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Biomechanical estimation of
tennis serve using inertial
sensors: A case study

Franck Brocherie* and Daniel Dinu

Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France

Inertial measurement units may provide a relevant on-court 3-Dimension

measurement system for tennis serve biomechanical analysis. Therefore, this

case study aimed to report the feasibility of inertial measurement unit’s

kinematic and kinetic data collection during tennis serve. Two injury-free

highly-trained tennis players were equippedwith the inertial measurement unit

(Xsens MVN suit) and performed 2 trials of five flat “first” serves on a 1m2 target

zone bordering the service box of an indoor GreenSet
®

tennis court surface.

With the exception of the center of gravity rotation at the loading stage, all joint

(shoulder, elbow, knee) angles, center of mass displacements and rotations

followed a similar development for both female and male participants from

loading to finish stages. At ball contact stage, articular moments (mid-trunk,

upper-trunk, shoulder, elbow, wrist) and segmental contribution (pelvis linear,

pelvis rotation, trunk, shoulder, elbow, wrist) repartitions also showed a

comparable movement. From loading to finish stages, total, lower and upper

energy contribution were similar for both players, with coe�cient of variations

deemed acceptable between the two trials. This inertial measurement unit

appears suitable for on-court tennis serve biomechanical data collection

and subsequent analysis to provide tennis players and practitioners tailored

feedbacks to facilitate motor learning process and develop serve e�ciency.

KEYWORDS

inertial navigation system, 3D kinematic analysis, posture, accuracy, center of mass,

biomechanics

Introduction

With over 50 million practitioners over the word, tennis is the most popular

individual sport (1). Although physical fitness has a preponderant role in tennis

success, technical proficiency remains the predominant factor (2). In this view,

the serve is a key element of match success (3) that gives the opportunity

during each point to directly win it or to markedly influence the subsequent

strokes. Toward maintaining high levels of power and serve velocity without

sacrificing accuracy, serve biomechanics play an integral role. While comprehensive

and detailed reviews of tennis biomechanics have been previously reported [e.g.,

(3, 4)], and because injuries have most often a “pathomechanical” cause (5),

a better understanding of tennis serve biomechanics in the most ecological

setting is still necessary in regard to player development and injury prevention.

Frontiers in Sports andActive Living 01 frontiersin.org

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://doi.org/10.3389/fspor.2022.962941
http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2022.962941&domain=pdf&date_stamp=2022-12-02
mailto:franck.brocherie@insep.fr
https://doi.org/10.3389/fspor.2022.962941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspor.2022.962941/full
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org


Brocherie and Dinu 10.3389/fspor.2022.962941

To date, the tennis serve’s “kinetic chain” has been

investigated through laboratory-bound marker-based motion

capture, sometimes associated with force plate measurements,

raising some ecological validity concerns. Most tennis serve-

related studies have focused on discrete body [e.g., ankle,

shoulder, elbow; (6)] and ball and racquet kinematics (i.e.,

positions, durations, accelerations, velocities) (7). However, in

order to maximize serve’s power, the “leg drive”, the upper

arm and the trunk rotations during the tennis serve are subtle

mechanical coaching points (2) which need to be appraised.

Briefly, a forceful “leg drive” (8) and frontal/sagittal plane

trunk rotations (9) are critical for transferring the angular

momentum from the legs to the upper limbs, participating in

greater racket and ball velocities at impact (10). Any improper

kinematic patterns susceptible to increase joint kinetics (i.e.,

rotations, forces, moments, energies) without improving ball

velocity could be viewed as counterproductive and possibly

“pathomechanical” (11). In recent years, wearable inertial

measurement units (IMUs; embedding 3D accelerometers,

gyroscopes and eventually magnetometers) allow one to

estimate segment orientation and joint angular kinematics by

exploiting the laws governing the motion of a rotating rigid body

(12, 13). In this view, IMUs and magnetic measurement units

have gained popularity for human motion capture solution in

clinical practice (14) and sports settings (15) such as shot put

(16) or basketball shooting (17). Although several validation or

reliability studies have been conducted [e.g., (16, 18)], sport-

specific demands require further data to support their use in

practical settings. For instance, the Xsens suit (MVN Biomech)

may provide a relevant on-court, 3D measurement system for

tennis serve analysis.

Studies having investigated tennis serve using IMUs are

sparse (19, 20), but demonstrated some kinematic synergies

implications for the practitioners. However, none of these

studies used whole-body IMUs for an entire quantification

of the “kinetic chain” during the tennis serve. Because we

envision that such easy-to-use wearables IMUs would permit

to achieve a better understanding of the tennis serve for the

development of stroke production with minimal risk of injury,

the purpose of this case study was to report the feasibility to

quantify IMUs whole-body kinematic and kinetic data during

on-court tennis serve. Reporting its effectiveness may offer

useful ecological individualized biomechanical and technical

information/instruction to tennis practitioners in the tennis

serve’s motor learning process.

Methods

Participants

Two injury-free right-handed tennis players (1 male, 18

years, 177 cm, 65 kg; and 1 female, 17 years; 173 cm, 60 kg) with

extensive regular training and competition participated in the

study. A tennis level at least equivalent to the International

Tennis Federation Association (ITF) category level 3–4 (“2ème

série” in the French Tennis Federation classification) was

requested in order to guarantee enough accuracy in stroke

production and precision, as well as to be representative of

highly-trained tennis standards. The two participants were

informed about the aim of the study and the protocol after which

they or parent/guardian provided a written informed consent.

The study was approved by the Local Ethical Committee and

conducted in accordance with the Declaration of Helsinki.

Experimental procedure

After a standardized 15min warm-up (including mobility

exercises, tennis-specific drills and progressive serves),

participants were equipped with the IMU, and then requested

to perform two trials of five flat “first” serves movements

(interspersed with 10 s in-between for replacement and

recovery) using a foot-back technique on a 1 m2 target

zone bordering the T of the “deuce” service box of an indoor

GreenSet
R©
tennis court surface. To ensure standardized playing

conditions, temperature (24◦C), relative humidity (44%) and

light (>500 lux) were controlled and new balls (US open
R©
)

were used.

Instrumentation

Participants were required to wear a MVN Biomech Link

wireless data link suit (Xsens Technologies BV, Enschede, The

Netherlands). This suit is composed of 17 miniature IMUs, a

transmission pack and battery zipped on a compression suit

(21). Each IMU contains three gyroscopes, three accelerometers

and three magnetometers in a 35 g box about the size of a

matchbox. Each IMU captures the 6-degrees-of-freedom of the

body segment to which it is fixed, in real time at a sampling

frequency of 240Hz. Based on Zatsiorsky–Seluyanov’s inertial

parameters reported by de Leva (22), biomechanical calibration

procedure (i.e., sensor to body alignment and body dimension

determination) was done from a T-pose (i.e., upright with arms

horizontally and thumbs forward) or N-pose (i.e., arms neutral

besides body) followed by specific movements as described

elsewhere (23). For each participant, trial and serve movement,

motion data was recorded for the entire serve cycle (i.e., from

preparation to follow-through stages with specific capture on

loading, ball contact and finish stages) (24).

Racquet velocity at ball contact was recorded for each trial

using a radar (Stalker ATS II, Applied Concepts, Dallas, TX, USA

accuracy: ± 1 mph, frequency: 34.7 GHz, Target Acquisition

Time: 0.01 s) attached to a 2.5-m height tripod, 2m behind the

serve line in the direction of the serve. The fastest successful
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tennis serve movement (i.e., having reached the target zone) of

each trial was retained for subsequent analysis.

Determination of variables

After extraction of the tennis serve-related motion data

with MVN Biomech software, a customized MatLabTM (version

R2010A Natick, Massachussetts, USA) program was used to

calculate the knees (both for serve and opposite sides), shoulders

and elbow joint angles using a Newton-Euler method (21).

Furthermore, articular forces and moments were calculated

for wrists, elbows, shoulders, mid-trunk and upper-trunk.

Specifically, knowing the kinematics and inertial properties of

the segments of the biomechanical model, forces and moments

were derived based on the Newton-Euler equations:

∑

Fi = miai (1)

Fi+1 +mig + Fi = miai (2)

where Fi corresponds to the striking force in the case of the

first segment and the force taken up by the distal joint for the

other segments, Fi+1 corresponds to the force taken up by the

proximal joint, mi the mass of the segment studied and ai the

acceleration of the segment studied at its center of gravity.

Segmental contributions were also determined for

pelvis linear and rotation, trunk, shoulder, elbow and wrist.

Specifically, segmental contribution was computed by the

analytical calculation of the velocity of each segment of interest

settings (15):

−→
V seg x =

−→
V pelvis +

−→
ω pelvis ×

−→
L pelvis +

−→
ω seg 1 ×

−→
L seg 1

+ . . . +−→
ω seg x−1 ×

−→
L seg x−1 (3)

where
−→
V represents the linear velocity, −→ω represents the

3D segment angular velocity, and
−→
L represents the length

corresponding to the 3D vector between
−→
V seg x and the

proximal joint.

Then, a kinematic chain was built for each segment with the

pelvis used as reference point. The contribution of each segment

was found by projecting the velocity vector of the segment on the

velocity vector of the wrist. For example, the projected velocity

of the upper arm has been calculated as follows:

−→
V upper arm proj. =

−→
V upper arm×

−→
V hand

∥

∥

∥

−→
V hand

∥

∥

∥

2
×

−→
V hand (4)

Where
−→
V upper arm and

−→
V hand are the velocity vectors of

the upper arm and the hand, respectively, both determined

by multiplying 3D segment angular velocity of the segment

of interest.

Total kinetic energy (Ti) of each segment was calculated as

the sum of the kinetic energy due to the rotation of the segment

and the kinetic energy due to its translation:

Ti =
1

2
−→
ω

−→
H G,i +

1

2

−→
V Gi

−→
G i (5)

The kinetic energy of the whole-body is then given by the

sum of each segment’s Ti.

Statistical analysis

Absolute and relative (percentage differences between

trials 1 and 2) values of articular moments, segmental

contributions and energetic transfer, as well as mean

and standard deviation (SD) are presented by descriptive

statistics. Coefficient of variation (CVs) (25) were calculated

as (CV = SD/mean) and interpreted as follows: 0–4.9%,

“excellent”; 5.0–9.9%, “very good”; 10.0–14.9%, “good”;

15.0–24.9%, “acceptable”.

Results

For both female and male tennis players, joint angles, center

of mass displacement and rotation during loading, ball contact

and finish stages are shown in Figure 1. Racquet velocity at ball

contact corresponded to 48.8 ± 1.0 m/s and 46.0 ± 0.9 m/s for

the male and female tennis players, respectively.

Information on the repartition of the articular moments

and segmental contributions are included in Figure 2. With

the exception of the center of mass rotation at the loading

stage, all joint (shoulder, elbow, knee) angles, center of mass

displacements and rotations followed a similar development

for both participants from loading to finish stages. At ball

contact stage, articular moments (mid-trunk, upper-trunk,

shoulder, elbow, wrist) and segmental contribution (pelvis

linear, pelvis rotation, trunk, shoulder, elbow, wrist) repartitions

also showed a comparable movement. Noteworthy, the female

tennis player displayed a two-fold lower articular moments

and segmental contributions than her male counterpart,

except for the trunk and shoulder contributions which

appeared double.

Table 1 presents the total body and lower-to-upper body

energy transfer for both tennis players. From loading to finish

stages, total, lower and upper energy contribution were similar

for both players, with CVs deemed acceptable between the two

trials.
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FIGURE 1

Joint angles, center of mass displacement (in italic) and rotation during loading, ball contact and finish stages of the serve for the male [upper

panel, (A)] and female tennis players [lower panel, (B)]. Racquet velocity (in bold) is also displayed at ball contact stage. Values are means ± SD

from trials 1 and 2.

Discussion

The main purpose of this case study was to report the

feasibility of IMUs kinematic and kinetic data collection

and analyze in tennis serve. For a quite similar racquet

velocity at ball contact, both female and male tennis players

displayed similar joint angles, center of mass displacements and

rotation, as well as repartition of the articular moments and

segmental contributions (with two-fold lower data for the female

participant) during the loading, ball contact and finish stages.

Total, lower and upper energy contribution were also similar

for both players. Although remaining very descriptive, our data

reveal acceptable CVs between two trials of five “first” serves

for both female and male tennis players. This IMUs device

appears suitable for on-court biomechanical data collection

and subsequent analysis to provide tennis players and coaches

tailored feedbacks.

Because it is the first study reporting tennis serve whole-

body mechanics using IMUs, comparison with the tennis serve

literature is challenging. Shoulder and elbow joints angles appear

in the range of data measured in experienced junior tennis

players at serve (6). Similar shoulder external rotation angle

has also been reported in professional tennis players with

lower values in male than female (26). Elbow moment also

aligns with the ones reported in male and female professional

tennis players (26). However, it differs from NCAA Division

I male tennis players’ flat serve reported by Abrams et al.

(27), which may be due to methodological differences (IMUs

vs. camera markerless motion capture system) and variance in

ITF category levels [3–4 vs. 2 (equivalent to the United States

Tennis Association’s National Tennis Rating Program)]. Hip

velocity appears lower than for elite female tennis players

(28). Finally, racquet velocity at ball contact appears similar

to the one reported in ITF category level 2 and professional
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FIGURE 2

Segmental contributions during loading, ball contact and finish stages of the serve for the male [upper panel, (A)] and female tennis player [lower

panel, (B)]. Values are means ± SD from trials 1 and 2.

male and female players (28, 29). Consequently, wireless and

lightweight IMUs showed reasonable similarities compared to

the aforementioned studies that used different motion capture

systems. Given the existing correlation between kinematic or

temporal pattern, (upper) joint kinetics and ball velocity (30)

with possible overcompensation exposing to a greater risk of

injury (11), IMUs represent promising alternative for ecological

on-court 3D measurement in tennis. Additional large-scale

validation is warranted to confirm this assumption.

A novel finding with the IMUs is the total and lower-to-

upper body energetic transfer during tennis flat “first” serves.

It is interesting to note the similar transfer pattern between

the male and female tennis players monitored. As observed

within the lower-to-upper body energetic transfer, the “leg drive”

contribution plays a major role in the serve’s “kinetic chain”

(8, 26), influencing the transfer of linear and angularmomentum

to the trunk, the arm and the racquet (9). Of note, an ineffective

transfer might improve the risk of joint injury, especially in

the last parts (i.e., shoulder, elbow and wrist) of the “kinetic

chain” (31). Overall, this indicates that IMUs may be effective

to properly collect on-court tennis serve’s energy transfer (of

note, players tested in this case study did not reported any

obstruction/restriction in their movement). Such approach

may help to decipher the critical mechanical contributors

to tennis serve and offers tennis practitioners individualized

biomechanical and technical instructional direction.

For all data collected, the CVs ranged from “acceptable”

to “excellent”. Of course, in such sport-specific technical

movement, variability and inter-joint coordination are

paramount for a correct execution (32). Mainly governed by

the ball toss, this leads to a “funnel-like” control pattern of the

critical end-point parameter (33). Accordingly, CVs decreased

from lower- to upper-body parts. The regulation of end-point

parameters depends on compensatory joint mechanics (28)

coupled with perception (i.e., external information) of the

action (28). Because variability is only functional within a

defined “window” (34), tennis serve training should be repeated

in varied environment (e.g., pace, spin, direction, and height of

ball feed or drill structure) in order to develop motor control

processes toward identifying and adopting an optimal serve

(35). In this view, IMUs feedbacks might provide essential

information in the motor learning process.
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TABLE 1 Total and lower- to upper-body energetic transfer during tennis flat “first” serve stages for the male and female tennis players.

Total energy Lower-body energy Upper-body energy

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2

Male player

Loading stage Value (J) 909.1 787.7 283.1 273.5 626.0 514.3

Mean± SD (J) 848.4±85.8 278.3±6.8 570.1±79.0

CV 10.12 2.44 13.86

% Trial 1-2 −13.35 −3.39 −17.82

Ball contact stage Value (J) 947.4 886.6 338.4 280.7 609.0 605.9

Mean±SD (J) 917.0±43.0 309.5±40.8 607.5±2.2

CV 4.69 13.19 0.36

% Trial 1-2 −6.42 −17.06 −0.51

Finish stage Value (J) 985.4 744.7 377.3 277.7 608.2 467.0

Mean±SD (J) 865.1±170.2 327.5±70.4 537.6±99.8

CV 19.68 21.49 18.57

% Trial 1-2 −24.43 −26.38 −23.22

Female player

Loading stage Value (J) 967.8 797.2 302.5 279.4 663.5 517.9

Mean±SD (J) 882.5±120.6 291.9±17.7 590.7±103.0

CV 13.67 6.06 17.43

% Trial 1-2 −17.63 −8.21 −21.94

Ball contact stage Value (J) 971.3 869.7 365.7 297.8 605.6 571.9

Mean±SD (J) 920.5±71.8 331.7±48.0 588.8±23.8

CV 7.80 14.47 4.05

% Trial 1-2 −10.46 −18.57 −5.56

Finish stage Value (J) 930.5 775.3 362.3 302.5 568.3 472.8

Mean±SD (J) 852.9±109.8 332.4±42.3 520.6±67.5

CV 12.87 12.72 12.97

% Trial 1-2 −16.68 −16.50 −16.80

From a practical viewpoint, although revealing suitable

information to the practitioners, this case study remains mainly

descriptive with limited generalizability. Indeed, only comparing

tennis serve with IMUs in reference to “gold standard”

biomechanical systems within larger sample size will clarify the

question of validity. Nevertheless, the development of such non-

invasive, portable IMUs with semi- or fully-automatedmodeling

algorithm (including outlier detection) for quantifying tennis

serve (36), as well as hitting stroke (37, 38) opens new research

avenues in term of load monitoring and management in tennis

that are crucial for limiting injury risk.

To summarize, this case study indicates the potential

usefulness of IMUs as analytic tool in tennis serve. With

acceptable coefficient of variation between two trials of five flat

“first” serves, ascertaining the major biomechanical variables

of on-court tennis serve with IMUs may aid practitioners

to facilitate motor learning process and develop serve

efficiency through more biomechanically driven remediation

and feedback.
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