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Why do professional athletes and musicians exhibit individually di�erent

motion patterns? For example, baseball pitchers generate various pitching

forms, e.g., variable wind-up, cocking, and follow-through forms. However,

they commonly rotate their wrists and fingers at increasingly high speeds

via shoulder and trunk motions. Despite the universality of common

and individually di�erent motion patterns in skilled movements, the

abovementioned question remains unanswered. Here, we focus on a

motion required to hit a snare drum, including the indirect phase of task

achievement (i.e., the early movement and mid-flight phases) and the direct

phase of task achievement (i.e., the hit phase). We apply tensor decomposition

to collected kinematic data for the drum-hitting motion, enabling us to

decompose high-dimensional and time-varying motion data into individually

di�erent and common movement patterns. As a result, individually di�erent

motion patterns emerge during the indirect phase of task achievement, and

common motion patterns are evident in the direct phase of task achievement.

Athletes and musicians are thus possibly allowed to perform individually

di�erent motion patterns during the indirect phase of task achievement.

Additionally, they are required to exhibit common patterns during the direct

phase of task achievement.

KEYWORDS

tensor decomposition, individual di�erences, movement phase, skilled movements,

drumming movements

Introduction

Skilled movements entail two types of features: features that are invariant across

individuals and features that differ across individuals. For example, in baseball pitching,

baseball players commonly rotate their distal wrists and elbows at increasingly high

speeds via proximal motions in the trunk and shoulders (Hirashima et al., 2008). In

walking, the trajectory of the center of mass (CoM) shows common speed-dependence

across subjects (Orendurff et al., 2004; Takiyama et al., 2020a); specifically, the width in

the right-left direction decreases while the height in the up-down direction increases as

walking speed increases. These modulations of CoM trajectories possibly enable us to

walk efficiently (Cavagna et al., 1963; Cavagna and Kaneko, 1977). In switching between
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walking and running, peak timing of muscle activities show

dependence on locomotion mode (i.e., either walking or

running; Cappellini et al., 2006; Takiyama et al., 2020b), which

enables leg muscles to be activated at appropriate timings

for stable and efficient locomotion. In roll and rise tasks,

common motion features across subjects emerge depending

on task constraints (Kuniyoshi et al., 2004). The study also

demonstrated that robots could perform the same roll and

rise task while utilizing common motion features. Thus,

commonmotion features play essential roles in achieving several

motion patterns.

In addition to common motion features, we can confirm

individual differences in most motion patterns. For example,

every pitcher throws a ball by moving through various wind-

up, cocking, and follow-through motions. The unique motion

patterns across subjects originated from numerous numbers of

degrees of freedom (DoFs) inherent in our body. In several

situations, we have more DoFs than necessary to achieve

planned movements (Bernstein, 1967). Due to the significant

number of DoFs, the same action is achievable via a variety of

movement patterns rather than a uniquemovement pattern, and

this concept is referred to as redundancy (Bernstein, 1967). Let

us assume a case in which all subjects grasp a drumstick by their

right hands with the same relative posture to their wrists. When

they hit a snare drum by moving only their wrist, their motions

are close to each other. In other words, one DoF (i.e., a wrist

joint angle) is sufficient to achieve this task. If they are allowed to

move their elbow (i.e., two DoFs), they have multiple movement

choices: move both the elbow and wrist, only the elbow, or only

the wrist. Individually different motion patterns thus originate

frommore DoFs than necessary to achieve planned movements.

The individual different motion features are observable

along with common motion features in multiple movement

patterns. In playing the piano, pianists modulate kinematic

parameters depending on keystroke loudness in different

manners (Furuya et al., 2012). However, they commonly exhibit

speed-invariant kinematics (Furuya and Soechting, 2012). In

baseball pitching, pitchers modulate their muscle activities to

throw the ball with 100% motion effort in different ways from

each other (Hashimoto et al., 2021). However, when pitchers

increased their motion effort from 50 to 80%, the way of

modulating their muscle activities is common among them

(Hashimoto et al., 2021). In hitting a snare drum repetitively

with a constant time interval, percussion players hit the drum

with individually different motion trajectories (Dahl, 2004).

However, they demonstrate common motion features, namely,

preparatory height determines hitting velocity (Dahl, 2004).

Taken together, common and individually different motion

features coexist. The coexistence is evident in several motion

patterns, such as in baseball pitching (Hashimoto et al., 2021),

roll-and-rise motions (Kuniyoshi et al., 2004), drum hitting

(Fujii et al., 2009, 2010), running (Phinyomark et al., 2015), and

piano playing (Furuya et al., 2012).

Despite the commonality of invariant and individually

different features among several motion patterns, how they

are interrelated in skilled movements remains unclear. A

challenge in investigating the common and individually different

patterns is determining how to extract these features from

high-dimensional and time-varying motion data. A possible

solution is to quantify these patterns on the basis of low-

dimensional structures or modules inherent in time-varying

motions (Bernstein, 1967; Bizzi et al., 1991; Borghese et al.,

1996; Cappellini et al., 2006; Takiyama et al., 2020b; Hashimoto

et al., 2021). A working hypothesis is that human motor systems

control joint kinematics and muscle activities synergistically

rather than independently. Because the inherent number of

DoFs in our body is tremendous, a method to reduce the

DoFs is to group joints and muscles. Groups of joints or

muscles are referred to as spatial modules, which have been

reported to exist in leg movements of frogs (Bizzi et al., 1991;

d’Avella et al., 2003), human locomotion (Borghese et al.,

1996; Ivanenko et al., 2004), standing (Torres-Oviedo and Ting,

2007), arm-reaching movements (d’Avella et al., 2006), piano-

playing motions (Furuya et al., 2011), and cycling (Barroso

et al., 2014). Time-varying recruitment patterns of spatial

modules are referred to as temporal modules. By extracting

these modules and reducing the dimensions in motion data, we

discuss how these modules are common or individually different

across drummers.

To quantify similarities and differences in spatiotemporal

modules among individuals, tensor decomposition (Kolda and

Bader, 2009) is an effective method. Methods commonly used to

evaluate spatiotemporal modules include matrix decomposition

methods, such as principal component analysis (PCA) and non-

negative matrix factorization (NNMF) (Borghese et al., 1996;

Lee and Seung, 1999; Ivanenko et al., 2004; Torres-Oviedo and

Ting, 2007). These methods enable us to evaluate two features

(e.g., spatial and temporal modules) by analyzing matrices with

two elements (i.e., rows and columns). In other words, these

methods are not always suitable for analyzing more than two

factors at once. In the current study, we quantified three factors:

spatial modules, temporal modules, and the similarities of these

modules across individuals. For the analysis of (more than) two

factors, tensor decomposition rather thanmatrix decomposition

is suitable (Kolda and Bader, 2009). Three-dimensional tensor

decomposition consists of slices of matrices along a third

dimension (the dimension along K in the left panel in Figure 1).

In setting columns (I), rows (J), and the third dimension

(K) to include spatial, temporal, and individual information,

respectively, Candecomp/Parafac (CP) decomposition enables

us to extract spatial and temporal modules and determine how

each spatiotemporal module is recruited in each individual (the

upper-right and middle-right panels in Figure 1).

The third set of features extracted via CP decomposition

(i.e., a feature to indicate how each spatiotemporal module is

recruited in each individual) is hereafter referred to as individual
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FIGURE 1

The concept of CP decomposition. The three-dimensional array data consisting of S columns, T raws, and K slices are decomposed into

combinations of spatial modules, which are denoted by bar graphs in the blue frame; temporal modules, which are denoted by line plots in the

green frame; and individual components, which are denoted by circle dots in the red frame. (Lower-right) The variance in the original data

explained by CP decompositions. The vertical axis indicates the proportion of the original variance explained by CP decomposition. The

horizontal axis indicates the number of tensors used in CP decomposition. Because we focused on 80% criteria, we selected six tensors in the

current study. Of note, some important results were invariant independent of the criteria, as discussed later.

components. If all subjects recruited a pair of spatial and

temporal modules in the same way, the associated individual

components could have the same value in all subjects, i.e.,

a small variability. If all subjects recruited a pair of spatial

and temporal modules in a completely different manner, the

associated individual components could have different values in

all subjects, i.e., a larger variability. The variabilities of individual

components thus enable us to assess whether the associated

spatial and temporal modules are common or individually

different motion components.

Here, we investigated relationships between common and

individually different motion patterns from the perspective of

the low-dimensional structure inherent in motion data. To

reveal the relationship, we focused on the kinematic data

associated with professional drummers hitting a snare drum.

This motion includes (at least) three phases: (1) the early

movement phase [i.e., raise a drumstick to set the preparatory

height], (2) mid-flight phase [i.e., swing the stick to hit the

snare drum], and (3) drum-hitting phase [i.e., hit the snare

drum]. When the primary task is to hit a snare drum, the early

movement phase and mid-flight phase are indirectly related to

the task achievement, and the hit phase is directly related to

the task achievement. The drum-hitting motion thus enables

us to discuss how common and individually different motion

patterns emerge in both the direct and indirect phases of

task achievement.

In summary, by analyzing drum-hitting motions, we expect

to determine how common and individually different patterns

are interrelated depending on the motion phase. By utilizing CP

decomposition, the current study reveals the phase-dependence

of common and individual motion features.

Materials and methods

Participants

Seventeen professional drummers (15 males and two

females) participated in the experiment. All drummers were

right-handed; the handedness score, assessed using the

Edinburgh Handedness Inventory, was 79.4 ± 21.9 (mean ±

standard deviation) and ranged from 40 to 100. The mean

age was 40.1 ± 8.1 years (range = 23–58). Participants began

drum training at 13.9 ± 3.0 years of age (range = 6–17)
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and had 26.2 ± 9.4 years of experience (range = 8–43).

Supplementary Table 1 shows more detailed attributes of each

subject. All of the drummers had released numerous CDs and

performed in many live concerts as members of professional

bands or as support musicians for professional singers. In

accordance with the Declaration of Helsinki, the participants

received clear explanations of the experimental procedure and

provided written informed consent prior to participating in the

study. The experimental procedure was approved by the Ethical

Committee of the Graduate School of Arts and Sciences of the

University of Tokyo.

Apparatus and preprocessing

A snare drum (14-inch diameter, Carbon-Ply-Maple Series,

Pearl) was located in front of the participants. The height and

position of the snare drum were adjusted to fit each participant,

enabling him or her to hit the drum comfortably with his or

her right hand while holding a drumstick. Sixteen drummers

used a drumstick (190STH Standard Hickory, Pearl) prepared

by the experimenter, while one drummer used his own stick

(118M Maple, Pearl) since he felt uncomfortable using the

stick prepared by the experimenter. The time at which the

drum was hit was detected from the S3 marker on the stick

frame by frame on the Eva RealTime software (v4.7.20, Motion

Analysis Corporation, Santa Rosa, CA, USA). We detected the

frame at which the y-coordinate (up-down) data of the S3

marker changed the direction from downward to upward and

the detected frame was the last time point in the plot.

Spherical reflective markers were used to track the motion

of the upper body (Figure 2A). Four markers were located at

the sternal notch (abbreviated as Sn), T1 spinal process (T1),

xiphoid process (Xp), and T7 spinal process (T7) to capture

the movement of the trunk. Six markers were located at the

acromion (Ac), lateral epicondyle (Le), medial epicondyle (Me),

styloid process of the ulna (Su), styloid process of the radius

(Sr), and middle metacarpophalangeal joint (Mp) to capture

the motion of the upper limb. Three markers were located

on the drumstick to capture the motion of the stick (S1, S2,

and S3). Marker position data were recorded at 200Hz by an

optical motion capture system (Motion Analysis Corporation,

Santa Rosa, CA, USA). The position data of the markers on

the stick were not smoothed to preserve the magnitude of

impact reflected in the data. The other marker data were

smoothed by applying a bidirectional, fourth-order, low-pass

Butterworth filter. The cutoff frequency was calculated for each

marker by residual analysis (Winter, 1990). To reduce numerical

differentiation error, the data were resampled at 1,000Hz by

spline interpolation. We calculated the midpoint Ut between

Sn and T1, the midpoint Lt between Xp and T7, the midpoint

E between Me and Le, and the midpoint W between Sr and

Su (Figure 2A). The shoulder marker Ac was incorporated to

calculate the center of the shoulder joint (Sh) according to the

methods in a previous study (Fleisig et al., 1996). TheMpmarker

was used to track the position of the hand (H). The tip of the stick

(StickEnd) was calculated using the positions of markers S1–S3

attached to the stick.

Procedure

We instructed the participants to hit a snare drum once

in a trial while gradually increasing their movement effort

from their minimal to maximal levels in each trial (see

Supplementary Figure 3). Subjects determined the number of

trials in each set and the duration of each movement in each

trial by themselves. A total of five sets of trials were performed.

We did not explicitly restrict the number of trials in each

set. Each participant decided by themselves how many trials

they performed within each set. We analyzed the drum-hitting

motions with theminimum effort, i.e., in the first trial in each set,

and the motions with the maximum effort, i.e., in the final trial

in each set, while averaging these motions across the five sets.

Because the number of trials was different for each drummer, the

effort exerted for each trial was non-uniform, except for in the

first and final trials. We thus focused on drum-hitting motions

performed with minimum or maximum effort by each subject.

Tensor decomposition

Tensor decomposition enables us to assess more than two

factors through the analysis of multidimensional array data. In

the current study, a major aim was to assess spatial modules

(i.e., a set of spatial positions of body parts), temporal modules

(i.e., spatial modules’ recruitment time course), and how these

modules were recruited in each subject. To assess the three

factors at once, we utilized tensor decomposition.

Kinematic data were preprocessed as tensor data Xi,j,k,

where i indicated the ith motion dimension [e.g., i = 1, . . . ,

I, the position of the lth marker in the x-coordinate plane is

the
(

3× l− 2
)

th dimension, that in the y-coordinate plane is

the
(

3× l− 1
)

th dimension and that in the z-coordinate plane

is the
(

3× l
)

th dimension (Figure 1)], j indicated the jth time

frame (j = 1, . . . , J), and k indicated the kth participant (k =

1.., K). The kinematic data for each subject were standardized

such that the mean and variance of each motion dimension

equaled 0 and 1, respectively, across all the time frames. This

standardization procedure enabled us to assess each motion

dimension fairly. Without the standardization, the across-trial

variabilities were mainly based on the body parts with large

movements (e.g., stick, wrist, or elbow) and the subjects with

a long arm length and large movements, which introduces

bias into our discussion of spatial modules, temporal modules,

and individual components among subjects and anatomical
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FIGURE 2

Experimental setup and movement variability. (A) Four markers were located at the sternal notch (Sn), T1 spinal process (T1), xiphoid process

(Xp), and T7 spinal process (T7) to track trunk movement. Six markers were located at the acromion (Ac), lateral epicondyle (Le), medial

epicondyle (Me), styloid process of the ulna (Su), styloid process of the radius (Sr), and middle metacarpophalangeal joint (Mp) to track upper

limb motion. Three markers were located on the drumstick to capture stick motion (S1, S2, and S3). The midpoint Ut between Sn and T1, the

midpoint Lt between Xp and T7, the midpoint E between Me and Le, and the midpoint W between Sr and Su were calculated. The center of the

shoulder (Sh) joint was estimated from the acromion (Ac) marker. The Mp marker was used to detect the position of the hand (H). The position

of the tip of the stick (St) was calculated using markers S1–S3. (B) The stick velocity in the up-down direction. The solid black line indicates the

velocity averaged across all the trials and the subjects. The black shaded area denotes the standard error of the mean of the velocity averaged

across all subjects. The horizontal solid black lines with asterisks indicate a significant di�erence in the velocity from 0 in the marked time frames

(p < 0.01, paired t-test with Bonferroni’s correction).

landmarks. Of note, this standardization process did not affect

our results because it is possible to reconstruct the original

marker position data by addition and multiplication processes

(see Supplementary Material and Furuki and Takiyama, 2019).

Xi,j,k was decomposed as

Xi,j,k ≃
∑R

r = 1 λrsi,rtj,ruk,r ,

where sr =
(

s1,r , s2,r , . . . , sI,r
)

indicated the rth spatial

module, tr =
(

t1,r , t2,r , . . . , tJ,r
)

indicated the rth temporal

module, and ur =
(

u1,r , u2,r , . . . , uK,r
)

indicated how the

pair of the rth spatiotemporal module was recruited in each

subject (Figure 1). Throughout this study, we refer to ur as an

individual component. Additionally, the current study refers

to a combination of the spatial module, temporal module, and

individual component as a tensor. Under the normalizations

|sr| = 1, |tr| = 1, and |ur| = 1, the scaling factor λr ≥

0 indicated the contribution of the rth tensor to explain the

original data, and R indicated the number of decomposed

tensors. The scaling factor λr was defined as a positive

value. The spatial modules, temporal modules, and individual

components were estimated while minimizing the squared error

E = 1
2IJK

∑

i,j,k

(

Xi,j,k −
∑R

r=1 λrsi,rtj,ruk,r

)2
. Throughout

this study, we utilized MATLAB 2019a (MathWorks, Natick,

Massachusetts) and the function “cp_als” (alternating least

square; Kolda and Bader, 2009) via the tensor toolbox in

MATLAB (Bader and Kolda, 2017).

The kinematic data of the kth subject were decomposed as

X
:,:,k ≃

∑

R
r= 1λrs

T
r truk,r .

This equation indicated that the spatial and temporal modules

were independent of k and common across all the subjects.

The individual component uk,r determined how these modules

were recruited by each subject. Thus, assessing individual

differences inherent in the kinematic data based on the

individual components was natural.

We selected the number of tensors R based on the criteria

to explain more than 80% of the variance in the original data.

As discussed in the Results Section, our results are invariant

independent of the criteria. Equivalently, we selected R to be

the minimum number required to exceed a value of 0.8 for

the uncentered coefficient of determination (Hashimoto et al.,

2021). Although 80% accuracy likely seems to be a lower

accuracy criterion than those used in previous studies using PCA

or NNMF, the lower criterion of CP decomposition is dependent

on a small number of parameters. In PCA, for example, when

common spatial modules are extracted across all the subjects,
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a matrix whose size is I × (J × K) must be analyzed. The R

principal components include R× I + R× (J × K) parameters.

In our case, I = 21, J = 500, K = 17, and R = 6.With these

parameters, although orthogonal constraints can decrease the

number of parameters to a certain extent, PCA yields ∼51,126

parameters. When applying PCA to each subject separately,

the number of parameters is (R× I + R× J) × K = 53, 142.

In contrast, CP decomposition requires R × (I + J + K) =

3, 228 parameters. These significant differences in the number

of parameters can lead to a lower percent of variance being

explained in CP decomposition than in PCA with the same

number of modules.

Of note, there is no task or biomechanical constraint on

CP decomposition itself. However, CP decomposition yields

spatial modules, temporal modules, and individual components

to approximate the original motion data, including task

constraint and biomechanical constraint. Motion data include

the biomechanical constraint because this is data related to

human motion (in our case) following the biomechanical

constraint. In addition, we frequently measured motion

data when subjects performed some tasks; therefore, motion

data include the task constraint. Extracted spatial modules,

temporal modules, and individual components thus possibly

and indirectly include biomechanical constraints.

Clustering

The current study used a hierarchical clustering method for

individual components u. Because six tensors were extracted,

the input u was a six-dimensional value for each subject.

We relied on the MATLAB function “evalcluster” with tree-

type hierarchical clustering, gap value, Euclidean distance, and

globalMaxSE criteria to select the number of clusters.

Results

To investigate how spatiotemporal modules are common

or individually different depending on movement phases (i.e.,

either in the early movement, mid-flight, or hit phase),

we applied CP decomposition (Kolda and Bader, 2009) to

professional drum-hitting motions performed with maximum

effort [N = 17 (Figures 1, 2A)]. The current study focused on

motions performed withmaximum effort because this subjective

level of effort can be uniform in our setting (see SectionMaterials

and methods for details).

The current study analyzed seven anatomical landmarks

(StickEnd [abbreviated as S], Hand [H], Wrist [W], Elbow

[E], Shoulder [Sh], Upper Trunk [Ut], and Lower Trunk

[Lt]) while focusing on motions in three-dimensional space in

the x- (forward-backward), y- (up-down), and z-coordinates

(right-left; Figure 2A, detailed descriptions of the data collection

are provided in the Materials and methods Section). Of note, the

following results were invariant when we analyzed joint angles

(see Supplementary Material). We analyzed the positions of the

seven anatomical landmarks over 1,000 time frames (i.e., 1 s)

before the stick hit the snare drum (details on the detection of hit

timings are provided in the Materials and methods Section). To

reduce the computational time, we analyzed every other frame

(i.e., the number of analyzed frames was 500, and the 500th time

frame corresponded to the time of impact).

Estimation of the direct and indirect
phases of task achievement through
evaluating the downward velocity of the
drum-stick required to hit a snare drum

To confirm how the early movement, mid-flight, and hit

phases were related to drum-hitting motion, we calculated the

vertical velocity of the drumstick (S) because maximizing it

downward at the drum surface was a task requirement. Because

each subject performed drum-hitting motions five times, the

current study averaged the velocity profiles across the trials

in each subject. We then calculated the mean of the velocity

profile across the subjects (the solid black line in Figure 2B).

The asterisk with the horizontal solid black line shows the time

frame when the up-down stick velocity among the subjects was

significantly different from 0 (p < 0.01 [corrected]), indicating

that the direct phase of task achievement was observable only

during the very final phase (i.e., the 480th−500th time frames).

Due to the stick up-down velocity, we regarded both the

early movement and mid-flight phase as indirect phases (i.e.,

the 1st−479th time frames) and the movement termination

as a direct phase of task achievement (i.e., 480th−500th time

frames). Let us hereafter refer to both the early movement and

mid-flight phases as the indirect phase and refer to the drum-

hitting phase as the direct phase. The current study examined

how skilled motions incorporate common and individually

different motion features with respect to the direct phase and

indirect phase to perform tasks.

Assessment of common and individual
motion components via CP
decomposition

CP decomposition yielded six combinations of spatial

modules, temporal modules, and individual components (i.e.,

how the modules are recruited in each subject) with certain

criteria to explain more than 80% of the variance in the original

data (the lower right panel in Figure 1; the dependence on the

criteria is mentioned in a later section). An advantage of this

method is that motion data can be decomposed into spatial,
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temporal, and individual information, which enables us to

understand how each individual moves each group of body parts

in each motion phase from high-dimensional, time-varying, and

multiple-subject motion data.

Figure 3 shows the combinations extracted by CP

decomposition. For example, the blue bar graph A1 indicates

a set of spatial positions of body parts (i.e., spatial module),

the blue line plot B1 indicates its recruitment time course (i.e.,

temporal module), and the scatter plot C1 indicates the degree

of how the spatiotemporal module is recruited for each subject

(i.e., individual components). A set of combinations of the

three components is referred to as tensor hereafter. The order

of the tensors depended on the contribution to explaining the

original data, denoted by λ (see the Materials and methods

Section for details). An important feature of CP decomposition

is that modules or components in a certain tensor are related

only within each tensor. The colors in Figure 3 show these

relations within each tensor: the blue-colored spatial module

is related to the blue-colored temporal module and individual

components, and vice versa, but it is not related to the green-,

red-, or cyan-colored spatial modules, temporal modules, or

individual components. Throughout this study, we denoted

spatial modules as bar graphs, temporal modules as line plots,

and individual components as scatter plots in accordance

with the style used in previous studies (Williams et al., 2018;

Takiyama et al., 2020b; Hashimoto et al., 2021). The circles in

the panels of the temporal modules (Figures 3B1–B6) indicate

the peak timings (i.e., the maximum absolute values). The

red shaded areas in the same panels demonstrate the phases

when the magnitude of the stick up-down velocity was different

from 0, i.e., the direct phase of task achievement (Figure 2B).

The vertical dotted black lines in Figures 3C1–C6 separate the

different clusters mentioned later. Of note, CP decomposition

allows similarity of spatial modules, temporal modules, and

individual components among tensors because orthogonal

constraint is not necessary in contrast to PCA.

Tensor #1 is denoted in blue in Figure 3. The spatial module

mainly involved up-and-down motions of the lower region of

the trunk and right-and-left motions of the upper region of

the trunk (Figure 3A1). The temporal module indicated the

recruitment of the spatial module mainly in the indirect phase

(Figure 3B1). The peak timing of the temporal module indicated

larger recruitment of the spatial module in the early part of the

indirect phase. The individual component indicated recruitment

of the associated spatiotemporal module mainly in subjects #1 to

#10 but not in subjects #11 to #17 (Figure 3C1).

Because CP decomposition does not require orthogonal

constraints, the spatial modules in tensors #2 (green color),

#3 (red color), and #6 (black color) are similar to the spatial

module in tensor #1, especially in the recruitment patterns

of the trunk in the spatial modules (Figures 3A2,A3,A6; the

absolute value of Pearson’s correlation coefficient was 0.7395 ±

0.1910 [mean ± standard deviation, p < 0.0420]). Of note,

CP decomposition results in unique solutions, except when

different signs are considered. Because CP decomposition

provides six sets of a spatial module times a temporal module

times an individual component, the decomposition process

provides the same solutions as multiplying both the spatial

and temporal modules by −1, multiplying both the spatial

modules and individual components by −1, or multiplying

both temporal modules and individual components by −1.

We must therefore interpret each tensor while considering

the signs.

Despite the high correlations in the spatial modules among

tensors #1, #2, #3, and #6, the temporal modules in these

tensors have different characteristics (Figures 3B1–B3,B6). In

particular, the peak timings differ from each other, i.e., in tensor

#1 and #2, the spatial module was recruited at the early part

of the indirect phase (Figure 3B2) and both tensor #3 and #6

showed the largest activities at the middle part of the indirect

phase (Figures 3B3,B6). Although tensors #1 and #2 have similar

temporal modules, the timing of the peak was faster in tensor #1

(the first time frame) than in tensor #2 (the fifth time frame)

and the second peak was faster in tensor #2 (301st time frame)

than in tensor #1 (357th time frame). Furthermore, the spatial

modules in tensors #1 and #2 were different, i.e., the temporal

modules in tensors #1 and #2 were associated with different

groups of body and stick parts. In summary, the spatial modules

in tensors #1, #2, #3, and #6 showed sequential recruitment

patterns within the indirect phase from tensors #1 and #2 to

tensors #3 and #6.

Among these tensors, we also found differences in the

individual components, especially in tensors #2, #3, and #6

(Figures 3C2,C3,C6). For example, in tensor #3, subjects #12–

#17 recruited associated spatiotemporal modules to a large

extent, but subjects #1 to #5 recruited these modules to a small

extent (Figure 3C3). These results indicated that tensors #2, #3,

and #6 corresponded to individually different motion features

related to early movement and mid-flight.

In contrast, the spatiotemporal modules in tensors #4 (cyan

color) and #5 (magenta color) were commonly recruited across

all the subjects (Figures 3C4,C5). The right-and-left motions

of the finger, the right-and-left motions of the wrist, and the

forward-and-backward motions of the elbow were evident in

these spatial modules. In tensor #4, the right-left motion of the

tip of the stick was also obvious. The peak timings of temporal

modules demonstrated the maximal recruitment of the spatial

modules near the direct phase indicated by the red shaded

areas. In contrast to tensors #1, #2, #3, and #6, there were

few differences in the individual components (Figures 3C4,C5).

These results denoted that the spatiotemporal modules in

tensors #4 and #5 are motion features that are common across

professional drummers.

In summary, we confirmed individual differences near

the early and middle parts of the indirect phase based

on tensors #1, #2, #3, and #6. In contrast, few individual
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FIGURE 3

Tensors extracted via CP decomposition and clustering of individual components. The current study applied CP decomposition to the motion

data to hit a snare drum with maximal e�ort. The bar graphs indicate spatial modules (A1–A6), the line plots denote temporal modules (B1–B6),

and the scatter plots show individual components (C1–C6). λ is a scaling factor indicating how each tensor contributes to reconstructing

original data. All the spatial modules, temporal modules, and individual components were normalized such that each norm equals 1. (Left) In the

(Continued)
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FIGURE 3

spatial modules, S represents stick, F represents finger, W represents wrist, E represents elbow, Sh represents shoulder, Ut represents the upper

part of the trunk, and Lt represents the lower part of the trunk. In each segmentation, three bins indicate the marker positions in the x-

(forward-backward direction), y- (upward-downward direction), and z-coordinates (rightward-leftward direction) from left to right. (Middle) In

the temporal modules, the 500th time frame corresponds to the time at which the drum was hit. Each black circle indicates the time of the peak

of each temporal module (i.e., the maximum absolute value). Non-standardized motions at these peak timings are shown in Figure 5. The red

shaded areas in the same panels demonstrate the phases when the magnitude of the stick up-down velocity was not equal to 0 (see Figure 2B).

(C1–C6) The individual components indicate how spatiotemporal modules are recruited by each subject. Of note, subject number was sorted

based on the cluster number in a post-hoc manner to increase visibility. Each cluster is separated by the horizontal dotted black lines. The single

and double asterisks above the horizontal solid black lines indicate significant di�erences via Tukey’s comparison test at p < 0.05 and p < 0.01,

respectively. (D) The associated subject number in each cluster. (E) Within-tensor variability of each tensor based on the peak timing of each

temporal module.

differences existed near the direct phase based on tensors

#4 and #5.

Phase-dependent transition between
individually di�erent and common
features

To assess the individual differences in more detail, we

applied a hierarchical clustering method to the individual

components (see section Materials and methods for details).

The number of clusters can be used as a measure of individual

differences. If every subject showed completely different

movements, the number of clusters would equal the number of

subjects. If each subject showed the same exact movements, the

number of clusters would be one. An intermediate number of

clusters indicated that professional drum-hitting motions with

maximum effort were classified into groups.

The number of clusters inherent in the individual

components was three based on gap value criteria

(Supplementary Figure 2A). Figure 3D shows the divided

clusters and associated subject numbers. To gain insight into

how the clusters were divided based on tensor information, we

performed two-way (cluster × tensor) ANOVA on individual

components, which revealed not only a significant main effect

of cluster number [F(2, 84) = 99.27, p = 7.48 × 10−23] and

tensor number [F(5, 84) = 78.75, p = 3.17 ×10−30] but also

an interaction between cluster number and tensor number

[F(10, 84) = 27.83, p = 1.27 ×10−22]. These results indicated

that the individual components differed among clusters,

the individual components differed among tensors, and the

difference in individual components among clusters depends

on tensor number. To examine the difference in individual

components among clusters in each tensor, we performed

Tukey’s post-hoc multiple comparison test for the individual

components in each tensor. In the order of peak timings in each

temporal module, at the first peak (tensor #1), a difference was

found between clusters A and C (Figure 3C1, p = 0.0123). At

the second peak (tensor #2), the differences in clusters A and

B from cluster C were obvious (Figure 3C2, p = 7.24 ×10−7

and p = 7.05 × 10−7). At the third peak (tensor #3), the

differences were evident among the three clusters (p = 1.24

×10−6 [between clusters A and B], p = 2.09 × 10−6 [between

clusters A and C], and p = 7.00 × 10−7 [between clusters B

and C]). At the fourth peak (tensor #6), differences in clusters

A and C from cluster B were identified (Figure 3C6, p = 7.01

×10−7 and p = 7.00 ×10−7). At the fifth and sixth peaks

(tensors #4 and #5), no significant difference in the individual

components among the clusters was observed (Figures 3C4,C5,

p > 0.722).

Summarizing the above results, in the indirect phase of task

achievement (i.e., the early movement and mid-flight phases),

differences in the individual components among the clusters

were found in tensors #1, #2, #3, and #6 (Figures 3B1–B3,B6). In

the timing close to the direct phase of task achievement (the red

shaded areas in Figures 3B1–B6), the differences disappeared in

tensor #4 (Figure 3B4). In the transition phase from the indirect

to direct phase of task achievement, there was no significant

difference in the individual components among tensors in tensor

#5 (Figure 3C5).

We thus speculated that the individual difference was

evident in the indirect phase of task achievement and

unnoticeable in the direct phase of task achievement. Similarly,

common motion features could be obvious in the direct phase

rather than the indirect phase. To quantify individually different

recruitments of spatial and temporal modules, we calculated

the variabilities of individual components within each tensor.

If the within-tensor variability was small in some tensors,

the associated spatial and temporal modules were commonly

observable among the subjects. In contrast, large within-tensor

variabilities in some tensors denoted individually different

recruitments of the associated spatial and temporal modules.

Figure 3E supports the postulations that the individual

difference was evident in the indirect phase and unnoticeable

in the direct phase. The within-tensor variabilities of individual

components were larger in the indirect phases (i.e., the early

movement and mid-flight phases) than the direct phase to

the task achievement (i.e., the hit phase). Because individual

components denoted the amount of recruitment of the

associated spatial and temporal modules, a larger within-tensor
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variability of the individual component indicated a larger

individual difference. If all the subjects recruited the associated

spatial and temporal modules in the samemanner, the variability

equaled 0. If all the subjects showed different recruitment

patterns of the modules, the within-tensor variability of the

individual component exhibited a large value. Figure 3E thus,

indicates the existence of common and individually different

motion components in the direct and indirect phases of task

achievement, respectively.

To test these postulations from a different viewpoint, the

current study segmented 500 time frames into five bins, each of

which included 100 time frames, and performed the set of CP

decomposition. After applying CP decomposition, we calculated

the standard deviations of individual components within each

tensor. Based on Figures 3C1–C6, a more obvious individual

difference resulted in larger variability in the individual

component [e.g., in tensor #3 (Figure 3C3)]. We then used the

within-tensor variability as a measure of individual differences.

As expected, the within-tensor standard deviation was

significantly smaller near the direct phase (i.e., the 5th bin)

than in other phases (p = 2.46 ×10−6 [Tukey’s comparison

test], the black horizontal line with double asterisks between

the 1st−4th bins and the 5th bin in Figure 4). The red line in

Figure 4 demonstrates the error bar for within-tensor variability

in each bin based on the criteria that we previously utilized

(i.e., to explain more than 80% of the variance in the original

data). We also found significant differences in the 3rd bin from

the 1st and 2nd bins (p = 0.00762 and p = 0.00455 [Tukey’s

comparison test], denoted by horizontal red lines with double

asterisks). These results indicated that the individual different

motion features were obvious in the indirect phase (i.e., from the

1st to 4th bins) rather than the direct phase of task achievement

(i.e., the 5th bin). Similarly, commonmotion features were more

evident in the direct phase rather than the indirect phase.

We then assessed the influence of the number of tensors

on our findings to further validate our assumption: individual

differences are evident in the indirect phase rather than the

direct phase of task achievement, and common features are

obvious in the direct phase rather than the indirect phase of

task achievement. To determine the number of tensors in the CP

decomposition, this study used the criteria of 80% to explain the

variance in the original data. Although six tensors were extracted

with this value, the number of tensors could change depending

on the criteria. To examine whether our current finding persist

irrespective of the criteria, we performed CP decompositions for

four criteria: 60, 70, 80, or 90%.

Along with our expectation, our results were invariant

independent of the criteria (Figure 4). The within-tensor

variability in the individual components was significantly

smaller at the 5th bin than the 1st−4th bins (p < 0.0022

[Tukey’s comparison test], the black horizontal line with double

asterisks between the 1st and 4th bins and the 5th bin in

Figure 4). The blue, green, red, and cyan lines in Figure 4

FIGURE 4

The influence of phase and threshold in CP decomposition on

within-tensor variability of individual components. Error bars

represent the within-tensor standard deviations of individual

components; each of the bins includes 100 time frames. Blue,

green, red, and cyan colors in this panel indicate 60, 70, 80, and

100% criteria, respectively. The single and double asterisks

indicate significant di�erences via Tukey’s comparison test at

*p < 0.05 and **p < 0.01, respectively.

denote the within-tensor variability in each bin based on 60, 70,

80, and 90% criteria, respectively. We also found a significant

difference between the 2nd and 3rd bins at the 70% criteria (p

= 0.0422 [Tukey’s comparison test], denoted by the horizontal

green line with a single asterisk). We thus concluded that

individual differences were evident in the indirect phases and

that common features were obvious in the direct phase of

task achievement.

To further evaluate the speculations from different

perspectives, non-standardized motions at the times of the

peaks for each temporal module were visualized in Figure 5. We

sorted the motions based on the peak timings; the left panels

show the earlier peaks, and the right panels show the later

peaks. Supplementary Movie 1 shows the time-varying motions

with highlights in the same manner as Figure 5. Figures 5A–C

demonstrates the non-standardized motions in clusters A-C.

We found obvious individually different motion patterns in

the indirect phase (e.g., blue-, green-, and red-colored). At

the time shown in the left-most panels, the subjects classified

in cluster C had already started stick-raising motions. The

subjects in clusters B and A had not yet started the motions.

The tendency was consistent in the panels colored blue and

green. These across-group differences in motion phases were

likely reflected by the differences in individual components

(Figures 3C1,C2). In the middle part of the indirect phase

(red-colored), the subjects in cluster B started to raise their

drumsticks, but the other subjects had already finished the

raising motion. Near the timings close to the direct phase (gray-,

Frontiers in Sports andActive Living 10 frontiersin.org

https://doi.org/10.3389/fspor.2022.923180
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org


Takiyama et al. 10.3389/fspor.2022.923180

FIGURE 5

Properties of extracted clusters. (A–C) The non-standardized motion data of all the subjects in each cluster. The solid black lines indicate

drumsticks. Each panel shows the movements at the times of the peaks in the temporal modules. The colors denote the tensor numbers, as in

Figure 3. From left to right, the tensors are sorted based on the peak timings. The left panel shows the drum-hitting motions close to the early

movement phase, and the right panel shows the motions close to when the drums were hit. (A–C) Show the drum-hitting motions in clusters A,

B, and C, respectively.

cyan-, and magenta-colored), few obvious individual differences

were noted.

Although we focused on drum-hitting motions with

maximum effort, whether the same tendencies were consistent

in minimum-effort motions remained unclear. In contrast to the

maximum-effort motions, the minimum-effort motions had few

individual differences: the number of clusters was one based on

gap value criteria (Supplementary Figure 2B). In the minimum-

effort motions, all the subjects showed slight motions to raise

the drumstick and no other movements. All the minimum-

effort motions could be classified as the direct phase of task

achievement. Along with the results mentioned previously, few

individual differences in the minimum-effort motions indicated

that common motion features were evident in the direct phase

of task achievement.

Discussion

The current study investigated the relationships among

two features inherent in skilled movements: (1) common and

individually different features of motions and (2) direct and

indirect phases of task achievement. We utilized both drum-

hitting motions performed by professionals (Figure 2A) and

tensor decomposition (Figure 1). With drum-hitting motions,

we were able to investigate how common and individually

different features appeared in the direct phase (i.e., hit phase)

and indirect phase (i.e., the early movement and mid-flight

phases; Figures 2B, 3–5). Tensor decomposition enabled us to

assess three factors: spatial modules, temporal modules, and

how the recruitment patterns of the modules are common or

individually different. We verified that common spatiotemporal

modules are evident in the direct phase and that individually

different spatiotemporal modules are evident in the indirect

phase of task achievement (Figures 3–5).

A previous study investigated individual differences in

drum-hitting motions (Dahl, 2004). The study showed a clear

correlation between the preparatory height of a stick in mid-

flight and the velocity of a stick in hitting a drum. Furthermore,

the correlation values were similar across all four subjects. These

uniform correlations indicated that the preparatory stick height

affects the stick hitting velocity. In our study, all the subjects

showed similar movements when hitting a drum (Figures 3D,E,

5, Supplementary Movie 1). If the correlation between stick

preparatory height and hitting velocity is consistent between

the previous and current studies, we would expect the same

preparatory stick heights in all the subjects. In contrast to

this hypothesis, all the subjects seemed to show different
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preparatory stick heights (Figure 5, Supplementary Movie 1).

This dissimilarity between the previous and current studies can

be attributed to the difference in the early movement phase. In a

previous study, the subjects performed drum-hitting motions in

response to periodic sounds. Thus, all the subjects had almost the

same early movement phase and termination times associated

with hitting the drums. In contrast, we did not control this

timing such that we could assess individual differences with few

restrictions. In our study, some subjects raised the stick in an

early phase (e.g., the subjects included in clusters A and C in

Figures 5A,C, see Supplementary Movie 1), and other subjects

did not raise the stick until themid-flight phase (e.g., the subjects

included in cluster B in Figure 5B, see Supplementary Movie 1).

In other words, the preparatory stick height is more difficult to

define in our study than in the previous study.

We have already demonstrated the effectiveness of tensor

decomposition, or CP decomposition, in assessing task-

dependent modulations (Takiyama et al., 2020b; Hashimoto

et al., 2021) and individual differences (in this study) inherent in

spatial and temporal modules. Tensor decomposition enables us

to assess diverse types of modulations or differences according to

how the tensor data are generated. Because we measured drum-

hitting motions with various levels of effort in our study (see

SectionMaterials andmethods for details), we were able to assess

effort-dependent modulations of spatiotemporal modules as in

our earlier study (Hashimoto et al., 2021). In this case, we need

to generate tensor data with dimensions for the body part, time,

and effort factors; the matrix size is I × J × L, where L is

the number of tasks performed with different levels of effort.

The third dimension becomes effort-dependent components

rather than individual components. Other applications of this

method include assessing the difference between amateur and

professional drummers or the difference between musicians

with and without neurological disease. Learning- or adaptation-

dependent modulations of spatiotemporal modules can also

be discussed using tensor decomposition. Because several

computational models have been proposed for motor adaptation

with arm-reaching movements (Thoroughman and Shadmehr,

2000; Takiyama et al., 2015; Takiyama and Sakai, 2016; Ishii

et al., 2018), identifying the relationships between adaptation

models and adaptation-dependent modulations extracted by

tensor decomposition may be useful in future work.

Although we focused on CP decomposition, various

versions of tensor decomposition exist. For example, the

assumption of smooth temporal variation can be introduced

in temporal modules (Takiyama et al., 2009; Takiyama and

Okada, 2011; Naruse et al., 2013). Another common method

is Tucker decomposition (Kolda and Bader, 2009). In Tucker

decomposition, the number of spatial modules, temporal

modules, and the third component (e.g., individual component)

can differ from each other. In contrast, in CP decomposition,

these numbers are the same. Due to its flexibility and complexity,

Tucker decomposition allows us to, for example, estimate a

spatial module common to two temporal modules and three

individual factors. For complex analyses such as neural activity

analyses, Tucker decomposition can be used to extract low-

dimensional structures inherent in data (Onken et al., 2016).

Additionally, due to the flexibility of Tucker decomposition,

we need to determine three free parameters: the number of

spatial modules, temporal modules, and individual components.

Because several combinations of the parameters result in the

same variance explained, determining the number of parameters

is still an ongoing problem (Delis et al., 2014, 2018). Due to

the simplicity of CP decomposition, we need to determine

only one parameter: the number of combinations of a spatial

module, a temporal module, and an individual component.

Although Tucker decomposition can be powerful in a more

complex situation, we utilized CP decomposition due to

its simplicity.
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SUPPLEMENTARY MOVIE 1

A movie demonstrating the classification of drum-hitting motions into

three clusters. The phases around the peak timings for each temporal

module are slowed down to highlight the timings. Because the peak

timings of tensor #1 and #2 were close to each other and the peak

timing of tensor #1 was within the 1st time frame, long highlights for

both tensors did not provide e�ective information. We thus set the

highlight to be shorter for tensor #1.
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