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Background: Reduced testosterone levels can influence immune system function,
particularly T cells. Exercise during cancer reduces treatment-related side effects
and provide a stimulus to mobilize and redistribute immune cells. However, it is
unclear how conventional and unconventional T cells (UTC) respond to acute
exercise in prostate cancer survivors compared to healthy controls.
Methods: Age-matched prostate cancer survivors on androgen deprivation
therapy (ADT) and those without ADT (PCa) along with non-cancer controls
(CON) completed ∼45 min of intermittent cycling with 3 min at 60% of peak
power interspersed by 1.5 min of rest. Fresh, unstimulated immune cell
populations and intracellular perforin were assessed before (baseline),
immediately following (0 h), 2 h, and 24 h post-exercise.
Results: At 0 h, conventional T cell counts increased by 45%–64% with no
differences between groups. T cell frequency decreased by −3.5% for CD3+ and
−4.5% for CD4+ cells relative to base at 0 h with CD8+ cells experiencing a delayed
decrease of −4.5% at 2 h with no group differences. Compared to CON, the
frequency of CD8+CD57+ cells was −18.1% lower in ADT. Despite a potential
decrease in maturity, ADT increased CD8+perforin+ GMFI. CD3+Vα7.2+CD161+

counts, but not frequencies, increased by 69% post-exercise while CD3+CD56+ cell
counts increased by 127% and were preferentially mobilized (+1.7%) immediately
following the acute cycling bout. There were no UTC group differences. Cell
counts and frequencies returned to baseline by 24 h.
Conclusion: Following acute exercise, prostate cancer survivors demonstrate normal
T cell and UTC responses that were comparable to CON. Independent of exercise,
ADT is associated with lower CD8+ cell maturity (CD57) and perforin frequency that
suggests a less mature phenotype. However, higher perforin GMFI may attenuate
these changes, with the functional implications of this yet to be determined.
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1. Introduction

Prostate cancer is one of the most common malignancies in

U.S. men (1). With 5-year survival rates of ∼95% in localized

disease (1), treatment for prostate cancer is highly effective but is

accompanied by many side effects, including alterations in

immune cell function (2–9). A robust immune system is critical

for immunosurveillance, with regular exercise being one

approach to boost immunity (10, 11). Current exercise oncology

guidelines exist (12, 13) but do not include recommendations for

immune function. This gap is likely the result of a limited

number of high-quality studies in these areas.

Prostate cancer treatments for localized disease include

prostatectomy, radiation, and hormone therapy. While effective

in reducing tumor growth, these treatments include numerous

adverse effects. Specifically, androgen deprivation therapy (ADT)

has negative impacts on multiple physiological systems (14), with

a direct influence on immune function, although the response is

complex and paradoxical. Potential benefits of ADT on

circulating immune cell function include increased CD3+, CD4+

and CD8+ cell counts (8), greater T cell proliferation (2), and

decreased CD4+CD25+ (Treg) cells (7). Moreover, ADT increases

CD3+ and CD8+ cell infiltration within the prostate (3, 6),

although comparable increases in CD4+CD25+ have also been

observed (6). In contrast, others report decreased mitogenic

response to stimulation in CD8+ cells (5, 7) or only minimal

changes in CD3+, CD4+ and CD8+ populations (4, 5), although

naïve CD4+ T cell frequency was consistently elevated (5, 9).

Additionally, increases in pro-inflammatory cytokines have been

linked to ADT (15, 16). While greater numbers, proliferation,

and infiltration by T cells may improve management of the

tumor burden, these benefits may be offset by elevations in

chronic inflammation (17) that reduces cellular immunity and

leads to a pro-tumor environment (18).

Exercise is a safe, effective, and non-pharmacological means of

stimulating the immune system (19–22). Current exercise oncology

guidelines recommend bouts of both aerobic and resistance

exercise performed at moderate to vigorous intensities for

>150 min per week (12, 13). The immune system of healthy

individuals is highly responsive to acute exercise via increases in

cell number, cytotoxic function, and changes in circulating

frequency that reflect redistribution of cells into the tissues (10,

23). However, in cancer survivors, this response has been far less

studied (24, 25). In prostate cancer specifically, there are very few

acute exercise and immune studies. Initially, modest increases in

complete blood counts are reported following resistance exercise

(20). Our group observed that one bout of aerobic exercise

increased CD3−CD56+ natural killer (NK) cell frequency in men

with PCa (21), although ADT tended to attenuate exercise-

induced mobilization compared to non-cancer controls.

Additionally, NK cell IFNγ expression was higher with ADT

which suggests a more immature phenotype, despite no

differences in maturity (CD57+) or function (perforin) markers.

Recently, high intensity interval exercise increased

CD3−CD16+CD56+ NK cells, along with CD3+CD8+ T cells and
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CD3+CD56+ natural killer-like T (NKT-like) cell counts (22). NK

and T cell CD57+ counts and cytotoxic activity also increased,

which appears as a more mature phenotype with higher

functional capacity. However, a single bout of acute exercise was

insufficient to induce NK cell infiltration within the prostate

tissue (19). Collectively, these studies provide an overview of

the potential benefits (e.g., increased cell numbers, greater

cytotoxicity) of acute exercise during prostate cancer,

although NK cells appear overrepresented in oncology

populations (24, 26). Consequently, the limited examination of

other cell types constitutes a gap in the literature with, to

our knowledge, only one study that examines non-NK cell

populations in men with prostate cancer (22).

To address this gap, we sought to examine the response of T

cell populations to acute exercise in prostate cancer survivors. As

part of the adaptive immune system, conventional T cells express

a diverse repertoire of α and β chains within the T cell receptor

(TCR), along with the co-receptors CD4 and CD8 (27). These

cells recognize cancer antigens via the major-histocompatibility

complex (MHC)−1 (28) and produce cytotoxic proteins (e.g.,

perforin, granzyme B) and cytokines to enhance the response of

other cells. In contrast, unconventional T cells that includes

mucosal associated invariant T (MAIT) cells (29) NKT cells (30)

that have properties of both the innate and adaptive immune

systems (31). MAIT cells are characterized by an invariant Vα7.2

chain within the TCR and are MR-1 restricted (29) while NKT

express NK1.1 (CD161) and are restricted via the non-classical

MHC-1 protein CD1d (32). MAIT and NKT cells also produce

key cytokines and cytotoxic proteins that activate other immune

cells and kill tumor cells, respectively (33). While conventional

and unconventional T cells are responsive to acute exercise and

share functional properties that play critical roles in tumor

management (33), these data arise from healthy populations

primarily and the response in men with prostate cancer is

unknown. Additionally, previous investigations in prostate cancer

often lack comparison groups to contextualize the response. We

have previously observed impaired stress hormone release (34)

and T cell mobilization (35) following acute exercise in breast

and prostate cancer survivors, respectively. As such, including

non-cancer controls who represent the normal response and

separating PCa survivors based on androgen status may help

isolate the effects of testosterone suppression on immune function.

Therefore, the purpose of this study was to determine the

response of conventional (CD3+, CD4+ and CD8+) and

unconventional T cells (MAIT, NKT-like) to acute, moderate

intensity aerobic exercise in prostate cancer survivors with and

without ADT relative to age-matched controls without cancer.

We hypothesized that both conventional and unconventional T

cell populations would be mobilized immediately post exercise

before returning to resting levels within 24 h of recovery. With

the potential of thymic regeneration following prolonged ADT

(8), we further hypothesized that men lacking testosterone would

exhibit smaller T cell responses to acute exercise and that CD8+

T cell and NKT-like T cells would have reduced CD57 and

perforin levels.
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2. Materials and methods

2.1. Design

This study was a pre-planned secondary analysis, with the

methodology for this study previously published for the primary

outcomes (21, 34). In brief, this 4-visit study was completed

across 1–2 weeks. Following an initial familiarization session

(visit 1), cardiopulmonary exercise testing (CPET, visit 2) was

performed. The main testing sessions (visit 3 and 4) were held

on subsequent days ∼1 week after visit 2 in the early morning

and at the same time of day to minimize the influence of diurnal

variations on hormonal concentrations and immune cell

circulation in the periphery.
2.2. Participants

Men diagnosed with prostate cancer on ADT [ADT; n = 11,

67 (2 years)] and not on ADT [PCa; n = 14, 67 (2 years)] were

recruited from physician collaborators and support groups in

Melbourne, Australia along with non-cancer controls [CON;

n = 8, 64 (3 years)]. ADT and PCa were pathologically

diagnosed with prostate cancer via biopsy, were inactive (no

regular exercise except for walking for previous 6 months)

and were screened for acute or chronic conditions that would

contraindicate participation in aerobic exercise. Men on ADT

were treated with luteinizing releasing hormone agonists

(91%) and anti-androgen receptor (9%) medications for 3+

months prior to enrolling in the study. CON reported no

previous history of cancer and met all inclusion and exclusion

criteria.

Exclusion criteria included uncontrolled prostate cancer,

symptomatic cardiovascular disease, any conditions that caused

severe pain with exertion, Type 1 diabetes, uncontrolled Type 2

diabetes, history of bone fractures, inability to engage safely in

moderate exercise, or lack of medical clearance from their

oncologist, urologist, general practitioner or specialist physician.

All participants provided written informed consent. Local ethics

committees at Peter MacCallum Cancer Centre, Victoria

University, and Western Health approved this project. All

procedures were conducted in accordance with principles set out

in the Declaration of Helsinki.
2.3. Visit 1

To familiarize participants with CPET procedures, participants

were fitted with a mask to collect expired gases and to the

electronically braked cycle ergometer (Lode, Gronigen,

Netherlands). Participants completed 3–4 submaximal stages

(0 watts up to 60 or 80 watts). Preassessment guidelines for the

main testing session were discussed and included: 2+ hours

fasted, no exercise in previous 24 h, and no caffeine or alcohol

for previous 12 and 48 h, respectively.
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2.4. Visit 2

Body composition was determined using dual-energy x-ray

absorptiometry (Hologic, Waltham, MA, USA). Quality control

checks were completed daily, and all scans were performed and

analyzed by the same certified densitometry technician (EH).

A CPET was used to determine peak oxygen consumption

(VO2peak) and exercise trial workloads. Participants completed

1-minute stages with 20 watt increases until volitional

exhaustion. Expired gases were sampled every 15 s using

automated gas analyzers (Moxus Modular VO2 System, AEI

Technologies, Pittsburgh, PA, USA) calibrated prior to each test.

VO2peak was determined as the average oxygen consumption

across the last minute of the CPET. Heart rate was assessed

continuously via 12 lead electrocardiogram (GE Case Cardiosoft

v6.6 ECG Diagnostic Systems, Palatine, IL, USA) and rate of

perceived (RPE) exertion using the original Borg scale at the end

of each stage.
2.5. Visits 3 and 4

Approximately 1 week later, participants arrived in the

laboratory between 0600 and 0900 and preassessment guidelines

were confirmed verbally. A venous catheter was inserted, and an

initial resting blood sample was obtained. Participants then

completed an acute, intermittent exercise bout consisting of 10

intervals of 3 min of cycling at 60% of peak wattage from the

CPET followed by 1.5 min of passive recovery (45 min total

time), as adapted from studies in breast cancer survivors (36).

Respiratory gases were sampled throughout the trial and the last

minute of each exercise stage was used to determine oxygen

consumption, respiratory exchange ratio, and the percentage of

exercise relative to VO2peak. Heart rate and RPE were obtained

in the last 30 s of all stages. Blood samples were also obtained

immediately (0 h) and 2 h after exercise. During the recovery

period, participants remained seated and consumed water ad

libitum. Participants went home and returned to the laboratory

24 h after exercise for the last blood sample. They were asked to

consume an identical meal prior to visits 3 and 4.
2.6. Hematology analysis

Complete blood counts from each time point were determined

in duplicate and averaged (Sysmex KX-21N, Kobe, Japan), with a

maximal white blood cell difference of 0.1 cells/µl between

replicates. Hemoglobin and hematocrit were used to estimate

plasma volume shifts following exercise (37).
2.7. Peripheral blood mononuclear cells
isolation and immunofluorescence

Freshly isolated peripheral blood mononuclear cells were

labelled as previously described (38, 39). Briefly, whole blood was
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diluted in PBS and isolated using SepMate-50 (Stemcell,

Vancouver, BC Canada) following manufacturer instructions.

Peripheral blood mononuclear cells were washed, counted via

hemocytometer and 2 × 106 cells were aliquoted for

immunolabelling.

T cell phenotyping was performed via direct

immunofluorescence labelling of cells by identifying surface

markers with mouse anti-human monoclonal antibodies

(Biolegend, San Diego, CA) for 15 min at 4°C in the dark.

Lymphocytes were gated using forward and side scatter

parameters, with T cells identified as CD3+ (APC-Cy7), along

with CD4+ (V500) and CD8+ (PE Cy7). MAIT cells were

identified within total T cells using Vα7.2 (PE) and CD161

bright (BV421), along with the CD8+ subpopulation, while NKT-

like cells were CD3+and CD56+ (AF647). CD57 (Pacific Blue)

was used as a marker of maturity and differentiation status. In

addition, intracellular perforin (PE) was assessed as an indicator

of function for CD8+ and CD3+CD56+ NKT-like cells, as

performed previously (21). Briefly, cells were washed twice in

PBS before fixation and permeabilization following manufacturer

instructions (Cytofix/Cytoperm kit, BD Biosciences, San Jose,

CA). Intracellular perforin (PE, Biolegend, San Diego, CA) was

stained at 4°C in the dark for 30 min. Cells were then washed

and resuspended prior to flow cytometry analysis.
FIGURE 1

Gating strategy used to identify conventional and unconventional T cells. Conve
cells (C) before being subdivided using CD4+ and CD8+. Within the CD8+ po
Associated Invariant T (MAIT) cells were identified using (F) lymphocytes,
subdivided using CD4 and CD8. Natural killer (NK)-like T cells were identified
created for (L) perforin and (M) CD57.
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2.8. Flow cytometry

500,000 events for each sample were acquired and analyzed via

flow cytometry on a BD Canto II running FACSDIVA v6.1 (BD

Biosciences) software. Flow cytometry analyses were done in

duplicate by blinded investigators (EC, GS) using FCS express

v7.0 (Pasadena, CA, USA), with the gating strategy shown in

Figure 1. Total T cell counts (cells/µl) were determined by

multiplying the CD3+ cell frequency with the hematology

lymphocyte count (38, 39). T cell subpopulation counts were

determined by multiplying the T cell count by the frequency of

the respective sub-populations. Intracellular perforin expression

was quantified as the frequency of cells staining positive along

with using the geometric mean fluorescent intensity (GMFI).

Fluorescence minus one (FMO) and single color compensation

tubes were used with every experiment.
2.9. Hormone analysis

Prostate specific antigen (R & D Systems, Minneapolis, MN,

USA) and total testosterone levels (Abnova, Taipei City, Taiwan)

were determined in duplicate using ELISA, as described

previously (34).
ntional T cells were identified using (A) lymphocytes, (B) followed by CD3+

pulation, histograms were created for (D) CD57 and (E) perforin. Mucosal
(G) CD3+, and (H) Vα7.2+ and CD161+ cells. (I) MAIT cells were then
using (J) lymphocytes, (K) then CD3+CD56+ cells, and histograms were
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TABLE 1 Baseline participant characteristics.

ADT (n = 11) PCa (n = 14) CON (n = 8)
Age (y) 67 ± 7 67 ± 7 64 ± 8

Mass (kg) 91.9 ± 19.8# 81.0 ± 8.1 75.1 ± 6.4

Height (cm) 173.1 ± 8.1 174.9 ± 6.0 173.1 ± 3.9

% Fat 29.9 ± 6.7# 25.3 ± 3.9 21.0 ± 3.5

Comorbiditiesa 1.5 ± 1.1 1.4 ± 1.1 0.6 ± 1.1

PSA (ng/ml) 9.3 ± 26.8 1.6 ± 2.5 1.9 ± 1.2

Total T (ng/dl) 46.3 ± 23.5†,# 640.7 ± 354.2 669.2 ± 231.1

Gleason Score 8 ± 1† 7 ± 1 –

Diagnosis Days 1,241 ± 1,365 1,307 ± 1,099 –

Prostatectomy (%) 36 43 –

Radiation (%) 55 50 –

Length of ADT (d) 596 ± 383 – –

Mean ± SD.
aComorbidities is the sum of the following conditions being present: hypertension,

hypercholesterolemia, Type II diabetes, smoker, former smoker, and regular

alcohol consumption.
#P < 0.05 vs. CON.
†P < 0.05 vs. PCa.
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2.10. Statistical analysis

Group differences for participant characteristics were assessed

using one-way ANOVA with Tukey post-hoc analysis. Immune

outcomes were analyzed using a linear mixed model, with group

and time as fixed factors and subjects as a random effect

(21, 33). Group x time interactions were resolved with simple

effects examining the group response at each time point. Non-

significant interactions were removed from the model. Raw data

are presented as mean ± SD, modelled data are presented as

mean ± SE with percent changes and model estimates being

expressed relative to baseline or the CON group and include 95%

confidence intervals. All data were analyzed using Jamovi v2.25

and figures were created in GraphPad Prism version 9 (La Jolla,

CA, USA). Statistical significance was set at P < 0.05 for main

effects and P < 0.1 for group x time interactions, given the

exploratory nature of this analysis.
3. Results

3.1. Participants

Men in this study were inactive but relatively healthy otherwise.

Men on ADT had higher body mass (P = 0.019) and % fat

(P < 0.001) compared to CON. Apart from total testosterone

(P < 0.001) and Gleason scores (P = 0.007), ADT and PCa were

otherwise similar. These data have been published previously

(21, 34) and are summarized in Table 1.
3.2. Physiological response to acute
exercise

Absolute VO2peak (L/min), maximal HR, and peak power

outputs from the CPET were similar between groups with
Frontiers in Sports and Active Living 05
relative VO2peak (ml/kg/min) being lower for ADT (P = 0.040,

Supplementary Table S1) compared to CON. During the

intermittent exercise protocol performed at a standardized load

of 60% of peak power output, average heart rate and oxygen

consumption during exercise were 83.9 ± 10.2% and 80.7 ± 7.8%

of maximum with RPE values that were between 12 and 13 and

were similar across groups, as reported previously (34).
3.3. Complete blood count changes

A group x time interaction was present for leukocyte counts

(P = 0.016, Supplementary Table S2). There was an initial

increase at 0 h, CON increased by 46%, ADT by 57%, and PCa

by 39%, with no group difference. At 2 h, leukocytes decreased

slightly from 0 h but remained elevated relative to baseline for

CON (33%) and ADT (33%) while PCa increased to 46%, which

led to a difference in the change from 0 h to 2 h between ADT

and PCa (+1.7 × 103 cells/µl; P = 0.007). Independent of group,

lymphocytes increased by 58% at 0 h before returning to baseline

by 2 h and 24 h with similar patterns observed for mixed cells.

Neutrophils increased by 46% and 64% at 0 h and 2 h,

respectively, but returned to baseline by 24 h. Compared with

baseline, plasma volume decreased by −13.4 ± 0.9 (P < 0.001) at

0 h, −4.9 ± 1.0 (P < 0.001) at 2 h and −2.3 ± 1.0 (P = 0.039) at

24 h and were similar across groups.
3.4. Conventional T cell counts and
frequencies

There were no group differences for conventional T cell

counts or frequencies. At 0 h, CD3+ counts increased by 51%

(+457 cells/µl, 95% CI 334, 580; P < 0.001, Figure 2A),

CD3+CD4+ counts increased by 45% (+273 cells/µl, 95% CI 183,

364; P < 0.001, Figure 2B), and CD3+CD8+ counts increased by

64% (+167 cells/µl, 95% CI 113, 221; P < 0.001, Figure 2C). At

2 h, there was a trend for CD8+ counts to decrease below

baseline by 19% (−50 cells/µl, 95% CI −105, 4; P = 0.074).

At 0 h, CD3 + cell frequency decreased (−3.5%, 95% CI −6.4,
−0.7; P = 0.018, Figure 2D), while CD3+CD4+ (−4.5%, 95% CI

−7.9, −1.3; P = 0.008, Figure 2E) decreased initially but then

increased at 2 h (+5.6%, 95% CI 2.3, 8.9; P = 0.001). CD3+CD8+

did not increase at 0 h, but decreased below baseline at 2 h

(−4.5%, 95% CI −7.6, −1.5, P = 0.005, Figure 2F).
3.5. Cytotoxic T cell CD57 and perforin
counts, frequencies, and expression levels

CD57 was used as a marker of maturity within CD3+CD8+ cells.

At 0 h, CD3+CD8+CD57+ counts increased by 75% (+79 cells/µl, 95%

CI 31, 127; P = 0.002, Table 2) with no change in frequency over time.

ADT had a lower frequency of CD3+CD8+CD57+ cells compared to

both PCa (−15.1%, 95% CI −22.5, −7.8; P < 0.001) and CON

(−18.1%, 95% CI −26.3, −9.9; P < 0.001).
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FIGURE 2

Changes in conventional T cell populations at baseline (base) and during recovery from acute aerobic exercise. Cell counts are reported for (A) CD3+,
(B) CD3+CD4+, and (C) CD3+CD8+ T cells. Cell frequencies reported for (D) CD3+, (E) CD3+CD4+, and (F) CD3+CD8+ T cells Data are reported as
mean and standard deviation. *, **, *** P < 0.05, P < 0.01, P < 0.001 vs. Baseline.

Hanson et al. 10.3389/fspor.2023.1173377
At 0 h, CD3+CD8+Perforin+ counts increased by 68%

(+120 cells/µl, 95% CI 60, 181; P < 0.001, Table 2) before

decreasing below baseline at 2 h (−68 cells/µl, 95% CI −127, −10;
P = 0.026). For CD3+CD8+Perforin+ frequency, there was a group

x time interaction (P = 0.031). There were no baseline differences.

At 0 h, both CON (−26.3%, 95% CI −29.0, −23.6; P = 0.018) and

PCa decreased (−16.2%, 95% CI −17.0, −15.4; p = 0.074), although

the latter demonstrated only a trend. ADT was unchanged initially

but then decreased below baseline at 2 h (−23.6%, 95% CI 20.9,

−26.3, −20.9; P = 0.008). For GMFI, ADT CD3+CD8+Perforin+
Frontiers in Sports and Active Living 06
expression was higher than both PCa (+1,851, 95% CI 614, 3,088;

P = 0.007) and Con (+2,826, 95% CI 1,435, 4,218; P < 0.001).
3.6. Unconventional T cell counts and
frequencies

At 0 h, CD3+Vα7.2+CD161+ counts increased by 69% (+17 cells/µl,

95% CI 9, 24; P < 0.001, Figure 3A), CD3+Vα7.2+CD161+CD8+ counts

increased by 69% (+12 cells/µl, 95% CI 7, 17; P < 0.001, Figure 3B),
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TABLE 2 CD57 and perforin expression in CD3+CD8+ T cells before and after acute exercise.

Base 0 h 2 h 24 h
CD8+CD57+ (×103 cells/µl) Total 105 ± 23 184 ± 24** 83 ± 24 111 ± 23

ADT 92 ± 36 204 ± 43 90 ± 41 56 ± 38

PCa 110 ± 38 150 ± 38 68 ± 38 111 ± 38

CON 113 ± 46 199 ± 46 93 ± 46 166 ± 46

CD8+CD57+ (%) Total 42.2 ± 3.2 35.6 ± 3.4 46.3 ± 3.1 42.0 ± 3.3

ADT 34.3 ± 5.1#,† 26.6 ± 6.3#,† 33.8 ± 5.3 #,† 27.0 ± 5.1 #,†

PCa 47.6 ± 5.3 44.1 ± 5.1 42.4 ± 5.1 48.2 ± 5.1

CON 44.7 ± 6.3 36.1 ± 6.3 62.8 ± 5.9 50.7 ± 6.9

CD8+Perf+ (×103 cells/µl) Total 105 ± 23 184 ± 24** 83 ± 24* 111 ± 23

ADT 92 ± 36 204 ± 43 90 ± 41 56 ± 38

PCa 110 ± 38 150 ± 38 68 ± 38 111 ± 38

CON 113 ± 46 199 ± 46 93 ± 46 166 ± 46

CD8+Perf+ (%) Total 71.2 ± 4.0 56.7 ± 4.3 58.7 ± 3.9 52.9 ± 3.9

ADT 62.5 ± 6.3 61.6 ± 7.9 39.0 ± 6.1* 49.4 ± 6.1

PCa 76.3 ± 6.3 60.1 ± 6.3 59.5 ± 6.1 60.6 ± 6.1

CON 74.7 ± 7.9 48.4 ± 7.9* 77.7 ± 7.4 48.8 ± 7.7*

CD8+Perf+ (GMFI) Total 2,398 ± 439 3,167 ± 464 3,259 ± 433 3,094 ± 433

ADT 3,918 ± 688 #,† 4,868 ± 848 #,† 3,735 ± 688 #,† 5,633 ± 688 #,†

PCa 1,871 ± 718 2,348 ± 688 3,955 ± 688 2,578 ± 688

CON 1,404 ± 862 2,286 ± 862 2,086 ± 862 1,073 ± 862

Mean ± SE from the estimated marginal mean. When statistical significance is indicated on the Total, this represents a main effect. GMFI, geometric mean fluorescent

intensity.

*P < 0.05

**P < 0.01 vs. baseline.
#P < 0.05 vs. CON.
†P < 0.05 vs. PCa.

Hanson et al. 10.3389/fspor.2023.1173377
and CD3+CD56+counts increased by 127% (+99 cells/µl, 95% CI 68,

131; P < 0.001, Figure 3C).

There were no changes in CD3+Vα7.2+CD161+ or

CD3+Vα7.2+CD161+CD8+ cell frequency (Figures 3D & 3E), while

CD3+CD56+cells were increased at 0 h (+1.7%, 95% CI 0.8, 2.6; P

< 0.001, Figure 3F) and 24 h (+1.1%, 95% CI 0.2, 2.1; P = 0.017).
3.7. NKT-like cell CD57 and perforin counts,
frequencies, and expression levels

At 0 h, CD3+CD56+CD57+ counts increased by 138%

(+65 cells/µl, 95% CI 43, 88; P < 0.001, Table 3) with a non-

significant increase in frequency at 0 h followed by a decrease at

2 h (−3.6% 95% CI −9.3, −1.7; P = 0.006) compared to baseline.

There was a group x time interaction for CD3+CD56+Perforin+

counts, with ADT increasing by 172% at 0 h (+101 cell/uL, 95% CI

60, 142, P < 0.001, Table 3) while PCa (+82%, P = 0.115) and CON

(+92%, P = 0.295) experienced smaller, non-significant rises.

CD3+CD56+Perforin+ frequency revealed an overall effect of time

(P = 0.025). However, post hoc analysis revealed that none of the

time points were different from baseline. Perforin GMFI was

unchanged across group or time.
4. Discussion

ADT slows tumor progression and increases survival but has

many potential side effects, including alterations in the immune

system. Regular exercise targets many adverse outcomes, but
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specifics regarding best practice on enhancing immune function

in cancer survivors remains unclear. In the present study, the

effects of acute exercise on T cell counts, frequency, and

functional markers in men with prostate cancer were examined.

We found that (i) the conventional T cell response in prostate

cancer survivors is similar to non-cancer controls; (ii) overall

CD57 frequency in CD8+ T cells is lower with ADT, suggesting

reduced maturation in the absence of testosterone, yet higher

perforin expression levels were observed that may represent a

compensatory response; and (iii) UTCs demonstrate increased

counts with acute exercise in all groups, with NKT-like cells

showing preferential mobilization whereas MAIT cells did not.

Collectively, these data provide evidence that moderate-vigorous

bouts of acute exercise effectively mobilize T cells during PCa,

with apparent recovery within 24 h without reduced immune cell

counts, frequency, or potential function.

To provide context, the limitations and strengths of the study

are presented initially. Limitations include modest sample sizes

per group and variable time since diagnosis. Both may have

impacted the ability to detect group x time interactions, which is

why a value of P < 0.1 was used. No direct measurements of

cytotoxic function were assessed. Instead, intracellular perforin

levels were used as a surrogate measure of cellular function.

Finally, NKT-like cells (vs. bona fide NKT cell) were examined,

as access to the Cd1D tetramer was not readily available at study

inception. The use of NKT-like cells is a common limitation in

exercise immunology (33), and likely contributes to the higher-

than-expected frequencies observed compared to actual NKT

cells (31). Strengths of the study include reporting of all immune

outcomes for pooling of data in future analyses (24), examining
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FIGURE 3

Changes in unconventional T cell populations at baseline (base) and during recovery from acute aerobic exercise. Cell counts are reported for
(A) CD3+Vα7.2+CD161+ Mucosal Associated Invariant T (MAIT) cells, (B) CD3+Vα7.2+CD161+CD8+ MAIT cells, and (C) CD3+CD56+ Natural killer (NK)-
like T cells. Cell frequencies are reported for (D) CD3+Vα7.2+CD161+ MAIT cells, (E) CD3+Vα7.2+CD161+CD8+ MAIT cells, and (F) CD3+CD56+ NKT-
like cells. Data are reported as mean and standard deviation. *, **, *** P < 0.05, P < 0.01, P < 0.001 vs. Baseline.
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PCa and ADT separately to better isolate exercise effects, the use of

multiple recovery time points, and the inclusion of more complex

phenotyping and investigating UTCs.

In men with prostate cancer, acute exercise produces a typical

mobilization of conventional T cells that mirrors that of non-

cancer controls. All T cell counts increased at 0 h, with greater

relative increases in the CD8+ populations. While CD3+ cell

counts increased, the frequency decreased overall as concomitant

increases in NK cells occurred at greater rates in these men (21).
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Additionally, CD8+ T cell frequency increased while CD4+

frequency decreased, with the relative changes of these sub-

populations mirroring each other here and elsewhere (35, 39).

Overall, these T cell count and frequency changes are consistent

with previous work in breast cancer survivors (35) while

supporting and extending recent work in prostate cancer

survivors (22). A shift towards cells with greater cytotoxicity

following adrenergic receptor stimulation is well established, as

NK and CD8+ cells demonstrate greater mobilization following
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https://doi.org/10.3389/fspor.2023.1173377
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/


TABLE 3 CD57 and perforin expression in CD3+CD56+ T cells before and after acute.

Base 0 h 2 h 24 h
CD3+CD56+CD57+ (×103 cells/µl) Total 47 ± 15 112 ± 15*** 32 ± 15 62 ± 16

ADT 48 ± 24 126 ± 24 39 ± 24 64 ± 24

PCa 38 ± 25 80 ± 25 27 ± 25 54 ± 27

CON 56 ± 30 131 ± 30 30 ± 30 68 ± 31

CD3+CD56+CD57+ (%) Total 56.6 ± 4.4 59.5 ± 4.4 51.1 ± 4.5** 52.9 ± 4.5

ADT 52.0 ± 6.8 58.6 ± 6.8 49.3 ± 6.9 46.8 ± 6.8

PCa 52.5 ± 7.6 55.1 ± 7.6 47.5 ± 7.6 52.8 ± 7.7

CON 65.3 ± 8.6 64.9 ± 8.6 56.4 ± 8.6 59.2 ± 8.7

CD3+CD56+Perf+ (×103 cells/µl) Total 41 ± 14 93 ± 14 29 ± 14 55 ± 14

ADT 59 ± 21 161 ± 21*** 55 ± 22 80 ± 22

PCa 38 ± 23 69 ± 23 21 ± 23 52 ± 25

CON 26 ± 27 50 ± 27 11 ± 27 32 ± 28

CD3+CD56+Perf+ (%) Total 51.3 ± 5.7 57.2 ± 5.7 46.7 ± 5.7 47.6 ± 5.8

ADT 50.8 ± 8.8 62.2 ± 8.8 51.5 ± 8.9 49.5 ± 8.8

PCa 52.3 ± 9.7 54.3 ± 9.7 42.2 ± 9.7 48.9 ± 10.0

CON 50.7 ± 11.0 55.0 ± 11.0 46.3 ± 11.0 44.5 ± 11.2

CD3+CD56+Perf+ (GMFI) Total 4,587 ± 517 4,915 ± 512 4,643 ± 520 4,908 ± 525

ADT 5,012 ± 786 5,281 ± 786 5,268 ± 803 5,664 ± 786

PCa 4,246 ± 850 4,573 ± 824 4,202 ± 850 4,152 ± 906

CON 4,504 ± 1,032 4,892 ± 1,032 4,460 ± 1,032 4,908 ± 1,022

Mean ± SE from the estimated marginal mean. When statistical significance is indicated on the Total, this represents a main effect.

**P < 0.01

***P < 0.001 vs. baseline.
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acute exercise, psychological stress, and β-agonist infusion (40). As

we previously reported that men with prostate cancer

have attenuated epinephrine responses to acute exercise (34), it

interesting that neither T cells (current study) or NK

cell mobilization (21) were adversely impacted. This suggests that

other factors may compensate for the reduced epinephrine

response, such as changes in shear stress or myokine release (41).

While conventional T cell mobilization appears to be

unimpaired after acute exercise, alterations in CD57 and perforin

may have functional implications. We report an increase in

CD8+CD57+ counts post-exercise, which is consistent with

previous work in healthy men (42) as acute exercise generally

increases mobilization of senescent (CD28−CD57+) T cells (43).

In contrast, the frequency of CD8+CD57+ cells was unchanged,

with a non-significant 6.6% decrease at 0H. The lack of change is

similar to our work in NK cells (21), but contrasts recent work

using HIIT which found increased CD57 frequency after a

graded exercise test (22). Differences in exercise intensity (60%

vs. 100% of peak power output in the HIIT study) may provide

an explanation. Perhaps more interesting is that ADT decreased

the frequency of CD8+CD57+ cells compared to both PCa and

CON, an effect that was independent of exercise, although the

total counts were not impacted that suggests no lack of

availability of these cells. One interpretation is that castrate levels

of testosterone lead to less mature CD8+ T cells, which aligns

with our hypothesis. Reports of higher rates of T cell

proliferation (2), decreased response to simulation (7) and

increases in naïve CD8+ T cells (8) indirectly support this

finding. Changes in thymus mass and output may be a potential

mechanism explaining the reductions in mature T cells with

ADT. Thymic involution occurs with age (44) and increased

testosterone levels (45), but can be reversed following castration
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(8). ADT increased naïve CD4+ T (but not CD8+) cells (5), that

supports increased thymic output of less mature cells. However,

CD57 was not included in the analysis and the present study did

not include CD4+CD57+ cells, so direct comparisons are limited.

In support of ADT leading to less mature CD8+ cells, perforin

frequency was ∼12%–14% lower at baseline. However, the group

main effect revealing potential differences between ADT and the

other groups was not examined because of the significant group

x time interaction. Instead, ADT appeared to delay the decrease

in perforin frequency until 2H, whereas CON and PCa both

were reduced at 0H, with the reasons behind this currently being

unclear. Conversely, perforin GMFI during ADT was increased

within the CD8+ cells. A decrease in maturity status (as

determined by CD57%) was not anticipated to augment cytotoxic

protein expression, as men with prostate cancer report CD56bright

NK cells have substantially lower perforin MFI and CD57

expression compared to CD56dim (21). Alternatively, higher

perforin expression may be a compensatory shift within these

cells. As cytotoxic or stimulation assays were not performed, the

functional implications of this remain unknown.

To our knowledge, this is the first instance where the MAIT cell

response to acute exercise has been quantified in prostate cancer

survivors. There was a 69% increase in counts at 0 h, which falls

between the 46% increase reported in breast cancer survivors but

less than the 137% of non-cancer controls performing an

identical bout of acute exercise (35). Somewhat surprisingly,

acute exercise did not preferentially mobilize MAIT cells within

the T cell pool. This is contrary to our prior work in healthy and

breast cancer populations (35, 38, 39), which report consistent

increases of 0.7%–1.7% that occur in an exercise intensity-

dependent manner. As the intensity of our intermittent exercise

protocol aligns well with other submaximal bouts (35, 38), this
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explanation seems unlikely. Alternatively, the proportions of CD8+

MAIT cells was lower (10%–15%) compared to younger men (38,

39). However, this MAIT cell sub-population is less responsive to

acute exercise, thereby a lower frequency of these cells argues for

(not against) preferential mobilization. Prostate cancer treatment

does not appear to alter MAIT cell numbers but decreases

proliferation and immune cell IFNγ production (4). However, it

is not apparent if this is the direct result of testosterone

suppression, as only 67% of patients were on ADT. While not

assessed in the current study, acute and chronic exercise have

potential to offset ADT-related impairments in MAIT cell

cytokine production. For example, TNFα production was greater

(with a trend towards increased IFNγ) in healthy young men and

older women immediately following a single exercise bout (35,

38). Women with breast cancer improved stimulated TNFα and

IFNγ following a 16 week exercise intervention (35), which

suggests that training status influences this response.

In NKT-like (CD3+CD56+) cells, cell counts and frequencies

both increased post-exercise. Cell counts for NKT-like cells

expressing CD57 and perforin both increased at 0H with only

minor changes in frequency. The increased counts were similar

to studies in healthy individuals (46) but reduced compared to

maximal exercise (22). Together, this indicates there may be an

intensity threshold that leads to increased CD57 and Granzyme

B frequency (22) that were not observed in our study. With

limited work to date, exercise intensity differences seem plausible

but need to be investigated within the same study. The

mobilization of more mature NKT-like cells with greater

cytotoxic protein frequency seems promising, particularly as

NKT cells are a target for immunotherapy (47). However, the

lack of functional assays using these cells from cancer survivors

and the use of CD1d to distinguish classical NKT cells (vs. NKT-

like cells) during acute and chronic exercise currently limits our

knowledge in this area.

From the findings that the acute exercise response in men with

prostate cancer is normal, three implications for consideration

regarding this type of physical activity are presented. (i) While a

single exercise bout was insufficient (19, 48), multiple sessions

enhanced immune cell infiltration of prostate tumors (49) that

aligns with data from pre-clinical models (50, 51). (ii) Breast

cancer cell culture experiments reveal that acute but not chronic

exercise reduce cell viability (52), leading to the hypothesis that

“every exercise bout matters” (53). Together, these may be

potential mechanisms by which increasing amounts of physical

activity reduce prostate cancer specific mortality (54). (iii)

Finally, the exercise immune landscape is becoming increasing

complex, as more cells are included with greater phenotypic

complexity. This reinforces the need to have standardized

techniques and outcome reporting (24) such that additional

meta-analyses can be performed to better isolate the effects of

exercise mode or specific cell types on immune function in

cancer survivors (26).

In summary, conventional and unconventional T cell numbers

and frequencies in prostate cancer survivors demonstrate a normal

response to moderate-vigorous acute exercise, which is consistent

with our prior NK cell work. MAIT cells do not undergo
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preferential mobilization post exercise, with this response in

older men conflicting with previous findings. Independent of

exercise, ADT had lower CD8+ cell maturity (CD57) and

perforin frequency that suggests a less mature phenotype than

CON that appears to be influenced by testosterone levels.

However, higher perforin MFI may attenuate these changes,

although the functional implications of this is yet to be

determined. Finally, UTC/T cell responses had normalized by

24H. This implies that consecutive training sessions can be

performed with minimal concerns of adverse immune system

effects during prostate cancer. However, the response following

multiple consecutive bouts of acute exercise needs to be

determined to test this hypothesis.
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