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Effects of a proprioceptive focal
stimulation (Equistasi®) on
reducing the biomechanical risk
factors associated with ACL injury
in female footballers
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Introduction: Football presents a high rate of lower limb injuries and high
incidence of Anterior Cruciate Ligament (ACL) rupture, especially in women.
Due to this there is the need to optimize current prevention programs. This
study aims to verify the possibility to reduce the biomechanical risk factors
associated with ACL injury, through the application of proprioceptive stimulation
by means of the Equistasi® device.
Methods: Ten elite female footballers were enrolled and received the device for 4
weeks (5 days/week, 1h/day). Athletes were assessed directly on-field at four time
points: T0 and T1 (evaluation without and with the device), T2 (after 2 weeks), T4
(after 4 weeks) while performing two different tasks: Romberg Test, and four
sidestep cutting maneuvers bilaterally. Seven video cameras synchronized with a
plantar pressure system were used, thirty double colored tapes were applied on
anatomical landmarks, and three dimensional coordinates reconstructed.
Vertical ground reaction forces and center of pressure data were extracted from
the plantar pressure insoles. Hip, knee, and ankle flexion-extension angles and
moments were computed as well as abd-adduction joint torques. From the
Romberg Test both center of pressure descriptive variables and frequency
analysis parameters were extracted. Each variable was compared among the
different time frames, T1, T2 and T4, through Friedman Test for non-parametric
repeated measures (p<0.05); Wilcoxon Signed Rank Test was used for
comparing variables between T0 and T1 (p<0.05) and across the different time
frames as follows: T1–T2, T2–T4 and T1–T4.
Results: Statistically significant differences in both posturographic and
biomechanical variables between the assessment at T0 and T1 were detected.
Reduced hip and knee abduction torques were revealed in association with
reduced both ground reaction forces and ankle dorsiflexion torque from T1 up
to T4.
Discussion: The proprioceptive stimuli showed to have the potential to improve
cutting biomechanics mainly with respect to the ligament and quadriceps
dominance theories. Results of the present study, even if preliminary and on a
small sample size, could be considered promising towards the inclusion of
proprioceptive training in injury prevention programs.
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1. Introduction

According to FIFA, football is the world’s most popular sport

with more than 265 million players (1), and female professional,

semi-professional, and community football is one of the fastest

growing sport worldwide. Along with its popularity, football

accounts for a higher rate of lower-limb injuries accompanied by

a higher incidence of anterior cruciate ligament (ACL) rupture

and associated burden than do other sports (2–5). Females have

a higher risk of concussion and ankle injuries, and the risk of

serious knee injuries is at least double when compared with men;

meanwhile, men present greater risk of hamstring and groin

injuries (6–12). In particular, ACL injury rate is higher during

match play compared with training, and in cutting and pivoting

sports (13) compared to other sports. In this scenario, non-

contact ACL injuries, that typically occur during high-impact

tasks such as decelerations, landing, and cutting represent one of

the most devastating injuries, accounting for 70% of ACL annual

injuries with an incidence rate of 0.42 per 1,000 player-hours

(14). The long return to play period (6–24 months) and an

increased risk in future development of osteoarthritis represent

the associated burdens. It should be mentioned that injury, fear

of injury, and lack of physical skills or strength represent the

current barriers to sport and physical activity participation in

females (15). All these reasons support the introduction of new

methodologies to prevent or reduce the risk of injury. Nowadays,

a large variety of functional screening tools are adopted during

pre-season tests to assess athletes’ readiness to compete and to

establish a baseline measurement at the beginning of a

rehabilitation program. These tests allow tracking athletes’

progress and assisting in return to play decisions, along with

identifying specific movement faults, muscle weakness,

imbalances. In terms of functional evaluation, the most

commonly used methods are the Functional Movement Screen,

the Star Excursion Balance Test, the Y Balance Test, the Drop

Jump Screening Test, the Landing Error Scoring System, and the

Tuck Jump Analysis (16): they imply visual scoring of different

movements as well as pain, and the best score is associated with

the ability to correctly complete the movement without

compensation. In considering the possible causes of ACL

rupture, non-contact ACL injuries have been reported as the

most frequent that commonly occur when landing from a jump,

during cutting maneuvers, or sudden decelerations (17). There is

a plethora of studies reporting about the association between ACL

rupture and a poor landing mechanism (18): with the knee in a

valgus position and the femur in adduction and internal rotation;

with the knee in an extended position and with excessive

quadriceps activation relative to the hamstrings; with deficits in

trunk control; and with large leg-to-leg asymmetries (18). These

considerations are at the basis of the standard functional tasks

currently adopted in the pre-season tests (19). However, the large

number of ACL injuries still reported annually (80,000 per year in

the United States alone) (20) poses the need for screening athletes

through other tasks that can better portray the multifactorial

mechanism of ACL rupture. Among the possible ones, cutting

maneuvers has recently attracted a large attention as they represent
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the primary cause of non-contact injuries in cutting dominant

sports (i.e., rugby, American football, handball, basketball, football)

(14, 21). In this context, the injury mechanisms that have been

most commonly described include frontal plane trunk

misalignment with respect to the cutting direction, internally

rotated hip, valgus knee alignment at loading response, an

excessive extended knee, hip abduction, increased foot progression

angle, rearfoot landing, and excessive lateral foot-plant distances.

All these conditions evoke the greatest multiplanar knee joint

loading (14, 22). In particular, when females perform cutting

maneuvers, landing with an extended hip and knee, with a valgus

knee alignment, an internal rotation of the tibia, and a pronated

foot (i.e., “position of no return”) have been indicated as the

“high-risk postures” (23). We should further consider that, when

ACL is placed under stress, hamstrings are activated by both a fast-

to-respond reflex arc from ACL mechanoreceptors to the

hamstrings, and a secondary reflex arc from mechanoreceptors in

the muscle or joint capsule. The first one allows the hamstrings to

act as a torque regulator “on demand” during ligament

overloading, thus supporting in maintaining joint stability. The

second one, thanks to a longer response time than the first one,

and an inhibitory input to the quadriceps, provides activation of

the hamstrings to assist knee instability conditions (24). However,

elite athletes are subjected to nonphysiologically large forces

coupled with fast rates of load applied to the knee, which do not

allow these two reflex arcs to respond fast enough (18). This is one

of the main reasons why thigh muscle exercises and strength

improvements may not be sufficient to provide the necessary

support to reduce incidences of instability during high-impact tasks

(i.e., decelerations, landing, and changes of direction). It is in this

general framework that the inclusion of proprioceptive training

finds its applicability in prevention and rehabilitation programs

(25). Given the importance of motor control in restoring athletes

motor function after injury, therapies have been recently proposed

targeting at training the proprioceptive system to achieve

coordinated sensory–motor patterns in human movements. On the

one hand, we can find neuromuscular and proprioceptive training

exercise (26) and, on the other, vibrations applied to muscles or

tendons that can induce different effects depending on the vibrated

muscle, the sensory context, and the task. In the study by Melnyk

et al. (27) whole-body vibrations were applied on stretch reflexes

involved in knee joint control as ACL injuries prevention

treatment. Results of the study showed improved knee stability and

reduced anterior tibial displacement upon shock provocation (28).

Another non-invasive therapeutic modality commonly used is

transcutaneous electrical nerve stimulation; this technique is based

on the stimulation of the large diameter mechanosensitive afferent

nerve fibers in the skin but it is mostly used in pain control (29).

Recently, a neurorehabilitation device, Equistasi®, based on focal

mechanical vibrations (30) has been applied to modify cyclists’

pedaling posture (31), and this was reflected in a better distribution

of the pressure on the saddle of a group of amateur cyclists. The

device was originally adopted for therapeutic purposes in

Parkinson’s disease targeting at improving trunk sway (32) and gait

(33). The Equistasi® device, once applied on specific sites of the

body (i.e., muscles, trigger points), self-generates focal mechanical
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vibrations that interacts with the mechanoreceptors, the Golgi tendon

organs, and the neuromuscular spindles. To the best of the authors’

knowledge, vibrations have been applied for ACL injury prevention

purposes as a whole-body solution (27, 28); therefore, the aim of

the present study is to evaluate the impact of providing a

proprioceptive stimulus through the Equistasi® device on the

biomechanical risk factors associated with ACL injury. For this

purpose, a biomechanical evaluation was carried out directly on

the field and involved a group of elite female football players

performing a series of sidestep cutting maneuvers. This task was

selected as it is similar to the sport gestures involved in

competitions, and accounts for the majority of non-contact

injuries. From a biomechanical point of view, externally applied

knee abduction, internal rotation, flexion-extension torques, knee

flexion angle, and anterior tibial shear forces have all been

identified as the currently agreed biomarkers of non-contact ACL

injury risk (14). Furthermore females have been reported to use

both an increased knee valgus kinematics and decreased

hamstrings-to-quadriceps peak torque ratio compared to males

(17). Of these biomarkers, in the present study, lower-limb joint

angles and torques were considered, and a female elite team was

selected, due to the higher rate of incidence of ACL rupture in

females than males. The main hypothesis of the present study is

that by improving proprioception through the use of the

Equistasi® device, the multiplanar loading condition associated

with increased ACL strain could be reduced, and consequently this

could be reflected in the performance of a high-risk task such as

sidestep cutting maneuver. In order to verify the effective

elicitation of the somatosensory system, and its link with motor

control, through the application of the vibratory stimulus, the

Romberg test was performed similar to previous studies aiming at

restoring balance and motor control in individuals with

Parkinson’s disease (32, 33).
2. Material and methods

2.1. Participants

Ten female footballers (Table 1) competing in the first Italian

division were enrolled, after signing informed consent to

participate in the study. The protocol was approved by an ethics

committee (CAR 107/2021). Inclusion (exclusion) criteria were as

follows: no history (history) of previous severe injuries in the

6 months preceding the study; no identified restrictions (having

specific restrictions) to sports practice in agreement with the

team sport medicine physicians, and no previous ACL rupture.

As no data from similar studies were available, a posteriori power
TABLE 1 Demographic data of the participants involved.

Age (years) Weight (kg) Height (m) BMI (kg/m2)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)
25.30 (3.65) 58.38 (7.25) 1.66 (0.06) 21.23 (1.71)
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analysis (G * Power 3.1) was performed, which indicated a power

(1− β err prob) of 0.9 for a sample of 10 subjects based on the

posturographic variables (34).
2.2. Equistasi® device

Equistasi® is a wearable and innovative medical device, approved

by the Ministry of Health with the CNN product code number

342,575 and COP product code number 342,577. It is based on a

vibrational technology: it self-generates focal mechanical vibrations

at a non-constant frequency of about 9,000 Hz, within the limits

imposed by Legislative Decree 81/08 (30).

Equistasi® device has the following characteristics:

• It is applied as a regular bandage strip and can be worn during

motor activities;

• It is 1 cm × 2 cm in size and has a weight of 0.17 g;

• It can be reused several times; and

• Other than general wear, it does not expire.

Equistasi® is composed exclusively of nanotechnology fibers and does

not contain any pharmacological elements. The stimuli generated by

the vibrations transmits the information to the central nervous

system; once applied on the affected muscular areas, the focal

mechanical vibrations interact with the mechanoreceptors, the

Golgi tendon organs, and the neuromuscular spindles (35).

2.3. Study design

All the athletes received the Equistasi® device for 4 weeks. The

device was applied to the skin in the standard configuration as

follows (36, 37): one on the seventh cervical vertebra and two on

each soleus muscle (Figure 1). The device was worn for 1 h/day,

5 days/week (36, 37). The consistency of the study was

monitored by telephone contacts with team official doctors and

athletes. The athletes were assessed at four time points:

• T0: first assessment without wearing the Equistasi® device;

• T1: first assessment while wearing Equistasi® device;

• T2: after 2 weeks of application of the device; and

• T4: after 4 weeks of application of the device.

2.4. Instrumental protocol and data
collection

All data were acquired at the team’s site through seven

commercial cameras (four GoPro Hero 7 and three GoPro Hero

3, 1080 × 1920/4 × 3k pixel resolution, 30/240 fps) synchronized

with a wireless plantar pressure system (Blue Insole insoles, FGP
Shoe size Dominant laterality Role

Mean (SD)
38.45 (1.28) Right: 80%

Left: 20%
Defender: 50%
Midfielder: 10%
Striker: 40%
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FIGURE 1

Equistasi® device placement.
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s.r.l. and Motux S.r.l. software, 214 resistive sensors, 200 Hz).

Markers, made with double-colored tape, were applied on each

subject according to the IORgait marker set (31, 38). All the data

were synchronized in post processing through self-developed

Matlab codes (Matlab R2021). All the subject performed two

different tasks on natural grass field as follows:

Romberg test: participants were required to stand for 60 s in

both eyes open (EO) and eyes closed (EC) conditions, with their

arms along the body and the feet 30° apart (assured by a

cardboard triangle) (39, 40). The rationale behind this test was

first of all to assess the impact of the device on the

proprioceptive system (i.e., comparison between T0 and T1, with

special focus on the frequencies analysis, see Section 2.5), and

second to evaluate the possible impact on athletes’ balance over

the time (i.e., all posturographic variables in the following

comparisons: T1–T2, T2–T4).
FIGURE 2

An athlete during the sidestep cutting maneuver execution.
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Sidestep cutting maneuvers: all the athletes performed four

sidestep cutting maneuvers (two left side and two right side)

starting from a 5 m sprint; the direction of the sidestep cutting

maneuver was randomly assigned by the personal trainer during

task execution (see Figure 2).
2.5. Data analysis and variables

Once acquired, the video sequences were processed and three-

dimensional anatomical landmark coordinates extracted through

“Track On Field” software (BBSoF S.r.l.), validated in the study by

Guiotto et al. (16). From the plantar pressure insoles, the center of

pressure (COP) was extracted together with the vertical ground

reaction forces. The data were filtered with similar filters for

kinematic and kinetic parameters when involved in the calculation

of joint torques, according to Derrick et al. (41). Anatomical

landmark trajectories were filtered with a low pass Butterworth

filter (6 Hz cut off frequency) and the plantar pressure data were

filtered with a fourth-order low pass Butterworth filter (6 Hz cut

of frequency) when the ground reaction forces were extracted and

with a fifth-order low pass Butterworth filter (7 Hz cut of

frequency) when the COP was assessed (16).

From the instrumented Romberg test (42), the following

variables were extracted:

• The COP displacement [e.g., COP path, COP anterior posterior

path (Path Z), COP medial lateral path (Path X)];

• COP velocity (Vel), COPVel along both the x and z axis (Vel X,

Vel Z) in mm/s;

• 95% ellipse;

• Sway area;

• The frequency of COP oscillation in a spectrum [Discrete

Fourier Transform of Vector as FFT function in Matlab

(R2021)] which implements between 0.1 and 1 Hz: (0.25–

0.35 Hz) and (0.35–0.5 Hz) for the medium-low frequencies

that account for the vestibular apparatus, and 0.5–0.75 Hz and

0.75–1 Hz for the medium-high frequencies which account for

the somatosensory apparatus (24, 30); and
frontiersin.org
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FIGURE 3

All the variables extracted from the spectral frequencies analysis of the Romberg Test: on the y axis measure units, on the x axis the two conditions (Eyes
open EO and Eyes Close EC) for all the analyzed time frames (T0, T1, T2, and T4). The figures report the median value in the middle of the box built with
25% and 75% percentile, while whiskers are upper and lower bounds. Each title reported the frequency range. * = statistically significant difference (p <
0.05 for T0 vs T1, p < 0.017 for the others).

FIGURE 4

Ellipse, Sway Area, Rms, Path, Path X and Path Z, Velocity, Velocity X and Velocity Z extracted from Romberg Test: on the y axis measure units, on the x axis
the two conditions (Eyes open EO and Eyes Close EC) for all the analyzed time frames (T0, T1, T2, and T4). The figures report the median value in the
middle of the box built with 25% and 75% percentile, while whiskers are upper and lower bounds. * = statistically significant difference (p < 0.05 for T0 vs
T1, p < 0.017 for the others).
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• Root mean square (RMS) in mm as the vector distance from the

mean COP to each pair of points in anterior–posterior and

medial lateral direction time series (42).

From the side step cutting maneuvers, the following variables were

extracted:

• Hip, knee, and ankle joints flexion-extension angles;

• Occurrence of the hip, knee, and ankle peak flexion-extension

angles within the sidestep cutting maneuver time frame;

• Hip, knee, and ankle flexion-extension joint angles range of

motion (ROM);

• Vertical component of the ground reaction forces;

• Occurrence of the peak force value within the sidestep cutting

maneuver time frame;
FIGURE 5

(A) and (B). Joint angles bands: on the y axis degrees, on the x axis the task nor
(shaded area). On the (A) column the comparison between T0 without Equis
significant difference (p < 0.05) in blue. On the (B) column the comparison b
T4 after 4 weeks (in grey) are reported. * = statistically significant difference
T2 and T4 in black.

Frontiers in Sports and Active Living 06
• Hip, knee, and ankle joints flexion-extension and add-abduction

torques; and

• Occurrence of the hip, knee, and ankle peak flexion-extension

and add-abduction torques.

Each variable was normalized with respect to the temporal duration

of the task considered from the first contact of the landing leg up to

the toe off of the opposite leg. All the analyses were performed

through self-developed codes in Matlab R2021 (16).
2.6. Statistical analysis

Each variable (i.e., posturographic and biomechanical

variables) was compared among the different time frames, T1,

T2, and T4, through the Friedman test (139 degrees of freedom)
malized on the execution time (0–100%). Mean value (dashed line) ± 1 SD
tasi® (in blue) and T1 with Equistasi® (in red) are reported. * = statistically
etween T1 (in red) and T2 after two weeks of applications (in green) and
(p < 0.017) between T1 and T2 in red, T1 and T4 in green and between
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for non-parametric repeated measures (Matlab R2021, p < 0.05).

The Wilcoxon signed rank test (79 degrees of freedom) (Matlab

R 2021) was used for comparing variables between T0 and T1

(p < 0.05), between EO and EC conditions in each time frame

and across the different time frames as follows: T1–T2, T2–T4,

and T1–T4. Joint angles, joint torques, and ground reaction

forces were also compared at any given instant of time of the

cutting maneuver through Friedman and Wilcoxon signed rank

tests (p < 0.05) (43). Our hypotheses in the three post-hoc tests

were tested using Bonferroni adjusted alpha levels (0.05/3 =

0.017) using Matlab R 2021. To account for the effect of the

device, the effect size (Cohen’s d) (Supplementary Data B) was

calculated (Matlab R2023a) based on the ratio of the difference

between group means at couples of different time frames and the

pooled standard deviation (44).
FIGURE 6

(A) and (B). Joint torque bands between T0 and T1: on the y axis % Body Weight
(0 -100%). Mean value (dashed line) ± 1 SD (shaded area). T0 without Equistasi®

< 0.05) between T0 and T1 in blue.
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3. Results

3.1. Romberg test

As far as the Romberg test is concerned (see Figures 3, 4,

Supplementary Data A1, A2), the Wilcoxon signed rank

test revealed a statistically significant increment in both the

COP (in the medial lateral direction) and in the frequencies

associated with the somatosensory system in EO condition

between T1 and T0 and in the frequencies associated with

the vestibular system in EC condition. The Friedman test

highlighted a statistical significant reduction between T1,

T2, and T4 even if these statistical significant differences were

not confirmed in the post-hoc tests (Supplementary Data

A1, A2).
* Height (%BW*H), on the x axis the task normalized on the execution time
(in blue), T1 with Equistasi® (in red). * = statistically significant difference (p
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3.2. Sidestep cutting maneuver

For what concerns the biomechanical variables, the knee

flexion angle was significantly increased between T0 and T1 (see

Figure 5). As far as the ankle joint is concerned, a statistically

significant reduction in the plantarflexion angle was detected

between T0–T1 and T2–T4. When considering the joint torques

(see Figures 6, 7), a progressive reduction was detected from T1

up to T4 in both hip and knee abduction torques as well as in

the ground reaction forces (see Figure 8). A further reduction in

knee and hip flexion-extension torques as well as in hip and

knee abduction torques was detected between T0 and T1. Finally,

the ankle joint showed a reduction in the dorsiflexion torque

between T0 and T1, as well as from T1 up to T4. No statistically

significant differences were observed in terms of occurrence of

the peak joint angles (Figure 9) and torques (Figure 10).
FIGURE 7

Joint torque bands between T1, T2 and T4: on the y axis % Body Weight * He
-100%). Mean value (dashed line) ± 1 SD (shaded area). T1 with Equistasi® (in red
(grey). * = statistically significant difference (p < 0.017) between T1 and T2 in r
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4. Discussion

The main findings of the current study should be considered:

the statistically significant reduction observed on the knee

abduction torque following the proprioceptive stimulation both

after the immediate application of the stimuli (T1) and after 2

and 4 weeks of treatment (T2 and T4, respectively). From a

biomechanical point of view, according to Bates et al. (45), this

parameter has the potential to generate the greatest change in

ACL strain in isolated conditions than other parameters such as

anterior tibial shear force or tibial internal rotation. However, in

order to assess the overall efficacy of an injury prevention

treatment, not only this parameter should be considered (18). In

our study, this reduction in knee abduction torque was detected

in association with a progressive reduction on hip abduction

torque and ground reaction forces from T1 up to T4. A further
ight (%BW*H), on the x axis the task normalized on the execution time (0
), T2 after 2 weeks of application (in green), T4 after 4 weeks of application
ed, T1 and T4 in green and between T2 and T4 in black.
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FIGURE 8

Vertical component of the ground reaction forces. On the y axis % Body Weight, on the x axis the task normalized on the execution time (0 -100%). Mean
value (dashed line) ± 1 SD (shaded area). T0 without Equistasi® (in blue), T1 with Equistasi® (in red), T2 after two weeks of applications (in green), T4 after 4
weeks (in grey). * = statistically significant difference (p < 0.05 for T0 vs T1, p < 0.017 for the others) between T0 and T1 in blue, between T1 and T2 in red,
between T1 and T4 in green and between T2 and T4 in black.
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reduction was noted in the knee flexion-extension angle at T4 in

combination with a reduction of the ankle plantarflexion angle.

Between T0 and T1 also, lower knee and hip flexion-extension

and adduction–abduction torques were detected. Compressively,

our results showed the adoption of a landing strategy that

complies with the requirement of reducing the biomechanical

factors contributing to multiplanar loading (14). In terms of the

task chosen for assessing the efficacy of the injury prevention

approach, the present study investigated athletes based on the

biomechanical analysis of the sidestep cutting maneuver, given

the higher rate of incidence of ACL rupture in cutting dominant

sports. As the rate is further increased when females are

considered rather than males, the study focused on elite female

athletes. Given the paucity of research reporting about the
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efficacy of training programs in terms of biomechanical analysis,

an important novelty of the current study should be considered

that a complete biomechanical analysis of the lower-limb joints

was performed before and after the treatment at different time

points. In particular, as no consensus was reached about the

most crucial variables for describing cutting maneuvers (33), the

ones available for identifying a poor landing strategy were

chosen. These are indeed associated with the ligament,

quadriceps, trunk, and leg dominance theories developed for

landing tasks, namely, hip, knee, and ankle flexion angles (i.e.,

quadriceps dominance theory); hip, knee, and ankle flexion and

adduction–abduction torques (i.e., ligament dominance theory);

and vertical ground reaction forces (i.e., softer landings

associated with better trunk control) (18). According to the
frontiersin.org
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FIGURE 9

(A) and (B). Position of the peak of each analyzed angle within the task (in the text referred to as occurrence). On the y axis % task, on the x axis each
analyzed time frame (T0, T1, T2 and T4) for each joint (H = Hip, K = Knee, A = Ankle). (A) on the top the data of T0 (in blue) and T1 (in red), are
reported. * = statistically significant difference (p < 0.05) between the two apex of the parenthesis. (B) on the bottom the data of T1 in red, T2 after
two weeks of applications in green and T4 after 4 weeks in grey are reported. *= statistically significant difference (p < 0.017) between the two apex
of the parenthesis.
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findings of the present study, the proprioceptive stimulation

showed to have the potential to improve cutting biomechanics

related to the ligament theory, as a decreased knee abduction

torque was registered immediately after the device application

(T1) and at the two following evaluations (T2 and T4).

Noticeably, the observed reduction on hip flexion and abduction

torques as well as on hip and knee flexion angles might indicate

the achievement of a movement strategy able to overcome the

quadriceps dominance theory. Further reduction detected in the

vertical ground reaction forces at T1 and T2 suggests an

improvement in the ability to perform “softer” contact with the

ground. This could be interpreted as an indirect measure of a

better trunk control (18). The immediate effects of

proprioceptive stimulation can be found in the posturographic

analysis results, which showed the promotion of an activity in

both the vestibular and somatosensory apparatus and in COP

path x (anterior–posterior direction) following the application of

the device in T1 respect to T0 (Figure 3 and Supplementary

Data A).
Frontiers in Sports and Active Living 10
These results together with the ones from the Friedman Test

are in agreement with recent findings that detected

improvements in motor controls of healthy and pathological

individuals including athletes (31, 43) after the application of a

vibratory stimulus. Even though localized muscle vibration

basic principles are known, their effects and the scenario of all

possible applications both in sport and clinics are still poorly

investigated (46–50). With respect to this, it is important to

highlight that the present study adopted localized muscle

vibration, which, by targeting directly the muscle–tendon unit

of interest, has the advantage of strongly stimulating the

muscle spindles and the excitatory drive from the afferent

neurons to the homonymous motor unit pool (46–51). This is

further supported by a recent work that investigated the effect

of Equistasi® device on the somatosensory pathway through

the analysis of high-frequency oscillations, and demonstrated

that vibrotactile afference, delivered by the device, were able to

interfere with the somatosensory processing (35). A number of

limitations should be acknowledged: first of all the small
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https://doi.org/10.3389/fspor.2023.1134702
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


FIGURE 10

Position of the peak of each analyzed torque within the task (in the text referred to as occurrence). On the y axis % task, on the x axis each analyzed time
frame (T0, T1, T2 and T4) for each joint (H = Hip, K = Knee, A = Ankle). (A) on the top it is reported the comparison between T0 (in blue) and T1 (in red ). * =
statistically significant difference (p < 0.05) between the two apex of the parenthesis. (B) on the bottom the data of T1 (in red), T2 (in green) and T4 (in grey)
are reported. * = statistically significant difference (p < 0.017 ) between the two apex of the parenthesis.

Spolaor et al. 10.3389/fspor.2023.1134702
sample size does not allow generalization of the current findings

and, in particular, this could be the reason why the statistically

significant differences highlighted by the Friedman test in the

posturographic parameters were not confirmed in the post-hoc

analysis. The trunk motion was not analyzed; therefore, the

potential improvement on the trunk control during high-risk

postures was not accounted for. The placebo effect of the

application of the device cannot be neglected as the current

study lacks a comparison with a placebo device, differently

from what was previously performed by the authors in an

assessment of a group of individuals with Parkinson’s disease

(37). The study lacks a comparison with a control group

performing a different prevention training, especially the most

common ones such as muscle strengthening and stretching. No

follow-up was performed in order to define the treatment

duration effects; joint kinetics was assessed through plantar

pressure data combined with 3D video analysis, and thus

possibly affected by similar errors as the one reported in the

study by Guiotto et al. (16) when compared with

stereophotogrammetry and force plates. However, it should be

noted that there is agreement toward encouraging the

assessment of the biomechanical risk factors (52) directly on

the field, especially when complex gestures are analyzed such

as sidestep cutting maneuvers.

In conclusion, the overall study demonstrated the possibility

to improve the biomechanics of cutting on a group of female elite

soccer players through the application of a vibratory based

proprioceptive stimulation with the Equistasi® device.

Noticeably, this study assessed the biomechanical risk factors

associated with ACL injury risk directly on the field, while

performing a task more similar to the sport gestures involved

in competition, such as sidestep cutting, and which accounts

for the majority of non-contact injuries. Results were

encouraging when compared with similar studies reporting
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about the application of injury prevention programs to

improve the biomechanics of landing. Future research is

needed to support the current findings, especially by including

a larger number of athletes, by adding a placebo device for

removing any possible placebo effect, by comparing the

treatment with currently used strengthening and stretching

programs, and by adding further time point evaluations to

detect the duration of the treatment effects.
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