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Incline and decline running alters
joint moment contributions but
not peak support moments in
individuals with an anterior
cruciate ligament reconstruction
and controls
Kenneth Harrison, Hillary H. Holmes, Eric B. Finley,
Keven Santamaria Guzman, Katherine C. Kimbrough
and Jaimie A. Roper*

School of Kinesiology, Auburn University, Auburn, AL, United States

Individuals with an anterior cruciate ligament reconstruction (ACLR) commonly
exhibit altered gait patterns, potentially contributing to an increased risk of
osteoarthritis (OA). Joint moment contributions (JMCs) and support moments
during incline and decline running are unknown in healthy young adults and
individuals with an ACLR. Understanding these conditional joint-level changes
could explain the increased incidence of OA that develops in the long term.
Therefore, this knowledge may provide insight into the rehabilitation and
prevention of OA development. We aimed to identify the interlimb and
between-group differences in peak support moments and subsequent peak
ankle, knee, and hip JMCs between individuals with an ACLR and matched
controls during different sloped running conditions. A total of 17 individuals with
unilateral ACLR and 17 healthy individuals who were matched based on sex,
height, and mass participated in this study. The participants ran on an
instrumented treadmill at an incline of 4°, decline of 4°, incline of 10°, and
decline of 10°. The last 10 strides of each condition were used to compare the
whole-stance phase support moments and JMCs between limbs, ACLR, and
control groups and across conditions. No differences in JMCs were identified
between limbs or between the ACLR and healthy control groups across all
conditions. Support moments did not change among the different sloped
conditions, but JMCs significantly changed. Specifically, ankle and knee JMCs
decreased and increased by 30% and 33% from an incline of 10° to a decline of
10° running. Here, the lower extremities can redistribute mechanics across the
ankle, knee, and hip while maintaining consistent support moments during
incline and decline running. Our data provide evidence that those with an ACLR
do not exhibit significant alterations in joint contributions while running on
sloped conditions compared to the matched controls. Our findings inform
future research interested in understanding the relationship between sloped
running mechanics and the incidence of deleterious acute or chronic problems
in people with an ACLR.
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Introduction

Anterior cruciate ligament (ACL) tears are among the most

prevalent musculoskeletal injuries, with an incidence of 68.6 in every

100,000 musculoskeletal injuries and an estimated $7 billion

healthcare burden in the United States per year (1, 2). In addition to

the prevalence of ACL tears and the financial burden of

reconstruction and therapy, individuals with an ACL reconstruction

(ACLR) can experience an upward threefold increased risk of

developing osteoarthritis (OA) in the reconstructed knee (3–6). The

prevalence of knee OA in the general population is around 13%, but

over 50% of individuals with ACLR have been diagnosed with OA

via radiographic evidence, as early as 12 years post-reconstruction

(6–8). Because ACL tears commonly occur in adolescents and young

adults, the onset and rate of OA development may occur

dramatically earlier than in those without ACLR (5, 9, 10).

Therefore, understanding biomechanical factors in individuals with

an ACLR may mediate changes that can eventually lead to OA (11).

Both the ACL surgical repair and cartilage health post-ACLR

surgery have been associated with altered knee mechanics during

walking and running gait (3, 12–21). For example, individuals

post-ACLR are reported to adopt a loading pattern with

decreased external knee flexor moment in the reconstructed, or

involved, limb (3, 15, 16, 21). This altered loading pattern may

negatively contribute to knee cartilage health and OA

development (14, 20). However, most literature on lower

extremity mechanics in individuals with an ACLR is conducted

on flat surfaces. Incline and decline surfaces are also found to

alter joint mechanics and may have unique implications for

individuals with an ACLR (22–26).

Environmental demands such as sloped surfaces may influence

joint moment redistribution, which can be described through the

concept of support moments and joint moment contributions

(JMCs) (21, 25–28). Studying changes in JMCs can provide

important insights into how individual joint mechanics adapt to

achieve a particular support moment during gait (27, 28).

Understanding how young adults with an ACLR modulate their

JMCs compared to healthy controls during sloped treadmill

running may provide additional rehabilitation implications on

what training modalities to utilize or avoid (29). For example, in

individuals 6 months post-ACLR, similar walking support
TABLE 1 All participant characteristics.

ACLR
Sex (F/M) 11F/7M

Age (years) 21 ± 2 19–26

Height (m) 1.72 ± 0.09 1.56–1.92

Mass (kg) 73.10 ± 11.91 55.45–97.07

Time post-reconstruction (months) 42 ± 23 6–77

KOOS subscore: pain 91.2 ± 6.8 75–100

KOOS subscore: ADL 97.4 ± 3.9 46–100

KOOS subscore: S and R 82.1 ± 15.3 88–100

KOOS subscore: QoL 75.2 ± 5.2 50–100

KOOS subscore: symptoms 80.8 ± 11.9 44–100

p-values in bold indicate statistically significant differences between groups. Values in

KOOS subscores: activities of daily living (ADL), quality of life (QoL), sports and recrea
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moments were observed compared to healthy controls, but the

support moment of the ACLR group consisted of the smaller

knee and larger hip angular impulse contributions (21). Notably,

the ankle, knee, and hip moments could redistribute their

contributions in response to an ACLR but still produce a similar

support moment (21, 27, 28).

In addition, kinematic changes to running patterns, such as

decreases in step length, can lower peak compression forces in

the knee of people with ACLR (30). These conditional changes

in joint coordination could be vital to understanding subsequent

pathology. If injured limbs adapt to the incline/decline

conditions differently, it is necessary to measure what

characteristics change and whether those are patterns that have

previously been associated with OA development. If there was an

association uncovered between knee JMC during sloped

conditions and group (ACLR vs. CTRL), it could inform

clinicians and coaches on what types of training modalities to

avoid or limit the use of at specific points of the rehab timeline.

We aimed to investigate peak support moments and JMCs in

individuals with an ACLR and healthy controls during running

on different treadmill slopes to further understand pathological

mechanics that could lead to OA development. In line with

previous literature looking at the underloading of the affected

limb (30), we hypothesized that individuals with ACLR would

exhibit decreased knee JMCs in the involved limb compared to

the uninvolved limb and decreased knee JMCs in the involved

limb compared to the matched controls. Finally, we expected all

the participants to display increased knee JMCs during decline

running compared to incline running.
Methods

Participants

A total of 34 individuals, 17 with an ACLR (11 females and six

males, age 21 ± 2 years, height 1.72 ± 0.08 m, mass 73.08 ± 11.17 kg)

and 17 controls (11 females and six males, age 21 ± 3 years, height

1.74 ± 0.08 m, mass 71.65 ± 12.4 kg) participated in this case–control

study (Table 1). The participants were recruited via flyers on

campus, word of mouth, and SONA systems—an online extra credit
CTRL p Cohen’s d
11F/7M 0.500 0.39

22 ± 3 19–29 0.324

1.75 ± 0.08 1.635–1.91 0.891 0.35

72.96 ± 11.81 54.43–97.98 0.972 0.012

— — — —

96.3 ± 4.8 86–100 0.018 0.87

99 ± 2.9 71–100 0.171 0.47

96.5 ± 7.5 88–100 0.001 0.88

95.3 ± 9.9 70–100 <0.001 2.54

94.6 ± 8.0 63–100 0.001 1.36

dicate mean ± SD. Values indicate range: minimum–maximum. M, male; F, female.

tion (S and R).
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FIGURE 1

Instrumented treadmill used by participants shown at a 4 degree slope.

Harrison et al. 10.3389/fspor.2023.1217783
platform used by the university. The inclusion criteria for the ACLR

group required those previously sustaining an ACL, undergoing

reconstructive surgery at least 6 months prior to participation in the

study, and having medical clearance from a clinician for physical

activity. All the participants answered “no” to questions on the

National Academy of Sports Medicine Participation Activity

Readiness Questionnaire (PAR-Q) to ensure safety in participation

(31). The exclusion criteria for the ACLR group included those with

less than 6 months post-ACL reconstruction and those who failed to

gain medical clearance from a clinician. All individuals in the ACLR

group had a unilateral tear with the sample containing 13 patellar

tendon grafts, three hamstring grafts, and one quadriceps tendon

graft. The control participants were matched to the ACLR

participants based on stature (height and mass), followed by age, sex,

and sports experience. All matches had an average difference in

mass of less than 2 kg and an average difference in height of less

than 5 cm. The inclusion criteria for the control group included

those having no history of lower extremity or back injury requiring

surgery or physical therapy and those being free of injury not

requiring surgery for at least 1 year. Limb dominance was then

determined for the control group by asking the participants which

leg they would kick a soccer ball farthest with to match the

demographics of the ACLR group (32). Before participation, all the

participants reported that they were comfortable running incline and

decline for at least 10 min in 1–3-min increments. The Institutional

Review Board of Auburn University approved the investigation

(Protocol #: 18-277 EP 1808), and study procedures were explained

before the participants voluntarily signed informed consent.
Surveys and data collection

In a single laboratory visit, the participants completed the

questionnaires and the running protocol. The ACLR and control

groups completed the Knee Injury and Osteoarthritis Outcome

Score (KOOS), a validated survey to assess knee function in

individuals with an ACLR (33). KOOS subscores assessed pain,

symptoms, activities of daily living, quality of life, and sports and

recreation (33). The ACLR group reported information regarding

time post-surgery and the level of activity before and after

reconstruction through a questionnaire that we developed.

Specifically, the question asked was “What do you do for

exercise, and how many days a week, and for how long?”.

A 17-camera motion capture system (VICON, Vicon Motion

Systems Ltd., Oxford, UK) collected kinematic data at 100 Hz,

and a force-plate instrumented split-belt treadmill collected

ground reaction forces at 1,000 Hz (Bertec Co., Columbus, OH,

USA). Between each running trial, the participants stepped off

the treadmill allowing the researcher to reset the force plates to

zero in both the hardware and software to minimize noise artifacts.
Testing protocol

Each participant wore his or her own recreational gym attire

including a t-shirt, shorts, and athletic shoes. The participants
Frontiers in Sports and Active Living 03
were then prepped with 26 reflective markers placed in

accordance with the Vicon Plug-in Gait lower body functional AI

marker set (VICON, Vicon Motion Systems Ltd., Oxford, UK).

The participants were familiarized with the treadmill by running

with no slope (flat) for 3 min at 2.5 m/s. The participants then

ran on the treadmill for 1 min at a speed of 1.8 m/s under each

of the following conditions: incline 4°, decline 4°, incline 10°, and

decline 10° in that respective order (see Figure 1). Since running

speed was reported to influence the magnitude of support

moments more than the individual JMCs, it was important to

implement a constant speed that was attainable across all slopes

(34). A 2-min rest period was administered between all trials,

and consistent instruction of when the treadmill was started and

stopped was provided (35). Incline and decline angles were set in

accordance with the prior literature (23, 24, 26). The trials were

not randomized to mitigate the effect of fatigue on the

participant. Running speeds were set slower than prior studies to

prevent fatigue during incline running, given the increased

metabolic cost for a given speed, and to mitigate potential joint

discomfort during decline running, given decline running can

increase patellofemoral stress (22–24, 26, 36, 37). During pilot

testing, it was also determined that running any faster than

1.8 m/s at a 10° decline on a treadmill was very distressing and

fear-inducing for the participants, inhibiting regular downhill

running patterns. Flight phases were confirmed for all recorded

trials and subsequent visual inspection of the data confirmed

unimodal force curves that matched what is typically produced

during running.
Data analysis

Joint moments were calculated through the Vicon Nexus Plug-

in Gait model (VICON, Vicon Motion Systems Ltd., Oxford, UK).

All joint moments are reported as external moments in the sagittal

plane. Kinematic and kinetic data were filtered at 6 and 50 Hz,

respectively, using a fourth-order low-pass Butterworth filter.
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There is a lot of literature on the benefit of using the same filter

frequency for kinematic and kinetic measures for high-impact

movements (38–40) and in running (41). To confirm this effect

did not skew our results, we tested our data with the same filter

frequency and found no major effects for key outcome metrics or

interpretations (42). Maximum hip flexion, knee flexion, and

ankle dorsiflexion moments during the stance phase were

recorded in both limbs and processed using a custom MATLAB

code (2018a, MathWorks, Natick, MA, USA). Peak moments

during the stance phase were normalized to body mass and

averaged for the last 10 strides in the involved and uninvolved

limbs. The involved limb of the control group was matched by

limb dominance of the reconstructed limb of the ACLR group

(i.e., if the involved ACLR limb was dominant, the dominant

limb of the control was considered the involved limb). Whole-

stance phase support moments were calculated in each limb as

the sum of the averaged peak flexion joint moments of the last

10 strides during stance. JMCs were expressed as a percentage,

calculated as the ratio of the averaged peak moments in the last

10 strides at one joint to the support moment of that limb

(Equations 1 and 2) [adapted from (27, 28)]. The original

calculation of JMCs is selected at the time point in which the

support moment peak occurs, regardless of where the peak ankle,

peak knee, or peak hip joint moment occurs. Because the ankle,

knee, and hip peak joint moments likely occur at different time

points, our calculation accounts for this. For example, the knee

JMC is calculated at the time point where the peak knee joint

moment occurs, instead of where the peak of the support

moment occurs. JMCs at the hip, knee, and ankle were

determined for the involved and uninvolved limbs for each

running condition (see Supplementary Figure S1).

Support Moment ¼
X

(Peak Hip, Knee, Ankle Joint Moment)

(1)

JMC ¼ [(Peak Joint Moment)=(Support Moment)]� 100 (2)
Statistical analysis

Testing was performed in SPSS 24 (IBM, Armonk, NY, USA).

Independent t-tests compared participant characteristics (sex,

height, mass, and age) between the ACLR and control groups. A

2 × 2 × 4 (group × limb × slope) mixed-model MANOVA

determined the differences in support moments and JMCs

among running slopes and between groups and between limbs.

In the ACLR group, a 2 × 4 (limb × slope) within-subject

MANCOVA determined if the results in the ACLR group limbs

differed when covarying for the number of months post-

reconstruction surgery. A Bonferroni correction was used during

post-hoc testing to determine differences among conditions

(slope) in both analyses. Any violation of Mauchly’s test of

sphericity was addressed using a Greenhouse–Geisser correction.

A power analysis using G*Power version 3.1.9.7 (43) with
Frontiers in Sports and Active Living 04
preliminary data looking at joint moments in 10 young adults

(five with ACLR and five matched controls) indicated a total

sample size of 34 participants for significance using the

MANOVA: special effects and interaction statistical test (1-β =

0.80, α = 0.05, effect size = 0.25).
Results

Demographics

The average time spent in physical therapy post-surgery was

5 ± 2 months. The average KOOS scores for the ACLR group

were 91 for pain, 81 for symptoms, 97 for activities of daily

living, 82 for sports and recreation, and 75 for quality of life. In

total, 88% of our ACLR sample reported currently participating

at the same pre-reconstruction levels of physical activity based on

their responses to our developed questionnaire.
Peak support moment and JMCs

There was no main effect of limb [Wilk’s ʎ = 0.899, F(4.29) =

0.810, η2 = 0.101, p = 0.529] or group [Wilk’s ʎ = 0.948, F(4.29) =

0.396, η2 = 0.052, p = 0.810, Table 2]. However, there was a

main effect of the condition [Wilk’s ʎ = 0.025, F(12,246.346) =

45.827, η2 = 0.645, p < 0.001]. Univariate tests indicated

significant differences among conditions in ankle JMCs

[F(1.828, 58.496) = 227.149, η2 = 0.877, p < 0.001], knee JMCs

[F(1.819, 658.199) = 405.025, η2 = 0.927, p < 0.001], and hip

JMCs [F(1.920,61.443) = 5.428, η2 = 0.145, p = 0.004], but not

support moments [F(2.269, 72.600) = 2.972, η2 = 0.085, p = 0.051,

Figure 2]. Due to sphericity being violated, Greenhouse–Geisser

corrected values are reported for the main effects of condition

(ϵ = 0.756) and univariate tests on JMC of the ankle (ϵ = 0.560),

knee (ϵ = 0.607), and hip (ϵ = 0.526). No significant interaction

effects were found for support moments or JMCs.

Ankle JMCs did not differ between incline 4° and incline 10°

running (p = 0.569). Compared to those during incline 4°

running, ankle JMCs were 22% and 27% smaller during decline

4° and decline 10° running, respectively (p < 0.001). Compared to

those during incline 10° running, ankle JMCs were 25% and 30%

smaller during decline 4° and decline 10° running, respectively

(p < 0.001). Ankle JMCs were 5% smaller during decline 4°

running compared to those during decline 10° running (p <

0.001). Knee JMCs between incline 4° and incline 10° were not

significantly different (p = 0.387). However, knee JMCs during

decline 4° running were 26% larger than those during incline 4°

(p < 0.001) and 28% larger than those during incline 10° (p <

0.001). Knee JMCs during decline 10° were 31% larger than those

during incline 4° (p < 0.001) and 33% larger than those during

incline 10° (p < 0.001). Hip JMCs were 3% smaller during decline

4° running compared to those during incline 10° running (p =

0.035). No other significant differences in hip JMCs across

conditions were present (p≥ 0.05, Table 3, Figure 3). Covarying

for the time post-reconstruction surgery did not affect the
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TABLE 2 Main effect of limb and main effect of group in support moment and JMCs.

Measure Limb Group M SE 95% confidence interval

Lower bound Upper bound
Support moment (N m kg−1) Involved CTRL 7.0 0.3 6.4 7.5

ACLR 6.8 0.3 6.2 7.3

Uninvolved CTRL 6.8 0.3 6.3 7.4

ACLR 7.0 0.3 6.4 7.5

Ankle JMC (%) Involved CTRL 39.2 1.6 35.9 42.5

ACLR 41.3 1.6 38.0 44.6

Uninvolved CTRL 40.4 1.4 37.4 43.3

ACLR 40.3 1.4 37.3 43.2

Knee JMC (%) Involved CTRL 30.0 1.5 27.0 33.0

ACLR 28.7 1.5 25.7 31.7

Uninvolved CTRL 29.2 1.3 26.5 31.9

ACLR 30.3 1.3 27.6 33.0

Hip JMC (%) Involved CTRL 30.8 2.1 26.4 35.1

ACLR 30.0 2.1 25.6 34.4

Uninvolved CTRL 30.5 2.0 26.5 34.5

ACR 29.4 2.0 25.4 33.4

Harrison et al. 10.3389/fspor.2023.1217783
condition [Wilk’s ʎ = 0.254, F(12,111.413) = 0.383, η2 = 0.035, p =

0.967] or limb [Wilk’s ʎ = 0.629, F(12.4) = 1.773, η2 = 0.101, p =

0.289].
Discussion and implications

We analyzed peak support moments and JMCs to better

understand mechanics during cyclical loading produced during

incline and decline running in individuals with an ACLR. Our

main findings were as follows: (1) individuals with ACLR

exhibited no differences between limbs in JMCs; (2) individuals

with ACLR did not display alterations in JMCs and peak support

moments compared to those without ACLR; and (3) JMCs,

particularly at the ankle and knee, changed between incline and

decline running, but peak support moments did not.
FIGURE 2

Total Support Moment between ACLR and CTRL groups.
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We did not identify limb asymmetries or differences in the

involved limb between the ACLR and CTRL groups in peak

support moment or JMCs. The lack of differences may be due to

factors contributing to knee function and physical activity levels.

For example, 88% of our ACLR sample achieved pre-

reconstruction physical activity levels. In one ACLR cohort, 92%

of participants returned to fully competitive sports 8 months

post-operation (44, 45). Our sample of people with ACLR may

have been too far in time from the initial injury/surgery to have

retained meaningful changes in joint coordination. Prior evidence

suggests that there may be a relationship between time and

changes to gait mechanics in people with ACLR (45–47). Because

of this, we evaluated if the time post-reconstruction surgery

influenced peak support moments and JMCs in the ACLR group

among conditions and between limbs to control for participants

who had more time since surgery to return to baseline

mechanics. It is also possible that other factors, such as graft

type, meniscal pathology, rehabilitation protocol, and sex, were

stronger indicators of asymmetry and were not included in our

analysis.

We observed changes in ankle and knee JMCs but not peak

support moments between incline and decline running. Our

results support the notion that lower extremity joints can adjust

and redistribute to produce a constant propulsive moment in gait

(26–28). For example, we observed an increase in knee JMC by

33% when running at an incline of 10° compared to a decline of

10°, which corroborates previously described common patterns in

sloped running mechanics. Knee extensor impulse increased by

54% when running at a 10° incline compared to running at a 10°

decline overground. Similarly, hip and ankle angular impulse

increased by 177% and 46%, respectively (26). Differences in

methods should be noted in comparing and interpreting results.

For example, DeVita et al. (26) implemented a 5-m ramp

between 6-m flat runways. In contrast, our investigation involved

an instrumented treadmill set at speed for the entirety of the

incline and decline conditions. Our investigation and DeVita
frontiersin.org
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TABLE 3 Support moment and joint moment contributions by condition.

Measure Slope M SE 95% confidence interval Difference
from incline

4°

Difference
from incline

10°

Difference
from decline

4°

Lower bound Upper bound p d p d p d
Support moment (Nm/kg) Incline 4° 6.4 6.4 0.2 6.0 — — — — — —

Incline 10° 6.4 6.4 0.2 6.1 1.000 0.003 — — — —

Decline 4° 6.5 6.5 0.2 6.1 1.000 0.063 1.000 0.076 — —

Decline 10° 6.9 6.9 0.3 6.3 0.311 0.315 0.259 0.348 0.206 0.280

Ankle JMC (%) Incline 4° 50 2 46 54 — — — — — —

Incline 10° 53 1 50 56 0.569 0.326 — — — —

Decline 4° 28 1 27 30 <0.001 2.645 <0.001 3.751 — —

Decline 10° 23 1 21 25 <0.001 3.227 <0.001 4.447 <0.001 1.011

Knee JMC (%) Incline 4° 18 1 17 20 — — — — — —

Incline 10° 16 1 13 19 1.000 0.387 — — — —

Decline 4° 44 1 42 47 0.490 4.922 <0.001 4.308 — —

Decline 10° 49 2 46 52 0.718 4.632 <0.001 4.279 <0.001 0.611

Hip JMC (%) Incline 4° 32 2 27 36 — — — — — —

Incline 10° 31 1 29 33 1.000 0.098 — — — —

Decline 4° 27 1 25 30 0.429 0.461 0.035 0.461 — —

Decline 10° 28 2 24 32 0.431 0.308 0.559 0.290 0.431 0.071

d indicates Cohen’s d, and bold values are significant p < 0.05.
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et al. (26) reported constant velocities in the recorded trials;

however, our investigation may display how individuals adapt

mechanics to a longer, continuous duration of sloped running at

a slower speed (26). Taken together with the results reported by

DeVita et al. (26), the duration, speed, and environment

(treadmill vs. overground) may be of importance to consider (26,

34). Our participants ran at a slower speed (1.8 m/s) in

comparison to other studies ranging from 3.13 to 3.35 m/s (25,

26). We selected a set, slower speed to mitigate potential joint

stress, the influence of speed on mechanics, and the effects of

fatigue on mechanics.

Increases in knee loading during decline running could be

due to the eccentric demand on the knee extensor musculature

during decline locomotion (48). Importantly, abnormal joint
FIGURE 3

Averaged JMCs across conditions in all participants.
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motions that cause rapid shifts in loading after an ACLR are

proposed to influence the metabolic response of cartilage,

which may accelerate the onset of OA (3, 12). Decline

running has been previously recognized as a return-to-play

landmark due to increased difficulty (49). Recognizing this

change in knee JMCs for incline and decline conditions could

provide implications for rehabilitation and return-to-play

protocols. Trainers and clinicians should be cognizant of the

increased moment placed on the knee during slow decline

running.

This investigation comes with limitations. First, only measuring

peak joint moments does not consider how mechanics may differ

through the entire stance phase. However, the calculation used here

was revised to appreciate loading patterns at three time points of a

gait cycle rather than the original JMC calculation, which only

considers loading at one time point. We ran a secondary analysis

looking at only peak joint moments (without reducing to support

moments or JMC) and found the same interpretation and results.

Second, compared to other investigations, our participants ran at

slower speeds (22, 25, 26). However, rather than allowing

participants to self-select a running speed, we selected this slower

speed so we could understand the true contribution of the slope

without obscuring our results with speed differences across the

sloped conditions. In addition, we selected this speed to ensure that

the participants could comfortably complete all incline and decline

trials without inducing a large amount of fatigue. Third, we did

not randomize the condition sequence of incline and decline

running with varying slopes for each trial which could have caused

an experimental order effect. All participants ran at an incline of

4°, decline of 4°, incline of 10°, and decline of 10° in this respective

order. This specific order was chosen due to feedback on

participant comfort during pilot testing and the time it takes to

reconfigure the treadmill. Fourth, our investigation did not control

for participant running experience level or shoe type. Athletic
frontiersin.org
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shoes were not provided for each participant; thus, each participant

wore their personal athletic shoes. Differences in footwear have

been shown to impact lower limb kinetics during walking and

running (50, 51). However, we aimed to have differences in

footwear during lab testing closely mimic the differences in

footwear observed in the real world. Lastly, our investigation did

not include direct measures of cartilaginous health or OA

development, nor did we control for graft type in the analysis.

Future investigations should consider additional variables such as

radiographic measures of cartilaginous health, foot strike pattern,

shoe type, running experience, and more comprehensive kinetic

measures to provide more direct implications on the influence of

sloped running on OA development.
Conclusion

Individuals with an ACLR exhibit similar peak support

moments and JMCs during incline and decline treadmill running

compared to people without ACLR. Further, we did not observe

asymmetries in JMCs or support moments between limbs. We

observed that different slopes influence JMCs, particularly at the

ankle and knee, without influencing the support moment. Our

data provide evidence that those with ACLR do not exhibit

significant alterations in joint contributions while running on

sloped conditions compared to the matched controls. Our

findings inform future research interested in understanding the

relationship between sloped running mechanics and the

incidence of deleterious acute or chronic problems in people with

an ACLR.

Notably, the increases in knee JMCs during decline running

may provide insight into joint health in individuals who

underwent an ACLR and are at heightened risk for cartilage

degeneration. A relevant clinical implication for our findings

could be incorporating incline and decline overground or

treadmill training within return to sports protocol following an

ACLR. In addition, incline and decline locomotions are a part of

the real world. Implementing a rehabilitation protocol in which

periodic increases in the incline and decline angles during

training may benefit individuals post-ACLR by promoting

effective movement adjustments to decrease risk factors such as

possible reinjury or OA.
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