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Intoduction: To cross-validate skinfold (SKF) equations, impedance devices, and air-
displacement plethysmography (ADP) for the determination of fat-free mass (FFM).
Methods: Male and female youth athletes were evaluated (n=91[mean± SD] age:
18.19± 2.37 year; height: 172.1 ± 9.8 cm; body mass: 68.9± 14.5 kg; BMI: 23.15 ±
3.2 kg m−2; body fat: 19.59±6.9%) using underwater weighing (UWW), ADP, and SKF
assessments. A 3-compartment (3C) model (i.e., UWW and total body water) served
as the criterion, and alternate body density (Db) estimates from ADP and multiple SKF
equations were obtained. Validity metrics were examined to establish each method’s
performance. Bioelectrical impedance analysis (BIA), bioimpedance spectroscopy
(BIS), and the SKF equations of Devrim-Lanpir, Durnin and Womersley, Jackson and
Pollock (7-site), Katch, Loftin, Lohman, Slaughter, and Thorland differed from criterion.
Results: For females, Pearson’s correlations between the 3C model and alternate
methods ranged from 0.51 to 0.92, the Lin’s concordance correlation coefficient
(CCC) ranged from 0.41 to 0.89, with standard error of the estimate (SEE) ranges of
1.9–4.6 kg. For SKF, the Evans 7-site and J&P 3 Site equations performed best with
CCC and SEE values of 0.82, 2.01 kg and 0.78, 2.21 kg, respectively. For males,
Pearson’s correlations between the 3C model and alternate methods ranged from
0.50 to 0.95, CCC ranges of 0.46–0.94, and SEE ranges of 3.3–7.6 kg. For SKF, the
Evans 3-site equation performed best with a mean difference of 1.8 (3.56) kg and a
CCC of 0.93.
Discussion: The Evans 7-site and 3-site SKF equations performed best for female and
male athletes, respectively. The field 3C model can provide an alternative measure of
FFM when necessary.
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1. Introduction

Body composition measurement is an important assessment technique in sports. Body

composition parameters can provide valuable information regarding the amount and

ratios of certain tissue components within the body, depending on the instrumentation

used. In general, parameters such as body fat percentage, fat-free mass, and lean body
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mass are measured directly, or estimated based on prediction

equations or indirect measurements. In athletic settings,

laboratory-grade equipment is often not available or a feasible

option due to cost, technician requirements, and time,

particularly in high school or collegiate settings. Therefore,

several field-based methodologies have been used to provide

estimates of body composition parameters. Skinfold

measurements and bioimpedance devices are examples of field-

based assessment techniques that have been cross-validated

against criterion measures in youth athletes and young adult

populations with mixed findings (1–7). Skinfold measurement

utilizes a caliper to obtain a measure of subcutaneous adiposity

(i.e., skinfold thickness) at select sites throughout the body, using

a double fold of gripped skin. These measures are then summed

and used in prediction equations to estimate body density and

subsequently fat mass (7). Bioimpedance methods can be

classified as single (bioelectrical impedance analysis) vs. multi-

frequency (bioimpedance spectroscopy) devices, and rely on the

use of electrical current transmission through the body to

calculate impedance and reactance of the current (6). BIA

devices then utilize regression equations to estimate specific body

composition compartments, whereas BIS devices use Cole

modeling (8) and mixture theories (9) to estimate body water

and other body compartments, of which the latter is often

regarded as the more accurate of the two for evaluating body

composition parameters (6).

Body weight and composition assessment can play a pivotal role

in certain sports (e.g., weight-category sports and combat sports).

For example, during the pre-season, wrestlers are required to

complete a body composition assessment (most commonly via

skinfold measures) to estimate body fat percentage, which is then

used to calculate minimal wrestling weight (MWW) as part of a

weight certification program. At the time of assessment, a

wrestler’s weight and body fat percentage are used to extrapolate

what their weight would be (assuming no changes in fat-free

mass), if they were to wrestle at a body fat percentage of 7% (5%

at the collegiate level) and 12% for males and females, respectively,

for determination of their MWW. Despite recommendations for

safe and conservative weight loss strategies, research shows that

wrestlers and weight-class athletes still rely on unhealthy practices

including extended fasting periods, dehydration strategies,

excessive exercise, and weight loss pills or laxatives (10–12), which

can pose a significant risk to athlete health and well-being.

Therefore, the establishment of accurate body composition

assessment strategies to determine safe and appropriate weight

class decisions for wrestlers is imperative.

The accuracy of skinfold prediction equations and other body

composition methodologies for the measurement of body fat

percentage has previously been evaluated (13–17); however,

concerns have been raised in regard to the accuracy of this process

(18), as there are potential sources for error. In wrestling, this

could result in athletes being allowed to compete in too low of a

weight class. Concerns include the accuracy of the prediction

equations used to estimate body density, testing error, and the

potential for variability when using skinfold measures for body fat

percentage determination (19–21). For example, previous research
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in children reported significant sources of error and directional

bias when utilizing skinfold thickness to estimate body fat percent

(22). Similar conclusions have been reported in highly trained

young adult populations, in that skinfold-derived measures of

body fat percent do not yield accurate measures of fat mass and

fat-free mass; particularly when used to track changes in body

composition parameters (23). Furthermore, several of the skinfold

equations may not be valid for young female athletes.

In an effort to improve the weight certification program, there

have been investigations into the accuracy of skinfold prediction

equations along with other minimally invasive and cost-efficient

modes of body composition assessment (16, 24–26). At the

collegiate level, the examination of various modes of body

composition assessment for MWW determination have yielded

differences in minimum weights up to 3.3 kg, which may result

in inappropriately categorized wrestlers. Cutrufello et al. (25)

recently found standard error of estimate values ranging from 2.4

to 3.2 kg when determining MWW, depending upon the

technique used. Similar discrepancies have been reported when

comparing body fat percent values derived from 12 different

skinfold prediction equations among Olympic wrestlers (26),

indicating the selection of body composition technique, or

equations, might influence the resulting MWW values.

Advancements in body composition assessment techniques may

improve the accuracy of field-based measures. By cross-validating

prior methods using a 3-compartment model as a criterion

measure, while also exploring novel techniques, improvements to

the weight certification program may be possible. As a result, there

may be opportunities to refine the current process for MWW

determination within the sport of wrestling. Therefore, the

purpose of the current study was threefold: (A) to determine the

most accurate skinfold prediction equations for young male and

female athletes, respectively, using a three-compartment model of

body composition assessment; (B) to examine the utility of

alternative modes of body composition assessment compared to

criterion measures; and (C) to identify the number of athletes that

may be mis-categorized to a certain weight-class when current

methods are compared to criterion measures.
2. Methods

2.1. Study design

Subjects completed a battery of body composition assessments

during a single morning of testing, including skinfold (SKF),

underwater weighing (UWW), air displacement plethysmography

(ADP), bioimpedance spectroscopy (BIS), multi-frequency BIA

(MFBIA), and two single-frequency BIA (SFBIA) analyzers. Prior

to testing, subjects were asked to refrain from intense activity

(>24 h.) and food (>8 h.). Upon arrival, subjects provided a urine

sample to determine adequate hydration status (USG < 1.02).

Athletes with a urine specific gravity (USG) > 1.02 the morning

of testing were re-scheduled. Three-component model estimates

of %BF (%BF3C) included total body water from BIS

measurement, and body density by UWW. Skinfold (SKF)
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measures at 8 sites were completed in triplicate. Fat-free mass

(FFM) was assessed via each mode of body composition analysis

and used to calculate minimum wrestling weight based on a

7.0% minimum body fat for males and 12.0% body fat for

females. A body fat percentage value was also assessed using a

field-based 3-compartment model of body composition, derived

from the SKF and BIA results. Cross-validation occurred for all

modes of body composition assessment, using the 3C measures

of FFM and MWW as criterion measures. Target outcomes

included FFM and MWW.
2.2. Subjects

Ninety-one male and female youth athletes (age range: 14–24

years of age) were evaluated (female, n = 51; [mean ± SD] age:

18.19 ± 2.37 year; height: 172.1 ± 9.8 cm; body mass: 68.9 ± 14.5 kg;

BMI: 23.15 ± 3.2 kg/m2; body fat: 19.59 ± 6.9%) participated.

Because of the novelty of female wrestling and subsequent limited

sample size available, athletes of all sport types were recruited from

local high schools and Universities in the southwest region of

Wisconsin, USA. All interested participants and their parents or

guardians were invited to attend an informational meeting at which

time, the details of the study, participant involvement, benefits,

risks, and projected outcomes were discussed. Participants who

were actively cleared to participate in a high school (n = 41) or

collegiate (n = 50) sports were included in the study. Further

inclusion criteria included being between the ages of 14–25 years of

age. Exclusion criteria included pregnancy or breastfeeding, and

currently being treated for or diagnosed with a cardiac, respiratory,

circulatory, autoimmune, musculoskeletal, metabolic, hematological,

neurological, or endocrine disorder or disease. Athletes from

baseball (n = 7), wrestling (n = 9), football (n = 12), basketball (n =

4), soccer (n = 28), track/cross-country (n = 10), weight/power lifting

(n = 4), volleyball (n = 5), gymnastics (n = 5), dance (n = 1), softball

(n = 2), tennis (n = 1), CrossFit (n = 1), skiing (n = 1), and hockey

(n = 1) were represented. 40 (43.9%) athletes participated in two

sports, 19 (20.8%) in three sports, and 3 (3.3%) in four sports. The

study was conducted according to the Declaration of Helsinki

guidelines, and procedures were approved by the University’s

Institutional Review Board for use of human subjects in research.

All participants signed an informed consent or assent (for those

<18 years of age) document prior to participation. Parental/

guardian consent was provided for participants <18 years of age.
2.3. Study procedures

2.3.1. Anthropometrics, skinfold and body density
Body mass and height were initially assessed using a self-calibrating

physician’s scale and stadiometer to the nearest 0.1 kg and 0.5 cm,

respectively. Skinfold measures were conducted three times (to the

nearest 0.1 mm) using a Harpenden Skinfold caliper across an 8-site

model (subscapular, triceps, chest, midaxillary, suprailiac, abdominal,

thigh and biceps). Skinfold technician test-retest reliability in the

current study was ICC: 0.991 (95% CI: 0.987, 0.994).
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2.3.2. Under water weighing
Residual volume was determined in the UWW tank with

subjects immersed at shoulder level using a closed-circuit oxygen

dilution method (27). Prior to each test, the system was

calibrated, and the rebreathing bag was flushed out with oxygen

and emptied with a vacuum pump. An electronic nitrogen

analyzer (Med Science 505 Nitralyzer, Needham Heights, MA)

was used to measure gas exchange while the subject was

inspiring and expiring through the bag for multiple cycles. Next,

the subject was instructed to place a nose clip on and to seal

their lips tightly around the mouthpiece and breathe normally.

The subject was then instructed to forcefully expire as much air

as possible. When the subject expired all their air, they signaled

the technician, and then a valve was opened, which connected

the subject to the rebreathing bag. Once connected, the subject

was instructed to deeply breathe in, followed by deep, rapid

breaths in and out until an equilibrium was displayed on the

electronic dashboard. The residual volume was then calculated

using the following equation from Wilmore 1969 (27):

Residual Volume ¼ (VO2)(EN� IN)=[AN� FN� RVDS]

VO2 = Initial volume of O2 in spirometer system including

dead space between breathing valve and spirometerbell (.034 L);

EN = Percent nitrogen at equilibrium; IN = Impurity of nitrogen;

AN = Percent of alveolar nitrogen; FN = Percent of final nitrogen;

RVDS =mouthpiece dead space (.070 L).

Electronic load cells suspended an underwater chair to assess

the subject’s weight underwater. An automated computer

program converted the voltage measured at the load cell into

weight in kilograms. The computer used an average of 100

readings per trial to determine a value that represented the

subject’s weight while submerged in the water. The UWW

weighing chair was calibrated prior to each test. Following

determination of residual volume, the subject stepped off the

chair placed their back against the side of the tank with the

water level at the neck. With the subject off the chair, and

motionless, the computer zeroed the UWW chair. Next, two 2 kg

weights were placed on each side of the chair while the system

calibrated the load cells to 4 kg. After calibration, the weights

were removed, and the subject assumed the position in the

UWW chair. The subject was then instructed to exhale as much

air as possible, while slowly submerging until their head was

totally submerged (5–10 cm below water level). Once air bubbles

stopped appearing, the computer recorded the weight and the

technician tapped on the side of the tank, signaling to the subject

to come up for air. This procedure was repeated 5–10 times in

order for the subject to produce a consistent UWW with an

average of 2–4 trials (within 0.5 kg) calculated for the final UWW.
2.3.3. Air displacement plethysmography
Body composition variables (i.e., %BF, fat-free mass, fat mass

and body density) were assessed using air displacement

plethysmography (BOD POD model 2000A; BOD POD; Cosmed

USA, Concord, CA) according to standard operating procedures.
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Athletes were instructed to wear spandex or form-fitting clothing

and wore a lycra swim cap. All jewelry was removed prior to

testing. Thoracic gas volume was predicted using manufacture

settings. Previous test-to-test reliability results for the use of ADP

assessment in athletes has yielded high reliability for BM (r =

0.999), body fat percent (r = 0.994), and FFM (r = 0.998) in

our laboratory.
2.3.4. Bioelectrical impedance and total body
water

Whole body SFBIA measurements were assessed using a 50

kHz device (Quantum IV, RJL systems, Clinton MI) to determine

resistance (R), which was used to estimate body composition

through select validated equations as later described. Total body

water (TBW), extracellular water (ECW) and intracellular water

(ICW) were assessed using BIS (SFB7, ImpediMed, Carlsbad, CA)

with 256 measurement frequencies to model the fluid content of

the body by obtaining total body water estimates. BIS utilizes

Cole modeling (8) and mixture theories (9) to predict body

fluids rather than regression equations used by BIA techniques.

Coefficients utilized for males (ρe = 273.9, ρi = 937.2) and females

(ρe = 235.5, ρi = 894.2), as well as body density, body proportion

and hydration values (1.05, 4.30 and 0.732, respectively) were the

same as those utilized in previous investigations with the selected

BIS analyzer (28, 29). These SFBIA and BIS measurements were

taken with the participant in the supine position prior to

assessment using manufacturer-recommended hand-to-foot

electrode arrangement. Alcohol wipes were used prior to

placement of the adhesive electrodes. Previous research has

indicated that TBW measures derived from similar BIS units

have yielded strong agreement (r = 0.90; SEE = 2.65l; TE = 2.6l)

compared with deuterium dilution criterion measures (30), with

test-to-retest reliability producing a SEM of 0.48 L and an ICC of

0.99 (31). Body composition was also assessed using a consumer-

grade MFBIA device, the H20N scale (InBody Inc., Cerritos, CA)

and a foot-to-foot SFBIA device [(F2FBIA) Tanita BF-679W, IL,

USA]. Subjects completed two measurements on each device with

an average of the two used for analysis.
2.3.5. Body density estimation
Body density (Db) values expressed in kg/L were obtained from

UWW, ADP, and multiple SKF equations (Table 1).
2.3.6. Body composition estimation
Data from UWW, ADP, and SKF were used in several body

composition estimation equations. For all equations producing a

BF% value, the corresponding FFM value was then calculated

manually as follows:

FFM ¼ BM� BM� BF%
100

� �
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For UWW and ADP, BF% values were produced using the Siri

(44) and Brozek (45) equations, respectively:

BF% ¼ 4:95
Db

� �
� 4:5

� �
� 100

BF% ¼ 4:57
Db

� �
� 4:142

� �
� 100

For the remaining SKF Db equations, BF% and subsequent

FFM estimates were obtained using the Siri 2C equation only.

Body composition estimates from F2FBIA (Tanita), MFBIA

(InBody), and BIS (ImpediMed) were used, along with additional

estimates obtained using SFBIA (RJL) raw bioimpedance in two

FFM prediction equations (Table 1). Several equations predicting

BF% utilizing anthropometric parameters were also employed

(Table 1).

2.3.7. Criterion method
For the criterion 3C model, Db was taken from UWW, TBW

was taken from BIS, and BM was taken from the calibrated scale.

A field-based 3C model, Db was taken from SKF, TBW was

estimated from bioelectrical resistance from SFBIA (RJL), and

BM was taken from the calibrated scale. The TBW estimate from

SFBIA (RJL) was obtained using the Matias et al. equation (46):

TBW ¼ 0:286þ 0:195�Height2

R

� �
þ (0:385� BM)

þ (5:086� Sex)

Where sex = 0 for females and sex = 1 for males.

Two estimates were produced using the Siri 3-compartment

model equation (47):

BF% ¼ 100� 2:118
Db

� �
� 0:78� TBW

BM

� �
� 1:354

� �

This 3-compartment model has been previously used in college-

aged men and women, with a total error of measurement value

of 0.1152%fat and 0.1152%fat, respectively (48, 49).

2.3.8. Minimal wrestling weight
For all methods, BF% estimates were used to calculate

minimum wrestling weight (MWW) based on the minimum

requirement of 7% body fat for males and 12% body fat for

females. MWW was estimated as:

MalesMWW ¼
1� BF%

100

� �
� BM

0:93

FemalesMWW ¼
1� BF%

100

� �
� BM

0:88
:
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TABLE 1 Summary of equations to predict body density or body fat percent.

Author Equation
Jackson and Pollock 3-site and 7-
site (32, 33)

3-site
Males:Db ¼ 1:10938� (0:0008267� SS3)þ (0:0000016� SS32)� (0:0002574� age)
Females:Db ¼ 1:0994921� (0:0009929� SS3) þ (0:0000023� SS32)� (0:0001392� age)
Where SS3 is, for males, the sum of chest, abdomen, and thigh skinfolds; and, for females, the sum of triceps, thigh, and suprailium
skinfolds.
7-site
Males:Db ¼ 1:112 � (0:00043499� SS7)þ (0:00000055� SS72)� (0:00028826� age)
Females:Db ¼ 1:0970� (0:00046971� SS7)þ (0:00000056� SS72)� (0:00012828� age)
Where SS7 is the sum of seven skinfolds (chest, midaxillary, triceps, subscapular, abdomen, suprailium, and thigh).

Forsyth (34) Db ¼ 1:10647� (0:00162� Subscapular)� (0:00144� Abdomen)� (0:00077� Triceps) þ (0:00071�Midaxillary)

Katch (35) Db ¼ 1:09665� (0:00103� Triceps)� (0:00056� Subscapular)� (0:00054� Abdomen)

Lohman (36) Db ¼ 1:0982� (0:000815� (Tricepsþ Subscapularþ abdomen av))þ (0:00000084� (Triceps þ Subscapular þ Abdomen)2)

Thorland (37) Db ¼ 1:1136� (0:00154� (Triceps� Subscapular�Midaxillary))þ (0:00000516� (Triceps þ Subscapular þMidaxillary)2)

Durnin and Womersle (38) Multiple equations were developed by Durnin and Womersley, with the general form of:
Db ¼ c� (m� log (skinfold))
Accordingly, the equations for males up to 19 years and between 20 and 29 years were:
Db ¼ 1:1620� (0:0630� log (SS4))
Db ¼ 1:1631� (0:0632� log (SS4))
The equations for females up to 19 years and between 20 and 29 years were:
Db ¼ 1:1549� (0:0678� log (SS4))
Db ¼ 1:1599� (0:0717� log (SS4))

Bioimpedance and anthropometric equations to estimate BF%

Matias (39) FFM ¼ �2:261 þ 0:327� Height2

R

� �
þ (0:525� BM)þ 5:462 � Sex

Where height is expressed in centimeters, R is resistance expressed in ohms, BM is expressed in kilograms, and sex = 0 for females and
sex = 1 for males.

Stewart (males only) (40) FFM ¼ 294:3�Height2

R þ (662:7� BM)þ (71:8� Xc)þ 662:7
Where height is expressed in meters, R is resistance in ohms, Xc is reactance in ohms, and BM is expressed in kilograms.

Fornetti et al. (females only) (41) FFM ¼ (0:143�Height)þ (0:565� BM)� 10:03, where height is expressed in cm and BM is expressed in kg.

Loftin et al. (females only) (42)
Slaughter (females only) (43)

BF% ¼ �23:39þ (2:27� BMI)þ (1:94� triceps)� (2:95� Race)� (0:52� age)� (0:06� BMI� triceps)
Where race = 1 if Black/African American and race = 0 for other races.
If sum of skinfolds ≤35 mm
BF% ¼ (0:546 � (Tricepsþ Subscapular))þ 9:7
If sum of skinfolds >35 mm
BF% ¼ (1:33� (Tricepsþ Subscapular))� (0:013 � (Tricepsþ Subscapular)2)� 2:4

Evans 3-site and 7-site (1) BF% ¼ 8:997þ (0:24658� SS3)� (6:343� Sex)� (1:998� Race)
BF% ¼ 10:566þ (0:12077� SS7)� (8:057 � Sex) � (2:545� Race)
Where sex = 0 for females and sex = 1 for males; race = 0 for Caucasian and race = 1 for Black; SS3 is the sum of abdomen, thigh, and
triceps skinfolds; and SS7 is the sum of seven skinfolds.

Devrim-Lanpir (29) BF% ¼ 0:30þ (0:72� abdomen) þ (11:43� sex)
Where sex = 0 for males and sex = 1 for females.

Db, body density; c and m are values specific to each skinfold or sum of skinfolds, as well as age and sex. For the present analysis, the equations using the sum of four

skinfolds (SS4; biceps, triceps, subscapular, and suprailium) were used. For males, the age ranges of Durnin and Womersley used in the present analysis were 17–19 years—

for all male participants up to 19 years—and 20–29 years for participants in this range. For females, the age ranges of Durnin and Womersley used in the present analysis

were 16–19 years—for all female participants up to 19 years—and 20–29 years for participants in this age range. FFM, fat-free mass; BM, body mass; R, reactance; BF%,

body fat percent.
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3. Statistical analysis

Separate analyses were performed for males and females. The

same statistical analysis procedures were performed for fat-free

mass and minimal wrestling weight estimates. To determine

which methods differed from the criterion method (3C model

with UWW Db and BIS TBW), a one-way analysis of variance

(ANOVA) test with repeated measures was performed, with the

body composition assessment method specified as a within-

subjects factor. Significant effects were followed up with pairwise

t-tests, with the criterion 3C model specified as the reference

group and using the Holm adjustment for multiple comparisons.

This analysis was performed using the rstatix package for R

(v. 4.1.2) (50). Additionally, equivalence testing was performed to

determine which methods were statistically equivalent to the
Frontiers in Sports and Active Living 05
criterion method. The TOSTER (51) R package was used for this

analysis, and equivalence intervals were set at ±2 kg. The entire

90% two one-sided test (TOST) confidence interval was required

to fall within the specified equivalence interval for equivalence to

be demonstrated.

Bland–Altman analysis (52) with linear regression was

performed to identify proportional bias, and the 95% limits of

agreement were calculated to indicate individual-level error. The

mean difference between the criterion and alternate methods was

also calculated. Correlations between the criterion method and

alternate methods were established using Pearson’s r and Lin’s

concordance correlation coefficient (CCC) (53, 54). The standard

error of the estimate (SEE) was estimated via regression

procedures. An a priori power analysis determined that a sample

size of 46 subjects per group (male and female) would be needed
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for a Type I error at α = 0.05 and a power of 80%, for an expected

Pearson correlation coefficient of r = 0.60 based on previous studies

evaluating the reliability of body composition assessment methods

(25, 55). All analyses were performed in R (v. 4.1.2), and statistical

significance was accepted at p < 0.05.
4. Results

4.1. Fat-free mass

4.1.1. Females
FFM estimates are displayed in Table 2.

The ANOVA test indicated significant differences for FFM

estimates in females, indicating the following methods differed

from the 3C model: SFBIA [RJL/Matias et al. equation (56)], BIS,

and the SKF equations of Devrim-Lanpir (26), Durnin and

Womersley (38), Jackson and Pollock (7-site) (33), Katch (35),

Loftin (42), Lohman (16, 36), Slaughter (43), and Thorland

(16, 37) (Figure 1). Equivalence testing indicated that several

methods demonstrated equivalence with the reference 3C model

based on the ±2 kg equivalence interval. These included: 3C Field,

UWW [both Siri (44) and Brozek (45) equations], ADP [both Siri

(44) and Brozek (45) equations], BIS, MFBIA (InBody), SFBIA

[RJL/Matias equation (56)], the skinfold equations of Forsyth (34),
TABLE 2 Fat-free mass estimates for male and female athletes.

Method Females (n = 51)

Mean (kg) SD MD (kg) SD o
3C 47.9 4.4 –

3C Field 48.4 3.7 0.5 2

ADP (Brozek) 48.5 4.0 0.5 2

ADP (Siri) 48.2 3.9 0.3 2

Anthro (F) 48.9 3.8 0.9 3

MFBIA (InBody) 47.6 3.9 −0.4 3

SFBIA (RJL/Matias) 46.6 4.5 −1.3 2

SFBIA (RJL/Stewart) – – –

F2FBIA (Tanita) 49.3 5.9 1.4 4

BIS 49.0 5.0 1.0 2

SKF (DL) 53.4 4.1 5.5 2

SKF (DW) 45.9 3.2 −2.0 2

SKF (Ev.3) 46.9 3.6 −1.0 2

SKF (Ev.7) 47.8 3.6 −0.2 2

SKF (Forsyth) 48.7 3.8 0.8 4

SKF (JP3) 48.5 3.6 0.5 2

SKF (JP7) 49.4 3.6 1.4 2

SKF (Katch) 51.6 3.7 3.7 2

SKF (Loftin) 44.4 3.0 −3.5 3

SKF (Lohman) 51.4 3.7 3.5 2

SKF (Slaughter) 45.8 3.1 −2.1 3

SKF (Thorland) 51.9 3.6 3.9 2

UWW (Brozek) 47.3 4.1 −0.7 2

UWW (Siri) 47.0 4.2 −0.9 2

MD, mean difference; SD of MD, SD of mean difference; 3C, 3-compartment model; A

of Fornetti et al.; MFBIA, multi-frequency bioelectrical impedance analysis; SFBIA, single

bioelectrical impedance analysis; Matias, Matias equation; BIS, bioimpedance spectr

equations; Ev.3, Evans 3-site equation; Ev. 7, Evans 7-site equation; Forsyth, Forsyth

site equation; Katch, Katch equation; Lohman, Lohman equation; Thorland, Thorland
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Jackson and Pollock (3-site) (32, 33), Evans (3-site; 7-site) (1), and

the anthropometric equation of Fornetti (41).

For female athletes, the Pearson’s correlations between the

reference 3C model and alternate methods ranged from 0.51 to

0.92, the CCC ranged from 0.41 to 0.89, and the SEE ranged

from 1.9 to 4.6 kg (Figure 2).

Bland–Altman analysis indicated that proportional bias was

present (i.e., the slope of the linear regression line significantly

differed from 0) for the following methods: 3C Field, F2FBIA

(Tanita), BIS, and the skinfold equations of Durnin and

Womersley (38), Evans 3-site and 7-site equations (1), Jackson

and Pollock 3-site and 7-site equations (32, 33), Katch equation

(35), Loftin equation (42), Lohman equation (16, 36), Slaughter

equation (43), and Thorland equation (16, 37) (Figure 3).
4.1.2. Males
Significant differences existed for FFM estimates in males

(Table 2), indicating that the following methods differed from

the 3C model: SFBIA (RJL/Stewart et al.) and the SKF equations

of Devrim-Lanpir (26) and Jackson and Pollock (both 3-site and

7-site equations) (32) (Figure 4). Equivalence testing indicated

that four methods—UWW [both Siri equation (44) and Brozek

equation (45)] and the SKF equations of Lohman (36) and

Durnin and Womersley (38)—demonstrated equivalence with the

reference 3C model based on the ±2 kg equivalence interval.
Males (n = 40)

f MD Mean (kg) SD MD (kg) SD of MD
– 65.1 12.2 – –

.2 66.4 10.3 1.3 4.0

.3 66.3 11.1 1.2 4.5

.4 66.4 11.0 1.3 4.7

.0 – – – –

.1 67.4 12.5 2.2 4.5

.1 67.0 12.2 1.9 4.2

– 56.7 11.1 −8.4 5.3

.6 67.3 10.6 2.1 5.1

.0 66.4 11.8 1.2 6.0

.9 58.0 7.6 −7.1 6.6

.7 64.9 10.3 −0.2 4.4

.6 66.9 10.8 1.8 4.0

.4 67.0 10.3 1.8 4.3

.1 62.2 8.7 −2.9 10.8

.7 69.1 10.8 4.0 4.0

.5 68.8 10.5 3.7 4.2

.6 66.4 9.6 1.3 4.9

.4 – – – –

.7 65.7 9.1 0.5 5.3

.0 – – – –

.7 66.8 9.2 1.7 6.0

.2 65.4 11.3 0.3 4.0

.3 64.9 11.8 −0.2 4.2

DP, air displacement plethysmography; Anthro (F), anthropometric-based equation

-frequency bioelectrical impedance analysis; F2FBIA, foot to foot single-frequency

oscopy; SKF, skinfolds; DL, Devrim-Lanpir equation; DW, Durnin and Womersley

equation; JP3, Jackson and Pollock 3-site equation; JP7, Jackson and Pollock 7-

equation; UWW, underwater weighing.
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FIGURE 1

Comparison of fat-free mass values in female athletes. Estimates were compared using one-way analysis of variance with repeated measures. The
significant effect of method was followed up with pairwise t-tests, using the 3C model as the reference group. The Holm adjustment was performed
to correct for multiple comparisons. **Indicates a p value between 0.01 and 0.001 and ****indicates a p value <0.0001. See footnote on Table 1 for
abbreviations.

FIGURE 2

Validity of fat-free mass estimates in female athletes. Each specified method was compared to the reference 3-compartment (3C) model. The Pearson’s
correlation (r), Lin’s concordance correlation coefficient (CCC), and standard error of the estimate (SEE) are displayed.
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FIGURE 3

Bland–Altman analysis of fat-free mass estimates in female athletes. Horizontal dashed lines indicate the 95% limits of agreement (i.e., 1.96 times the
standard deviation of the difference between methods), and the solid horizontal line indicates the mean difference between methods. The diagonal
line indicates the linear relationship between the difference between methods (y) and the average of the methods (x). A slope significantly different
from zero indicates proportional bias. See text for more information.

FIGURE 4

Comparison of fat-free mass values in male athletes. Estimates were compared using one-way analysis of variance with repeated measures. The
significant effect of method was followed up with pairwise t-tests, using the 3C model as the reference group. The Holm adjustment was performed
to correct for multiple comparisons. ****Indicates a p value <0.0001. See Figure 1 caption for abbreviations. Stewart, Stewart equation (40).
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For male athletes, the Pearson’s correlations between the

reference 3C model and alternate methods ranged from 0.50 to

0.95, the CCC ranged from 0.46 to 0.94, and the SEE ranged

from 3.3 to 7.6 kg (Figure 5).

Bland–Altman analysis indicated that proportional bias was

present for the following methods: 3C Field, SFBIA (Tanita), and

the skinfold equations of Devrim-Lanpir (26), Durnin and

Womersley (38), Evans 3-site and 7-site equations (1), Forsyth

(34), Jackson and Pollock 3-site and 7-site equations (32, 33),

Katch equation (35), Lohman equation (16, 36), and Thorland

equation (16, 37) (Figure 6).
4.2. Minimal wrestling weight

As minimal wrestling weight is calculated using measures derived

from FFM estimates, the MWW results (see SDC1 for results

regarding differences in MWW based upon skinfold prediction

equation and impedance analysis device used) are presented in
FIGURE 5

Validity of fat-free mass estimates in male athletes. Each specified method wa
correlation (r), Lin’s concordance correlation coefficient (CCC), and standard
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Supplementary Materials only (see SDC2 for Table S5: Minimum

Wrestling Weight Estimates for Male and Female Athletes and

SDC3 (Figure S7. Comparison of Minimum Wrestling Weight

Values in Female Athletes); SDC4 (Figure S8. Validity of

Minimum Wrestling Weight Estimates in Female Athletes); SDC5

(Figure S9. Bland–Altman Analysis of Minimum Wrestling Weight

Estimates in Female Athletes.); SDC6 (Figure S10. Comparison of

Minimum Wrestling Weight Values in Male Athletes.); SDC7

(Figure S11. Validity of Minimum Wrestling Weight Estimates in

Male Athletes); and SDC8 (Figure S12. Bland–Altman Analysis of

Minimum Wrestling Weight Estimates in Male Athletes.), in an

effort to avoid redundancy.
5. Discussion

The current study had two primary aims: (A) to determine the

most accurate skinfold prediction equations for young male and
s compared to the reference 3-compartment (3C) model. The Pearson’s
error of the estimate (SEE) are displayed.
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FIGURE 6

Bland–Altman analysis of fat-free mass estimates in male athletes. Horizontal dashed lines indicate the 95% limits of agreement (i.e., 1.96 times the
standard deviation of the difference between methods), and the solid horizontal line indicates the mean difference between methods. The diagonal
line indicates the linear relationship between the difference between methods (y) and the average of the methods (x). A slope significantly different
from zero indicates proportional bias. See text for more information.
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female athletes using a three-compartment model of body

composition assessment; and (B) to examine the utility of

alternative modes of body composition assessment compared to

criterion measures. This is the first study to examine the validity

of skinfold prediction equations in young male and female

athletes. The main findings indicate multiple discrepancies in

FFM estimates for female and male athletes when compared to

the 3C model. In females, The Evans 3 and 7-site, Forsyth, and

Jackson and Pollock (3-site) SKF prediction equations performed

best, while the Evans 3-site equation appeared to perform best

when determining FFM in male athletes. Additionally, the field

3C model can provide a suitable alternative measure of FFM for

both male and female athletes when laboratory-grade criterion

measures are not available.

In females, the SKF prediction equations of Devrim-Lanpir

(26), Durnin and Womersley (38), Jackson and Pollock (7-site)

(33), Katch (35), Loftin (42), Lohman (16, 36), Slaughter (43),
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and Thorland (16, 37) differed from the 3C model (Figure 1).

However, equivalence testing indicated that the equations of

Forsyth (34), Jackson and Pollock (3-site) (32, 33), Evans (3-site

and 7-site) (1), and the anthropometric equation of Fornetti (41)

demonstrated equivalence with the reference 3C model based on

the ±2 kg equivalence interval. In the context of wrestling and

MWW determination, this suggests the estimates of FFM and

subsequently MWW are likely to fall within the limits of each

weight class division (often in 5.4 kg increments) utilizing these

SKF equations. However, this could impact wrestlers who are on

the threshold of a certain MWW and weight class. There was

evidence of proportional bias for the skinfold equations of

Durnin and Womersley (38), Evans 3-site and 7-site equations

(1), Jackson and Pollock 3-site and 7-site (32, 33), Katch (35),

Loftin (42), Lohman (16, 36), Slaughter (43), and Thorland (16,

37) (Figure 3). The Evans 3 and 7-site, Forsyth, and Jackson and

Pollock (3-site) SKF prediction equations performed best with
frontiersin.org
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mean differences (SEE) values of −1.0 (2.12) kg, −0.2 (2.01) kg, 0.8
(3.28), and 0.5 (2.21), respectively. When taking concordance

correlation coefficient (CCC) values into consideration, the Evans

7-site SKF equation performed best (CCC = 0.82). Collectively,

these findings indicate the Evans 7-site equation appears to

perform best among SKF prediction equations for female athletes

when determining FFM. If a 3-site method is preferred for ease

of use, the J&P and Evans 3-site equations produced the next

highest CCC values of 0.78 and 0.77, respectively, and with mean

differences (SEE) of 0.5 (2.21) kg and −1.0 (2.12) kg.

The current MWW certification process for girls’ high school

wrestling in Wisconsin requires the use of the Slaughter SKF

equation (43), which resulted in a mean difference (SEE) of

−2.1 kg (2.1) kg, a CCC value of 0.60 when compared to

criterion measures in the current study. Additionally, there was a

proportional bias towards a greater underestimation of FFM for

athletes with higher FFM values, which could subsequently result

in a higher estimate of BF% and lower MWW. This could

potentially allow a female wrestler to compete in a lower weight

class than what would be allowed if FFM was assessed more

accurately. When evaluating the number of female athletes that

would be mis-categorized when determining MWW, the current

method would allow 31/51 (60.8%) of the current female athletes

to compete in a weight class that would be different from the

criterion-derived MWW and resultant weight class.

Among the remaining body composition assessment modalities,

no differences were observed between 3C Field, ADP [both Siri (44)

and Brozek (45) equations], nor the UWW (Brozek and Siri

equations) compared to the criterion 3C model when determining

FFM for females. The 3C Field resulted in a mean difference

(SEE) of 0.5 (1.86) kg and the highest CCC (0.85) among all

methods. However, there was proportional bias for the 3C Field,

indicating that the model tended to overestimate FFM in those

with low FFM levels but underestimate FFM in those with higher

FFM. However, it should also be noted that the performance of

the Field 3C model is dependent upon the field methods used to

estimate Db and TBW, so alternate versions of this model may

produce dissimilar results. The 3C Field, UWW [both Siri (44)

and Brozek (45) equations], ADP [both Siri (44) and Brozek (45)

equations] all demonstrated equivalence with the reference 3C

model. For impedance analysis, the SFBIA [RJL/Matias et al.

equation (56)], and BIS differed from the 3C model; however,

equivalence testing indicated the BIS, MFBIA (InBody), and

SFBIA [RJL/Matias equation (56)] all demonstrated equivalence

with the reference 3C model using the 2.5 kg threshold when

determining FFM for female athletes. However, there was also

proportional bias for the F2FBIA (Tanita), and BIS, which again

indicates a tendency to overestimate measures of FFM in those

with higher FFM.

In male athletes, the FFM values derived from the SKF

equations of Devrim-Lanpir (26) and Jackson and Pollock (both

3-site and 7-site equations) (32) differed from the 3C model

(Figure 4) while proportional bias was present for the Devrim-

Lanpir (26), Durnin and Womersley (38), Evans 3-site and 7-site

(1), Forsyth (34), Jackson and Pollock 3-site and 7-site (32, 33),

Katch (35), Lohman (16, 36), and Thorland equations (16, 37)
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(Figure 6). The equations of Lohman (36) and Durnin and

Womersley (38) demonstrated equivalence with the reference 3C

model based on the ±2 kg equivalence interval and the Evans

3-site equation appeared to perform best with a mean difference

(SEE) of 1.8 (3.56) kg and a CCC of 0.93. The current MWW

certification process for high school boys wrestling in Wisconsin

utilizes the Lohman equation, which comparatively, resulted in a

mean difference (SEE) of 0.5 (3.79) kg and a CCC of 0.88.

Additionally, the Lohman equation tended to overestimate FFM,

which would subsequently underestimate BF% and result in a

higher MWW than would occur with a more accurate measure

of FFM. When evaluating the number of male athletes that

would be mis-categorized when determining MWW, the current

method would allow 29/41 (72.5%) of the current male athletes

to compete in a weight class that would be different from the

criterion-derived MWW and resultant weight class.

When estimating FFM for the male athletes using the

alternative methods, equivalence testing indicated that UWW

[both Siri equation (44) and Brozek equation (45)] demonstrated

equivalence with the reference 3C model based on the ±2 kg

equivalence interval. The Field 3C model resulted in a mean

difference (SEE) of 1.3 (3.30) kg and a CCC of 0.93, serving as a

suitable alternative for a laboratory-grade 3C model. However,

proportional bias was present for the 3C Field, with a tendency

to overestimate FFM in those with lower FFM but underestimate

FFM in those with higher FFM. For impedance analysis, only the

SFBIA [RJL/Stewart et al. (40)] differed from the 3C model

suggesting that the impedance devices used in the current study

appear to be more accurate for the determination measures of

FFM in male athletes compared to females, with correlation

coefficients ranging from 0.87 to 0.94, CCC values of 0.88–0.93

and SEE ranging from 4.24 to 5.82 kg. Proportional bias was

present for the F2FBIA (Tanita) indicating greater

underestimation of FFM values in those with higher FFM. FFM

was underestimated for most males by Tanita and became more

pronounced as FFM increased as indicated by the negative slope

of the Bland–Altman line (Figure 6).

Previous research in college-age men (25) reported

discrepancies in MWW values with SEEs of 3.2, 3.4, and 2.4 kg

for ADP, DXA, and ultrasound, respectively when compared

with SKF. Further, compared to DXA and ultrasound measures,

reliance on SKF-derived MWW would allow wrestlers to certify

at a lower weight class 64% and 33% of the time, respectively,

which is in opposition of what weight certification programs are

designed to accomplish (57). When comparing the current

NCAA approved methods (SKF and ADP) for MWW

determination, approximately 50% of the male subjects would

have certified at a different weight class depending on the

method used (57). These findings, in addition to the ones from

the current study indicate the potential variability in FFM, and

subsequently MWW, through the use of different methods of BF

% assessment.

When evaluating more practical methods of BF% assessment in

high school athletes, no differences were reported in high school

wrestlers between a similar MFBIA unit as the one used in the

current study and the UWW criterion methods with a SEE for
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FFM of 2.73 kg and correlation coefficient of r = 0.96 (3). Clark

et al. (58) reported similar mean values (72.2 ± 9.7 vs. 72.2 ±

10.3 kg), and a high correlation (r = 0.94) between BIA and a

criterion 4C model. However, the authors (58) reported large

individual differences and systematic bias across the range of

MWW values. Additionally, the BIA was able to predict MWW

within 3.5 kg 68% of the time and within 7.0 kg 95% of the time.

Others reported no differences in MWW from UWW (70.5 ±

7.3 kg, P = 0.57), SKF (70.5 ± 7.2 kg, P = 0.29), BIA (70.6 ± 7.6 kg,

P = 0.39), DXA (70.3 ± 7.5, P = 0.97), and the 4C criterion

(70.3 ± 7.4 kg) in male collegiate wrestlers (59). The UWW and

SKF exhibited the highest degree of precision (lowest SEE) with

SEE values of 1.31 and 1.72 kg, respectively, compared to the 4C

criterion. Therefore, it is possible that with more advanced

models used for criterion measures, there is more agreement

between alternative BF% assessment techniques thereby resulting

in a more appropriate minimal wrestling weight. In most high

school settings, SKF is likely the modality of choice because of its

low cost and ease of use. When limiting the scope to SKF and

Db prediction equations used to estimate BF%, previous research

(26) in Olympic wrestlers (age: 12–20 years) found that the

Stewart and Hannan equation (40) for male wrestlers and the

Durnin and Womersley equation (38) for female wrestlers were

the most accurate, least biased, and positively correlated with the

criterion measure using ADP. Conversely, Clark et al. (14) found

that Lohman1 (r = 0.961; TE = 2.2 kg), Lohman2 (r = 0.920; TE =

2.6 kg) and Katch (r = 0.969; TE = 1.7 kg) equations were the

most accurate with smaller mean differences, smaller total error,

and higher correlation compared to three other SKF prediction

equations when estimating MWW in male high school wrestlers

compared to UWW. A similar study in collegiate male wrestlers

found the Lohman equation to be a valid measure of BF% (SEE

= 2.32 kg; TE = 2.49 kg), which is the currently accepted method

for NCAA collegiate wrestling. In high school wrestlers, the

Lohman SKF equation was found to be a valid measure of FFM

with a SEE of 2.66 kg and correlation coefficient of r = 0.97. It is

possible the physiques and anthropometric characteristics of

youth athletes may have changed over the past decades, thereby

influencing the ability of certain SKF prediction equations or

alternative modalities to accurately estimate BF%. Furthermore,

impedance devices may have limitations with athletic

populations, as previous research has indicated that generalized

impedance-based equations underestimate body fluids in athletes,

potentially influencing measures of FFM. Future investigations in

a large, mixed-sex group could provide new equations (SKF and

impedance) for estimating FFM in youth athletes.
6. Conclusions

Results from the current study indicate the Evans 7-site and

3-site SKF equations performed best for female and male

athletes, respectively. The current MWW certification process for

girls’ high school wrestling in Wisconsin does not appear to

utilize the best SKF prediction equation available for this

population. Additionally, there was a proportional bias towards
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an underestimation of FFM, which could subsequently result in a

higher estimate of BF% and lower MWW. This could permit a

female wrestler to compete in a lower weight class than what

would be allowed if FFM was assessed more accurately. For male

wrestlers in Wisconsin, the Lohman equation is currently used,

which provided an adequate estimate of FFM yet was not the

best performing SKF prediction equation. Additionally, the

Lohman equation tended to overestimate FFM, which would

subsequently underestimate BF% and result in a higher MWW

than would occur with a more accurate measure of FFM. The

field 3C model can provide a suitable alternative measure of

FFM for both male and female athletes when laboratory-grade

criterion measures are not available. Athletic organizations,

specifically wrestling programs, should explore the feasibility of

implementing field-based 3C models of SKF in conjunction with

BIA units to improve upon the current assessment of BF%.
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