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Quantification of horizontal force
for the EXER-GENIE® resisted
sprint training device
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Sport performance coaches use a range of modalities to apply a horizontal force
(Fh) to athletes during resisted sprint training (RST). These modalities include
parachutes, weighted vests, pulley devices, motored tethered devices, and, most
notably, weighted sleds. Despite the widespread use of these devices, the
resistance forces of the pulley devices have not been evaluated for reliability and
accuracy. Therefore, the primary aim of this study is to quantify the Fh of a
commercially available pulley device (EXER-GENIE®) and determine how
resistance force is related to the load settings on the device. The secondary aim
is to identify the differences in the Fh values between three EXER-GENIE®

devices that use 36 m and 60 m ropes. The Fh values in the Newtons (N) of the
three EXER-GENIE® devices were analyzed using a motorized winch, a lead acid
battery, and an S-beam load cell. Four 10 s winch-driven trials were performed
using 15 different EXER-GENIE® loads, ranging from 0.028 kg to 3.628 kg,
employing two different 36 m devices and one 60 m device. The mean ±
standard deviation for Fh was reported across the four trials for each load
setting. All devices produced similar Fh values across lighter load settings (loads
≤0.141 kg). However, at heavier loads (loads ≥0.226 kg), the 60 m device had
Fh values 50–85 N greater than those of the 36 m device. The coefficient of
variation across the four trials was extremely high at light loads but sharply
decreased to <10% at heavy loads. Absolute reliability was high for each device
[intraclass correlation coefficient (ICC) = 0.99]. A regression analysis for Fh values
and EXER-GENIE® load indicated a strong positive relationship between load
and Fh values across all devices (R2= 0.96–0.99). Caution should be exercised
when using identical loads on the different-length pulley devices, as the 60 m
device produced greater Fh values than the 36 m devices at load settings higher
than 0.226 kg. These results can provide coaches and practitioners with a better
understanding of the magnitude of resistance that is applied when prescribing
EXER-GENIE® devices for higher training loads.
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1. Introduction

A 2022 survey study found that 99% of strength and conditioning coaches prescribe

speed development exercises (e.g., plyometrics, overspeed training, and resisted sprinting),

and 63% of these coaches (in sports such as football, rugby, wrestling, and hockey)

prescribe a method of resisted sprint training (RST) (1). The three methods of improving

sprint speed and agility are categorized into primary (movement technique), secondary
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(resistance and assistance), or tertiary (flexibility and strength) (2).

RST falls into the secondary category and involves using external

loads to increase overall horizontal forces during the early

acceleration phase of the sprint (i.e., 5–15 m) (3, 4). RST

methods include weighted sleds (5–7), weighted vests, parachutes

(8, 9), robotic tethered devices (e.g., 1080 SprintTM and

DynaSpeedTM) (10–12), partner towing (13), and elastic

resistance bands (14).

Weighted sled training is the most studied method of RST (4),

and many strength and conditioning coaches have a favorable view

of this method (15); however, there are several factors that must be

considered when using weighted sleds as an RST tool. First, having

multiple sleds can be a financial burden, as these devices are

expensive. The cost of a 50 kg weighted sled can range from

$300 to $400 (RogueFitness®, PerformBetter®). Second, having

sufficient storage space for larger weighted sleds can be challenging.

Third, it is important to consider the surface where the

weighted sled may be used. Different surfaces have different

friction coefficients and, thus, provide different resistance levels

for the same or similar sled weight. The resistive forces of the

sled are highly dependent on the surface friction. The same sled

may produce different levels of resistance, depending on weather

conditions or the flooring surface (16, 17), which may lead to

load variations between sessions or unknown levels of actual

resistance. Finally, sled training can be time-consuming and

laborious, as constant loading and unloading of weighted plates

are required when training in a group setting or with multiple

athletes simultaneously. While many professional sprint coaches

have access to other training modalities, not all tools have been

scientifically evaluated to quantify the force levels or evaluate

training efficacy.

The EXER-GENIE® (Thousand Oaks, CA) is a commercially

available RST device (Figure 1). The unit weighs ∼14 oz and

provides variable friction via a pulley system made of woven

nylon rope that generates resistance by wrapping around an

aluminum, nickel-plated, and chrome-coated shaft inside a heat-

resistant, protective cylinder. The rope enters through an eyelet

at the top of the metal shaft, progressively wraps around the

shaft, and exits through a hole at the base of the device. When

the bottom part of the EXER-GENIE® turns clockwise, the rope

twists around the shaft, escalating frictional force, which

progressively increases the resistance when pulling the rope.
FIGURE 1

EXER-GENIE® device with and without the outer covering shell.
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Conversely, twisting the device counterclockwise decreases the

resistance. The device must be anchored by a non-moveable

object and attached to a harness or belt on the athlete. Once the

resistance is set, the athlete sprints in the direction against the

resisted load (Figure 2 and Supplementary Video S1).

To date, there is no peer-reviewed research on the EXER-

GENIE®, with the exception of several outdated dissertations

(18–20) and unpublished data from the National Aeronautics

and Space Administration (NASA) (21), which found a

significant disparity between the actual force produced and the

load printed on the device. This disparity reached as high as an

11-fold difference between the actual and the recorded values,

and some EXER-GENIE® devices showed varying degrees of

inaccuracy between repetitions. The researchers concluded that

the EXER-GENIE® provided a wide range of resistive loads and

was versatile, allowing astronauts in a hypo-gravity environment

to complete a range of exercises. However, the inconsistency in

load accuracy, as well as concerns related to excessive heat

generation, were severe limitations of the device.

Although there is a lack of formal research on the EXER-

GENIE®, anecdotal evidence shows that its use is prevalent

among sprint coaches (22). The portability and light weight of

the EXER-GENIE® allow for easy setup and transport, and

resistance can be changed progressively and quickly. The device

can also produce resistance in any direction, which optimizes

coordination and neuromuscular performance in several planes

of motion (23) or allows for adaptability to the physical layout of

the training facilities. In addition, several EXER-GENIE® devices

can be set up at the same time from the same anchor point,

allowing greater efficiency for group testing without the manual

labor of loading and de-loading weighted plates.

Given the potential benefits and unknown scientific accuracy of

the EXER-GENIE®, this study aims to quantify the horizontal force

(Fh) data from the EXER-GENIE® across a uniform velocity using

a load cell and motorized winch system. Computing Fh using

indirect methods, such as those used in the present study, is of

considerable interest because the data can be easily integrated

into the field to monitor training and loading, particularly for

resisted sprinting (17). The secondary aim of this study is to

report the differences between three EXER-GENIE® devices,

namely, two 36 m devices and one 60 m device. Given our

experiences in this field, we hypothesize that there would be
frontiersin.org
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FIGURE 2

Use of the EXER-GENIE® device attached to a non-moveable loaded prowler.
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discrepancies between the 36 m and the 60 m devices, in that the

60 m device would produce a greater Fh than the 36 m one,

despite identical load settings. The findings of this study will

provide coaches and practitioners with a better understanding of

the EXER-GENIE® load and the disparities between devices as

well as the differences across devices when using the EXER-

GENIE® in their respective programs.
2. Materials and methods

2.1. Experimental design

The Fh of three EXER-GENIE® devices, namely, two separate

36 m devices (A and B) and one 60 m device (C), was analyzed

using a motorized winch system, a lead acid battery, and an

S-beam load cell. A similar methodology has been used to

measure the dynamic frictional force when pulling a weighted

sled (24, 25). The EXER-GENIE® has 48 load settings. The first

15 load settings range from 0.028 kg to 3.628 kg and were tested

as part of this study, as these were primarily used as part of our

off-season RST program. Four winch trials were performed at

each load, producing 60 trials per device and a total of 180 trials

across all devices.
2.2. Equipment

A 24DC lead acid EverStart battery (Johnson Controls, Cork,

Ireland) powered a non-movable motorized winch (Badland

Apex, Model 56385, motor 12 VDC series wound, Calabasas,

CA) (Figure 3). After pilot testing and experimental trial

sessions, each battery was charged to full power using a 12 V-2/

8/15 Amp Viking battery charger (Calabasas, CA). An S-beam
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load cell, with a maximum load capacity of ±500 kg (MuscleLab,

Ergotest Innovation, Norway), was attached between the EXER-

GENIE® (anchored to a double doorway) and the winch.

The load cell had a 14-bit resolution with a sampling rate of

200 Hz. The temperature of the EXER-GENIE® was recorded by

using an Ames InstrumentsTM Infrared Thermometer (AMES

InstrumentsTM, Calabasas, CA). The instrument is mechanized

via a trigger that uses a laser and infrared lens to record the

emissivity of the surface of an object, leading to a temperature

reading. Preliminary work in our lab found that the internal

temperatures of the EXER-GENIE® device reached 65° Celsius

after 1 hour of use.
3. Procedures

3.1. EXER-GENIE® force testing

The winch was used to pull the EXER-GENIE® at a constant

velocity across the normal friction force loads labeled on the

device. The pulling velocity of the winch was 0.16 m·s−1, which

is similar to the velocities used to analyze Fh by Cross and

colleagues (25). Notably, Cross et al. had a more robust winch

system that was able to assess Fh using a weighted sled on a

track using a range of velocities (0.1–6 m·s−1). At the start of

each trial, the length of the EXER-GENIE® and winch tether was

16 m and 8 m, respectively.

The load cell was zeroed twice for calibration before each trial.

Initially, the load cell was placed horizontally on the ground.

A subsequent calibration was performed after the primary

investigator lifted the load cell off the ground and set it even

with the height of the winch rope and EXER-GENIE® at 40.5 cm

(see Supplemental Video S2). Aligning the height of the load

cell, the EXER-GENIE®, and the winch rope eliminated non-zero
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FIGURE 3

Components of the force-testing experimental trials, consisting of the winch, lead acid battery, load cell, and EXER-GENIE®.
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angles of pull in the vertical direction. This methodology is

consistent with that of previous research (25) and must be

considered when calculating Fh (17). The raw force–time data for
Frontiers in Sports and Active Living 04
a typical trial were collected for 10 s post-calibration, and the

average force data within the time window were recorded.

Figure 4 displays the raw force–time data and a selected
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FIGURE 4

Raw force–time data and a selected analyzed section from a typical winch trial.
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analyzed section from a typical winch trial. For each trial, the data

were analyzed after the initial spike, as force remained constant

throughout the pull. Each trial was collected using MuscleLab

Windows software Professional Edition and exported to a

Microsoft Excel spreadsheet for further analysis.
3.2. Statistical analysis

Descriptive data (mean ± standard deviation) were calculated

using IBM SPSS, Version 28.0 (SPSS Inc., Chicago, IL), software

for determining the average Fh for each EXER-GENIE® device

across the four trials at the 15 loads. The coefficient of variation

[CV = 100×(SD/mean)] was calculated for each trial. The mean

CV% across the four trials with 95% confidence intervals (CI)

was reported. Absolute reliability was calculated by using an

intraclass correlation coefficient (ICC) with 95% CI using a two-

way mixed model, with absolute agreement between the loads

across the trials for each device. Fitted linear regression was used

(GraphPad Prism version 9.2 for Windows; GraphPad software,

La Jolla, CA) to examine the regression analysis between the Fh
and the EXER-GENIE® load displayed on the devices.
4. Results

4.1. Horizontal force data

Table 1 reports the descriptive and reliability Fh data for each

device across the 15 load settings. All three devices produced

similar Fh values across lighter load settings (loads ≤0.141 kg).
As the loading progressively increased (loads ≥0.226 kg), devices
A and B had similar Fh values, while device C had higher
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Fh values, with differences that ranged from 50 N to 85 N. The

CV% was extremely high at light loads for each device; however,

the CV% sharply decreased to below 10% at loads greater than

0.453 kg. Absolute reliability across the loads was high for each

device. The average measures ICC and 95% CI for devices A, B,

and C were 0.999 (0.998–0.999), 0.997 (0.994–0.999), and 0.998

(0.995–0.999), respectively.

There was a strong positive linear relationship between the Fh
values and the displayed EXER-GENIE® load (Figure 5). For

device A (R2 = 0.966, p < 0.001), the regression equation was

Fh = 56.93 × (EXER-GENIE® load)− 9.95, and the 95% CI for the

slope and the intercept were 50.56–63.61 and −20.65–0.73,
respectively. For device B (R2 = 0.966, p < 0.001), the regression

equation was Fh = 57.54 × (EXER-GENIE® load)− 7.29, and the

95% CI for the slope and the intercept were 51.06–64.02 and

−18.17–3.57, respectively. For device C (R2 = 0.996, p < 0.001), the

regression equation was Fh = 77.58 × (EXER-GENIE® load) + 0.24,

and the 95% CI for the slope and the intercept were 74.61–80.54

and −4.73–5.23, respectively. In addition to the general linear

regression analysis, we calculated two polynomial regression

equations for the 36 m devices, as a visual inspection displayed a

non-linear trend at very high EXER-GENIE® loads. To support

this trend, the loading on the device progresses in non-linear

increments beyond 3.628 kg. For device A, the polynomial equation

was Fh = 11.451x2+ 19.432x + 1.41, R2= 0.996. For device B, the

polynomial equation was Fh = 10.971x2+ 21.614x + 3.59, R2= 0.993.
5. Discussion

When testing up to a 3.628 kg setting, the EXER-GENIE®

device produced Fh values that ranged from 225 N to 280 N for
frontiersin.org
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the 36 m and 60 m devices. The value of 280 N is similar to that for

other RST devices such as the 1080 SprintTM and DynaspeedTM,

which, according to manufacturer specifications, have a

maximum loading of 300 N (30 kg) and 500 N (50 kg),

respectively. A 2022 validity study using the 1080 SprintTM used

loads up to 110 N, which is equivalent to 2.267 kg on the 36 m

EXER-GENIE® (12). There was a clear linear relationship

between the load on the device and the Fh value on the rope

during the pulling trials. These Fh values were similar between

the two 36 m devices; however, Fh values were higher for the

60 m device at higher loads. This finding supports our hypothesis

and is consistent with what is reported during training programs.

The rationale for testing two separate 36 m devices was to

examine the differences in manufacturing consistency. Ostensibly,

both devices would produce the same force outputs because they

would have similar constructs. Our data support this assumption,

even though device B produced slightly larger Fh values for about

half the EXER-GENIE® loads compared with device A. It is

important to note the difference in Fh data obtained from the

60 m and the 36 m devices, despite identical load settings. The

Fh values were 50 N–85 N higher in the 60 m device, which may

have important consequences when providing an athlete with

consistent or ramped training loads. This was experienced in our

pilot tests and is likely attributed to the length and weight of the

rope; an extra 24 m may add considerable resistive force during

the sprinting activity. Considering that this is a pulley system,

when pulling the nylon rope in one direction, the remaining

rope must be pulled in the opposite direction, which increases

the overall inertia, mass, and resistance during the pull.

The CV% value range of 4–200% for the lighter loads is not

surprising. The nylon rope lacks stability at light loads

(<0.283 kg) due to minimal tension on the rope. When using

heavier EXER-GENIE® loads, the rope increased in tension,

resulting in more stability and producing less variation in Fh
values. Understanding the relationship between the Fh value and

the EXER-GENIE® loads across all three devices (Figure 5) can

help determine the appropriate EXER-GENIE® load for a

resisted sprint program design.

Loads beyond 3.628 kg were not tested in this study. A review by

Zabaloy et al. (4) indicated that applying too high of a load during

RST became counterproductive, as the athlete exhibited detrimental

changes in sprint technique, such as “marching,” instead of normal

propulsive sprinting mechanics. However, it is unclear whether the

long-term effects of heavy RST training on unresisted sprinting

techniques are negative. Lahti et al. (26) reported that heavy RST

training at a 60% velocity decrement (Vdec) for 9 weeks resulted

in no adverse changes in the unresisted sprint technique. Further,

the literature supports the benefits of short-term (4 weeks) and

long-term (8–10 weeks) heavy RST training (i.e., Vdec 50%–80%,

sled load of ∼90% body mass) on horizontal force production in

the early acceleration phase and power output (27–30). Given the

linear relationship between the tested loads and the resistive force

in this study, the regression equations can be used to calculate a

higher Fh value that may occur during extremely heavy training

events, such as the “truck pull,” which is commonly seen among

strongman competitors (31).
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FIGURE 5

Horizontal force in Newtons (N) and kilograms (kg) vs. EXER-GENIE® load (kg) linear regression analysis across all three devices: (A,B) (36 m) and
(C) (60 m).
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This study has certain limitations. First, studies that measure Fh
values are inconsistent across the literature and can be complex;

therefore, caution should be exercised in interpreting the data

(17). Our methods required that the rope be pulled at a single

constant velocity (0.16 m·s−1), which was not as robust as the

motorized winch system in Cross, Tinwala (25), which pulled at

a range of velocities (i.e., 0.1–6 m·s−1). According to the work–

kinetic energy theorem, FD ¼ 1=2mv2 (32), a faster constant

velocity will increase kinetic energy, thus producing a higher Fh
output. Therefore, higher force outputs would be observed with

greater pulling velocities, similar to what is seen in sprinting.

Our motorized winch system, however, was more advanced than

other studies, such as those of Andre et al. (24), which involved

a mechanical winch, and Linthorne and Cooper (16), which

involved pulling a weighted sled by hand. Further, Linthorne and

Cooper (16) measured Fh using a spring balance and measured

constant velocity through timing gates.

Second, the use of Fh as a primary outcome should also be

considered when applying these findings to the clinical use of the

device. Although Fh provides extremely important information

about the horizontal resistive forces, other variables such as Vdec

may also play an important role when selecting loading

parameters (27–29).

Third, the load settings of the EXER-GENIE® are prescribed in

discrete quantitative amounts, which is different from the case with

weighted sleds. The EXER-GENIE® provides 48 specific loads,

whereas sleds can be loaded with any weight amount. From a
Frontiers in Sports and Active Living 07
training perspective, this could be problematic when determining

optimal loads using Vdec because the prescribed load might fall

between fixed intervals.

A fourth limitation is the angle of pull. For achieving greater

accuracy in quantifying the Fh value, the rope in this study was

placed in the horizontal direction to minimize an angle of pull,

thus eliminating a vertical component that could not be

calculated by our load cell. In sprinting, however, an angle of

pull off of the horizontal component would likely exist due to

the varying heights of the athletes and the anchor points of the

EXER-GENIE® (see Figure 2). The location of where the EXER-

GENIE® rope attaches to the athlete and where the EXER-

GENIE® is anchored may not be the same, thus affecting

resistive force. Fortunately, the versatility of the EXER-GENIE®

allows for attaching to a higher anchoring point, which could

mitigate this problem.

Future research could quantify the Fh value of the EXER-

GENIE® for a hot device. Although anecdotal, users and coaches

have reported a possible shift toward lower resistance at the same

load setting for a hot device compared with a cold one. Future

studies should also quantify the Fh value for higher settings, as

research has shown that loads greater than 28 kg, which is the

highest kilogram load for this study (device C, 60 m), have been

used successfully with weighted sleds (33).

In conclusion, the results from this study provide coaches and

practitioners with a better understanding of the Fh value produced

by the EXER-GENIE® devices. The device produces horizontal
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forces greater than 220 N (∼22.5 kg) when testing up to 3.628 kg.

The 36 m devices produce similar Fh values across loads of

0.028–3.628 kg for a constant velocity. Finally, beyond 0.226 kg,

the 60 m device produces greater Fh values than the 36 m devices

at the same load setting. Coaches must account for this

difference when using the EXER-GENIE® device for sprint

training and program design.
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