses implemented here.

To maximize the forward progression of the centre of mass

during the sprint cycle the athlete must minimize braking

forces, and simultaneously increase the propulsive forces.

Previous work has shown that pre-activation of the hamstrings

and plantar flexors increase with running velocity and may

prevent unnecessary breaking forces during the contact phase

of the sprint (34). While, both muscle groups are prone to

injury, hamstring injuries have been a common cause for

concern as the prevalence is high in both field based sports

and track and field events (35). Recently, it was shown that a

proximal neuromuscular control strategy may be associated

with decreased occurrence of hamstring injuries in a large

group of amateur soccer players (36). Specifically, greater

activation of the gluteal group during the early swing phase

and greater activation of the trunk muscular during the back

swing phase was associated with a decreased prevalence of

hamstring injuries in their data set. The activation patterns

seen in this data set (37) mirror those seen in our data set.
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Where greater activation of the gluteal muscles is seen in the

early swing phase, and greater activation of the trunk

musculature is seen during the late swing phase. This may

ultimately decrease the strain placed on the hamstring during

late swing and early stance as a posteriorly oriented pelvis,

would decrease the passive strain placed on the hamstring

muscle group as the ischial tuberosity would be closer to the

insertion point of the various muscles of the hamstring muscle

group. This perhaps suggests that the neuromuscular strategy

utilized to maximize sprint velocity may also help minimize

the occurrence of injury. However, caution is advised when

extrapolating functional interpretation from our sEMG dataset,

as a limitation in this model is the reconstruction artifact that

is seen in our MCR sEMG figures (Figure 7).
Limitations

Although the approaches taken with this research have some

fundamental strengths, they also have some limitations worth

considering. The first limitation is the use of wearable

technology which does not provide gold-standard kinematic

data. Although validation studies have shown good agreement

between IMUs and optical motion capture systems (37), the

sensors used in this study are subject to factors such as

ferromagnetic interference and drift. To accommodate errors

derived from the use of wearable IMU sensors many technical

steps were taken to correct our data (i.e., drift reduction);

however, it is possible that these technical treatments of our

data were insufficient, and instrumentation noise may still exist

in our dataset. A second limitation may include the feature

selection strategy used for this analysis. Specifically, we decided

to retain many PCs, so that we could capture a variety of

modes of variation that explained sprint performance. There is

the possibility that by doing this we may have biased our

stepwise linear regression towards PC features which represent

biomechanically or physiologically irrelevant phenomena (i.e.,

noise). Future work in PCA should focus on more objective PC

selection criteria based on heuristics and statistical based

selection criteria to ensure greater certainty that the appropriate

dimensionality of the data is selected. Finally, the current work

presents a relatively modest sample size (40 participants, 13

female and 27 males). An aim for future work would be to

leverage larger datasets to identify fundamental sprinting

phenotypes using clustering algorithms which would likely

segment the strategies taken by males and females.
Conclusions

Sprint performance is multifactorial in nature and is, in

part, dependent on fine-tuning of motor coordination. The

results of this study demonstrate the utility of using a data-
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driven approach to identify key kinematic and sEMG features in

a large dataset. The framework developed here is foundational

to developing a fundamental understanding of which

coordinative strategy is associated with improved performance

with the hope it will ultimately bridge the gap between sport

biomechanists and sport coaches. As we have now created an

objective framework that can be used to inform sport coaches

in the modification of sprint technique to ultimately improve

a specific functional movement outcome (i.e., sprint velocity).

The kinematic model demonstrates that improved

coordination between the contralateral arm and leg swing,

more stable horizontal gaze and a dynamic trunk extension

strategy are associated with improved sprint velocity. While

the sEMG model revealed greater pre-activation of the calves,

hamstrings during the swing phase, greater activation of the

gluteal muscles during the early swing and greater activation

of the trunk musculature during the late swing phase is

associate with improved sprint velocity. Together, these results

demonstrate the importance of whole-body coordination

during sprinting. As a result, coaches should integrate special

exercises to enhance the athlete’s whole-body coordination,

while continuing to enhance previously reported factors

associated with improved sprint performance. Collectively, the

results of this study demonstrate the potential for machine

learning to positively impact modern coaching practices.
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SUPPLEMENTARY FIGURE S1

Example of Residual Analysis – P015, LES.

SUPPLEMENTARY FIGURE S2

SCR for PC 1 A) Sagittal plane view B) Frontal plane view C) Transverse
plane view. The blue avatar represents the 5th percentile (slow), black
represents the mean and red represents the 95th percentile (fast).

SUPPLEMENTARY FIGURE S3

SCR for PC 3 A) Sagittal plane view B) Frontal plane view C)
Transverse plane view. The blue avatar represents the 5th percentile
(slow), black represents the mean and red represents the 95th
percentile (fast).

SUPPLEMENTARY FIGURE S4

SCR for PC 9 A) Sagittal plane view B) Frontal plane view C)
Transverse plane view. The blue avatar represents the 5th percentile
(slow), black represents the mean and red represents the 95th
percentile (fast).
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SUPPLEMENTARY FIGURE S5

SCR for PC 11 A) Sagittal plane view B) Frontal plane view C)
Transverse plane view. The blue avatar represents the 5th percentile
(slow), black represents the mean and red represents the 95th
percentile (fast).

SUPPLEMENTARY FIGURE S6

SCR for PC 12 A) Sagittal plane view B) Frontal plane view C) Transverse
plane view. The blue avatar represents the 5th percentile (slow), black
represents the mean and red represents the 95th percentile (fast).

SUPPLEMENTARY FIGURE S7

SCR for PC 13 A) Sagittal plane view B) Frontal plane view C)
Transverse plane view. The blue avatar represents the 5th percentile
(slow), black represents the mean and red represents the 95th
percentile (fast).

SUPPLEMENTARY FIGURE S8

SCR for PC 16 A) Sagittal plane view B) Frontal plane view C) Transverse
plane view. The blue avatar represents the 5th percentile (slow), black
represents the mean and red represents the 95th percentile (fast).
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SUPPLEMENTARY FIGURE S9

SCR for PC 1 the blue line represents a muscle activation pattern
associated with faster sprint velocities, a red line is associated with
slower sprint velocities, and black represents the mean.

SUPPLEMENTARY FIGURE S10

SCR for PC 5 the blue line represents a muscle activation pattern
associated with faster sprint velocities, a red line is associated with
slower sprint velocities, and black represents the mean.

SUPPLEMENTARY FIGURE S11

SCR for PC 21 the blue line represents a muscle activation pattern
associated with faster sprint velocities, a red line is associated with
slower sprint velocities, and black represents the mean.

SUPPLEMENTARY FIGURE S12

SCR for PC 22 the blue line represents a muscle activation pattern
associated with faster sprint velocities, a red line is associated with
slower sprint velocities, and black represents the mean.

Supplementary Table S1

Summary of Residual Analysis Results.
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