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Background: Low bone mineral density (BMD) increases the risk of bone stress
injuries (BSI) and is one of several clinical concerns in Para athlete sports
medicine. However, whether bone microarchitecture is altered in Para athletes is
not known.
Objective:We aimed to investigate BMD, bone microarchitecture and incidence of
bone stress injuries in Norwegian elite Para athletes.
Design: In this cross-sectional study in Para athletes, Dual energy x-ray
absorptiometry (iDXA, Lunar, GE Health Care) derived areal BMD, trabecular
bone score (TBS), a surrogate marker for bone microarchitecture, and body
composition (body weight (BW), lean body mass (LBM), fat mass (FM), fat
percentage) were investigated and compared between ambulant and non-
ambulant athletes. Also, the association between BMD, TBS and body
composition variables was investigated. Incidence of BSI was assessed with a
questionnaire and confirmed by a sports physician in a clinical interview. BMD
Z-score <−1 was defined as low and ≤−2 as osteoporotic. TBS≥ 1.31 was
normal, 1.23–1.31 intermediate and <1.23 low.
Results: Among 38 athletes (26 ± 6 yrs, 14 females), BMD Z-score was low in 19
athletes, and osteoporotic in 11 athletes’ lumbar spine (LS) or femoral neck (FN).
BMD was lower in non-ambulant vs. ambulant athletes both in LS (1.13 ± 0.19 vs.
1.25 ± 0.14 g/cm2, p= 0.030) and FN (0.90 ± 0.15 vs. 1.07 ± 0.16 g/cm2, p=
0.003). TBS was normal for all athletes. BMD Z-score in LS was positively
associated with TBS (r= 0.408, p= 0.013), body weight (r= 0.326, p= 0.046) and
lean body mass (r= 0.414, p= 0.010), but not with fat mass or fat percentage.
None of the athletes reported any BSI.
Conclusions: Half of the Norwegian elite Para athletes had low BMD, and 29% had
BMD Z-score <−2 suggesting osteoporosis. Non-ambulant athletes were more
prone to low BMD than ambulant athletes. However, despite high prevalence of
low BMD, TBS was normal in all athletes, and BSI was absent in this young
population.
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1. Introduction

Low bone mineral density with an increased risk of bone stress

injury (BSI) is one of several clinical concerns in Paralympic sports

medicine (1). Identifying athletes with low BMD is necessary for

targeted preventive measures (2).

Athletes’ BMD is expected to be 10%–15% higher than age-

matched non-athletes (3), but differs between sports (4, 5). Also,

in athletes with physical impairment (Para athletes), BMD is

supposed to vary by type of physical impairment, ambulatory

status and to be site specific (6, 7). There is evidence of a

protective effect of exercise to maintain BMD in Para athletes,

however, only above the level of injury (6, 8, 9).

Following spinal cord injury (SCI) the rapid decline in BMD (up

to 50%) (10) seams to reach a new plateau within 5 years after injury

(11, 12). Thus, non-ambulant athletes with congenital (e.g., spina

bifida) or long-standing SCI might be more prone for low BMD

and BSI than other Para athletes. Also, lean body mass (LBM) in

total body declines after SCI (13). Yet, LBM above the level of

injury is often maintained or even elevated in non-ambulant Para

athletes (14) and is positively associated with BMD, at least in

healthy adolescents (15), reflecting the osteogenic effect of exercise-

induced muscle-tendon pull, and perhaps the compressive strain to

bone induced by resistance exercise (16).

BSI occurs following cyclic overload to bone, leading to

microtrauma that may progress to stress reaction. In US elite

Para athletes, nearly 9% reported a BSI, of whom more than half

had low BMD (17). Such microtrauma is often seen in athletes

with low energy availability (LEA) (18, 19). However, while low

BMD and BSI are closely associated with low body weight, fat

mass (FM) and LEA in able-bodied athletes (20, 21), it is still

unclear whether low BMD in Para athletes is due to LEA or

rather a consequence of the impairment and unloading (22, 23).

Bone quality beyond BMD has gained interest in athletic

populations (19). Bone microarchitecture, measured indirectly

with trabecular bone score (TBS) in lumbar spine is an emerging

method in the contemporary assessment of bone quality (24).

Reduced TBS and BMD in spine are associated with BSI and are

surrogate markers of LEA, at least in able-bodied athletes (25).

However, the value of TBS in the Para athletes has not been

investigated.

Thus, the aim of this study was to describe areal BMD,

estimated bone microarchitecture (TBS) and BSI incidence and

body composition (LBM, FM) in young ambulant and non-

ambulant Norwegian Para athletes, and to investigate associations

between BMD in lumbar spine and femoral neck with these

variables.
2. Materials and methods

2.1. Study design

The current study is part of the ongoing clinical pre-

participation health evaluation and monitoring program of
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Norwegian Olympic and Paralympic candidate athletes as

described by Clarsen et al. (26). In total, 40 elite athletes, as

defined by McKay et al. (27), all candidates for the upcoming

Paralympic Games from summer and winter sports were invited

to this study. Data on athleteś bone health and body composition

were collected at the Norwegian Olympic Sports Centre, Oslo,

Norway between August 2020 and May 2022. Informed written

consent was obtained from all athletes before the start of the

health monitoring program.
2.1.1. Body composition and bone mineral density
All DXA scans were performed after an over-night fast and

participants were instructed to avoid rigorous training 24 h prior

to the scan and to ensure good hydration status. Any pieces of

metal were marked as artefacts manually in DXA post-analysis as

instructed by the producer. Prior to DXA scans body weight and

height (lying height for non-ambulant athletes) were measured in

minimal clothing without prosthesis (Seca portable stadiometer

213, Seca scale 876, or Seca wheelchair scale 664, Birmingham,

UK). Body composition (lean body mass (LBM), fat mass (FM))

and bone mineral density (BMD) was measured with dual-energy

x-ray absorptiometry (DXA) (Lunar iDXA, GE Health Care,

Madison, USA) following the best practice protocol for able-

bodied subjects (28). All scans were performed at the same

institution and analyzed by the same technician (AEKM) to

ensure consistency. BMD value (g/cm2) for each athlete was

standardized to BMD Z-scores for a reference population

accounting for age, sex and ethnicity, using the combined

NHANES/Lunar reference database. To define low BMD and

osteoporosis, we used the American College of Sports Medicine

(ACSM) guidelines (29). They state that BMD Z-score between

−1 and −2 is defined as low BMD (osteopenia), while a BMD Z-

score <−2 with a secondary clinical risk factor for fracture is

defined as osteoporosis (29).

2.1.1.1. Body mass index (BMI)
To define overweight (BMI > 25 kg/m2) and underweight (BMI <

18.5 kg/m2) WHO’s cutoffs were applied for all but those with SCI,

where a BMI cutoff (>22 kg/m2) for overweight was applied (30).
2.1.2. Trabecular bone score
Trabecular bone score (TBS) is derived from DXA images and

based on variations in grayscale pixels and texture to serve as a

surrogate marker for bone microarchitecture independent of

BMD (31). To extract the TBS values, we utilised TBS software

v3.03. in the lumbar spine (L1-L4) after completing TBS iNsight

calibration as instructed by the producer (Medimaps group).

Normal TBS is defined by the manufacturer as ≥1.31, while

intermediate TBS is between 1.23 and 1.31 and low TBS < 1.23,

based on meta-analysis evaluating fracture risk by tertiles (32).
2.1.3. Bone stress injury
Bone stress injuries (BSI) were recorded retrospectively with an

illness and injury questionnaire (26) and confirmed by a clinical

interview by the sports physician.
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2.1.4. Statistical analysis
Statistical analyses were performed using IBM SPSS Statistics

24.0. Data are presented as mean ± SD (minimum, maximum) or

count (%). The dataset was controlled for signs of non-normal

distribution using histograms, QQ-plot and Shapiro–Wilk test.

Independent samples Student’s T-tests were performed to

determine differences between ambulant and non-ambulant

athletes in the parameters measured. Comparisons between

counts (%) in non-ambulant and ambulant categories were

analysed with Fisher exact test. One-way ANOVA, with Tukey’s

post-hoc test for multiple comparisons, was used to assess

differences in BMD between the impairment categories. The

magnitude of the differences between the groups, i.e., effect size

(ES), were determined using Cohen’s d-test. Correlation between

variables was assessed with Pearson’s r or Spearman’s rho

depending on the normality of distribution. Statistical

significance was set at p < 0.05.
3. Results

3.1. Description of athletes

Thirty-eight (95%) of the invited Paralympic candidate athletes

participated in the study, while two declined due to logistical

challenges related to COVID−19 pandemic. The athletes

(Table 1) represented 12 different sports: alpine skiing (n = 4),

athletics (n = 3), badminton (n = 1), biathlon (n = 1), curling (n =

2), cycling (n = 1), equestrian (n = 1), ice hockey (n = 15), rowing

(n = 1), swimming (n = 3), table tennis (n = 3), and cross-country

skiing (n = 3). Nearly half of the athletes were non-ambulant, as

depicted in Table 1. The athletes were categorised in following

impairment categories, including 10 acquired and 28 congenital

impairment types: spinal cord injury (n = 6), spina bifida (n = 11),
TABLE 1 Description of the study population.

All

(n = 38)
Gender

Males 24 (63%)

Females 14 (37%)

Age (yrs) 26 ± 6 (17, 39)

Height (cm) 168 ± 12 (140, 192)

Weight (kg) 67.6 ± 12.6 (42.9, 101.4)

LBM (kg) 47.9 ± 16.8 (30.7, 70.1)

FM (kg) 16.8 ± 7.3 (5.7, 37.2)

Fat percentage (%) 25.8 ± 8.8 (7.6, 43.4)

Paralympic medalist
Yes 11 (29%)

No 27 (71%)

Sports mobility
Sitting/lying 27 (71%)

Standing 11 (29%)

LBM, lean body mass; FM, fat mass.

Values are presented as mean ± SD (minimum, maximum) or count (%).
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amputees (n = 2), dysmelia (n = 5), cerebral paresis (n = 5), visual

impairment (n = 4) and other (n = 5).

There was considerable variation in body weight and

composition between individuals (see Table 1). One athlete was

underweight, while 32% of the cohort was by definition

overweight. LBM was lower in non-ambulant compared to

ambulant athletes for all body parts except for arms

(Supplementary Figure S1).

Two athletes lacked data on BMD for femoral neck due to

difficulties with positioning on the DXA bench and post-analysis

of the scans. None of the athletes had received long-term bone

antiresorptive or anabolic bone medications. However, two

athletes with SCI had been treated with intravenous

bisphosphonates (zoelodronic acid, Aclasta®) at Oslo University

Hospital during the previous year of data collection. Both

athletes were included in the analysis. Their Z-score in femoral

neck was still <−2, and <−1 in lumbar spine. All SCI athletes in

the cohort were paraplegic.

3.1.1. Bone mineral density
Nineteen (50%) of the athletes had low BMD (Z-score <−1),

including eleven (29%) with osteoporotic values (BMD Z-score

≤−2) (Figure 1). While 31% (n = 11) had low BMD Z-score

specifically in femoral neck and 32% (n = 12) in at least one of

the vertebrae in lumbar spine, we detected four athletes (11%)

with low BMD Z-score in both lumbar spine and femoral neck.

Only one athlete (3%) had BMD Z-score <−1 in total body.

Low BMD was more prevalent among non-ambulant athletes,

with 12 (71%) of them having low BMD compared to seven

(33%) of the ambulant athletes (p = 0.049). Also, BMD in L3, L4

and L1–L4 was significantly lower in non-ambulant as compared

to ambulant athletes (shown in Table 2). There was no

difference in prevalence of low BMD between those with

congenital vs. acquired impairment (p = 0.714), or between male

and female Para athletes (p = 0.91).
Ambulant Non-ambulant

(n = 21) (n = 17)

14 (67%) 10 (59%)

7 (33%) 7 (41%)

24 ± 6 (17, 38) 27 ± 7 (17, 39)

171 ± 12 (143, 192) 164 ± 12 (140, 183)

71.3 ± 13.1 (43.3, 101.4) 63.0 ± 10.5 (42.9, 89.1)

52.2 ± 11.0 (31.3, 70.1) 42.6 ± 6.6 (30.7, 55.8)

15.5 ± 7.1 (5.7, 33.9) 18.3 ± 7.5 (7.4, 37.2)

22.8 ± 7.8 (7.6, 42.1) 29.5 ± 8.7 (12.8, 43.4)

6 (28%) 5 (29%)

15 (71%) 12 (71%)

10 (48%) 17 (100%)

11 (52%) 0 (0%)
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FIGURE 1

Median and interquartile ranges of BMD Z-score in total body, lumbar spine (L1–L4) and femoral neck in the whole population. Normal BMD, low BMD
and osteoporosis are categorized according to ACSM guidelines (29).
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BMD in femoral neck was different between the impairment

categories, medium ES 0.5, p < 0.001. Femoral neck Z-score in

SCI was significantly lower than in visually impaired [mean

difference (95% CI)] −2.3 (−4.1 to −0.4), p = 0.008, and in

athletes with dysmelia −2.8 (−4.6 to −1.1), p < 0.001 (Figure 2).
TABLE 2 Bone mineral density (BMD), Z-score and trabecular bone score (TBS
ambulant and non-ambulant athletes.

All Ambulant Non-

(n = 38) (n = 21) (n

FN
BMD (g/cm2) 0.10 ± 0.18 1.07 ± 0.16 0.

Z-score −0.4 ± 1.3 0.0 ± 1.1 −

LS (L1–L4)
BMD (g/cm2) 1.20 ± 0.18 1.25 ± 0.14 1.

Z-score −0.1 ± 1.3 0.3 ± 1.0 −
TBS 1.53 ± 0.12 1.55 ± 0.12 1.

L1
BMD (g/cm2) 1.13 ± 0.16 1.14 ± 0.21 1.

Z-score −0.1 ± 1.3 −0.1 ± 0.8 −
TBS 1.43 ± 0.16 1.47 ± 0.16 1.

L2
BMD (g/cm2) 1.22 ± 0.19 1.26 ± 0.16 1.

Z-score 0.0 ± 1.5 0.3 ± 1.1 −
TBS 1.53 ± 0.13 1.55 ± 0.13 1.

L3
BMD (g/cm2) 1.25 ± 0.19 1.31 ± 0.16 1.

Z-score 0.2 ± 1.4 0.6 ± 1.1 −
TBS 1.57 ± 0.12 1.58 ± 0.13 1.

L4
BMD (g/cm2) 1.16 ± 0.28 1.26 ± 0.17 1.

Z-score −0.4 ± 1.6 0.2 ± 1.1 −
TBS 1.59 ± 0.12 1.62 ± 0.17 1.

Values are presented as mean ± SD.
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There were no significant differences in mean BMD Z-score in

lumbar spine (L1–L4) between the impairment categories.

However, analysis of the lumbar vertebrae BMD individually

(L1–L4) showed significant differences between the impairment

categories for L3 (ES = 0.3, p = 0.05) and L4 (ES = 0.4, p = 0.003).
) in lumbar spine (LS) vertebra (L1–L4, L1–L4) and femoral neck (FN) in all,

ambulant

= 17) Mean difference 95% CI

90 ± 0.15 −0.17 −0.28 to −0.06
1.0 ± 1.1 −1.0 −1.8 to −0.3

13 ± 0.19 −0.12 −0.23 to −0.01
0.5 ± 1.5 −0.80 −1.6–0.0
49 ± 0.10 −0.06 −0.14–0.02

12 ± 0.21 −0.02 −0.13–0.09
0.8 ± 1.8 0.0 −0.9–0.9
37 ± 0.14 −0.09 −0.20–0.05

17 ± 0.21 −0.09 −0.13–0.03
0.3 ± 1.8 −0.6 −1.7–0.5
51 ± 0.11 −0.05 −0.13–0.04

17 ± 0.20 −0.146 −0.26 to −0.03
0.4 ± 1.6 −1.0 −1.9 to −0.1
54 ± 0.11 −0.04 −0.12–0.04

02 ± 0.34 −0.24 −0.41 to −0.06
1.2 ± 1.9 −1.4 −2.4 to −0.4
56 ± 0.12 −0.06 −0.14–0.02
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FIGURE 2

Regression line with 95% confidence intervals for the association between change in BMD Z-score in lumbar spine (L1–L4) and trabecular bone score
(L1–L4) (A), body weight (B) and lean body mass (C) closed circles represent non-ambulant athletes and open circles represent ambulant athletes.
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Mean BMD (g/cm2) was significantly lower in L3 in athletes with

spina bifida compared to amputees [mean difference (95% CI)],

[−0.44 (−0.860 to −0.021), p = 0.035], and in L4 compared to

SCI [−0.380 (−0.750 to −0.009), p = 0.042], visually impaired

[−0.506 (−0.930 to −0.081), p = 0.011] and amputees [−0.598
(−1.154 to −0.042), p = 0.028].

3.1.2. Trabecular bone score
Mean TBS (L1–L4) in the whole population was 1.529 ± 0.116.

All athletes had normal TBS (L1–L4), and no difference was found

between ambulant and non-ambulant athletes, contrasting our

findings for BMD Z-score, as depicted in Table 2. TBS value

analysed for each vertebra individually (L1, L2, L3, L4) showed

deviation from normal values only in L1. Five athletes (13%) had

intermediate TBS values (1.23–1.31) in L1, while only one athlete

had low TBS (<1.23) in L1.

Seven of 38 athletes (18%) had BMD Z-score ≤−2 in L4, of

whom 86% (6/7) had spina bifida. However, none of these

athletes had compromised mean TBS (L1–L4), as illustrated by a

case in Table 3 and Supplementary Figure S2.

3.1.3. Association between bone mineral density,
trabecular bone score and body composition

BMD Z-score in lumbar spine was positively associated with

TBS, body weight and total LBM (Figure 3), but not with total

FM or fat percentage.

3.1.4. Bone stress injuries
None of the athletes reported any bone stress injuries or

fragility fractures ever.
4. Discussion

This study provides novel observations, revealing that half of

the Norwegian elite Para athletes had low BMD, including 29%

with osteoporotic BMD values. To compare, the prevalence of

osteoporosis in able-bodied female athletes has been reported to

be between 0% and 13% (29), and ∼5% in Norwegian elite

cyclists (33), illustrating the magnitude of this medical concern

in Para athletes. Furthermore, we found that non-ambulant

athletes were more prone for low BMD. However, despite the

high prevalence of low BMD, TBS was normal in all athletes,

and BSI was absent in this population. Finally, we found a

positive association between BMD Z-score in lumbar spine and
TABLE 3 BMD Z-score and trabecular bone score (TBS) in an athlete with
spina bifida.

BMD Z-score Referencea TBS Referenceb

L1 −2.0 ≥−1 1.24 ≥1.31
L2 −2.9 ≥−1 1.56 ≥1.31
L3 −3.1 ≥−1 1.64 ≥1.31
L4 −4.5 ≥−1 1.56 ≥1.31
L1–L4 −3.2 ≥−1 1.50 ≥1.31

aBMD Z-score <−1 is by definition low in athletic population.
bTBS≥ 1.31 is normal, 1.23–1.31 is intermediate and TBS≤ 1.23 is low.
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TBS, body weight and total LBM, but not with total FM, fat

percentage or BSI.
4.1. Bone mineral density in ambulant vs.
non-ambulant athletes

Our finding that BMD was lower in non-ambulant athletes is in

line with the existing body of literature for the beneficial effects of

weight-bearing physical activity on BMD (16) and the opposing

effects of skeletal unloading (34). While non-ambulant athletes’

BMD (g/cm2) was lower in both lumbar spine and femoral neck,

BMD Z-score in lumbar spine was similar between the non-

ambulant and ambulant athletes. This may suggest regional

differences in BMD. Previous studies have reported that the

osteogenic effects of mechanical loading are site-specific (8, 14).

For instance, BMD in loaded areas (e.g., forearms) was higher in

non-ambulant than ambulant athletes (8) and able-bodied non-

athletes (14). The observed partial preservation of BMD in spine

might be due to sitting position in the wheelchair (lumbar spine

compression) in combination with upper body sporting activity-

induced mechanical load (35), or perhaps reflect the absence of

low energy availability (18), while persistent deficits in the lower

extremities are more likely a result of reduced weight-bearing.

Moreover, we did not detect any difference in BMD in athletes

with congenital vs. acquired injury, as might be anticipated because

of the difference in time spent in a wheelchair (unloading),

including the precious adolescent years of rapid bone mass accrual

(36). Indeed, Miyahara et al. found that BMD in trunk, legs and

whole body were negatively associated with time since injury in

wheelchair athletes (9). Perhaps the timeslot for rapid BMD decline

after SCI (11) was already surpassed in our cohort, categorising

all SCI athletes with long-standing physical impairment, and

accordingly erasing the gap between acquired vs. congenital injury.

Of note, potential artefacts in DXA scans in the spine in

individuals with SCI due to degenerative joint disease that may

produce falsely high BMD values (37) was absent in our cohort.
4.2. Associations between bone mineral
density and body composition

Furthermore, we found that LBM was significantly different

between ambulant and non-ambulant athletes and LBM was

positively associated with BMD Z-score, suggesting that athletes

with higher LBM also had stronger bones, analogue to existing

literature (15). This may reflect the impairment-dictated

proportion of body that can engage in activity leading to

muscular adaptations (e.g., hypertrophy) and concomitantly

stimulating BMD by muscle-tendon pull. Indeed, the observed

difference in LBM between the ambulant and non-ambulant

athletes was evident everywhere except for the arms.

Interestingly, we found no association between FM and BMD

Z-score. This stands in contrast to findings in able-bodied

athletes, showing that low body weight or low body mass index

(BMI) and FM are associated with low BMD (21), often as a
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FIGURE 3

Median and interquartile ranges of BMD Z-score in lumbar spine (A) and femoral neck (B) by impairment category. Normal BMD, low BMD and
osteoporosis are categorized according to ACSM guidelines (29).
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consequence of LEA (18). Interestingly the association between FM

and BMD may also be site-specific, suggesting that BMD in lumbar

spine rather than in femoral neck better reflects the systemic energy

status, at least in ambulant athletes (38). Low FM per se was most

likely not a driving factor for low BMD in our cohort, since

underweight was nearly absent and 32% of the athletes were

overweight.
4.3. Bone mineral density by impairment
type

We found that BMD Z-score in femoral neck differed by

impairment type. Athletes with SCI exhibited lower BMD than
Frontiers in Sports and Active Living 07
athletes with visual impairment and dysmelia. This is not

surprising given the well-documented reduction in bone mass

following SCI (35), and that visual imparment does not restrict

loading of bones, and in theory those athletes should not be

exposed to low BMD. Moreover, athletes with dysmelia who use

prosthesis, can partially preserve BMD in the lower extremities (39).

Noteworthy, our exploratory analysis of individual vertebra

showed that athletes with spina bifida were most susceptible for

low BMD in L4 vertebra, accounting for 86% of the cases. This

may be explained by the presence of vertebral arch deficits that

can falsely lower the lumbar spine BMD (37, 40). Accordingly it

has been suggested that BMD should be assessed only in L1 and

femoral neck in individuals with spina bifida (40), our findings

supporting this notion.
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4.4. Trabecular bone score

Our study is the first to report TBS values in Para athletes. We

found that despite high prevalence of low BMD, mean TBS (L1–

L4) was normal in all athletes. Yet, TBS was positively associated

with Z-score L1–L4, indicating TBS provides information

comparable to BMD. Tenforde et al. (25) showed a similar

agreement between TBS and BMD in a large group of 321 able-

bodied athletes, with a notion that TBS did not provide added

value to estimates of skeletal integrity.

Furthermore while low TBS (<1.310) has been associated with

both a history of fracture and the incidence of new fracture in post-

menopausal women (31), the cut-off for low TBS in US collegiate

athletes to properly predict fracture risk was subsequently higher,

1.419 (25). Utilising that cut-off, four athletes in our study would

be at increased risk for BSI.

Perhaps TBS does not properly capture bone microarchitecture

in this population with wide range of physical impairments and

morphological differences which may affect the bone tissue.

Indeed, while normal TBS in our cohort may suggest lower risk

for BSI than the observed low BMD alone would imply.more

research with TBS in Para population is required before any firm

conclusions of its utility can be made.
4.5. Bone stress injuries

None of the athletes in our cohort reported any previous BSI

ever. Thus, there was no association between low BMD and BSI

in our cohort. This contradicts previous studies demonstrating a

strong association between BSI and low BMD in Para athletes

(17). Among elite US Para athletes 9% reported a BSI, and 12 of

those athletes (55%) had low BMD (17). Perhaps, low BMD in

this non-weight bearing population does not directly translate to

increased risk for BSI, given the definition of low BMD (Z-score

<−1) originates from female athletes in weight-bearing sports

(41). Importantly, even if the clinically relevant consequences of

low BMD (e.g., BSI) were not evident in our cohort, we must

address the importance of facilitating peak bone mass accrual in

these young athletes during their sporting careers, given low peak

bone mass is a major risk factor for development of osteoporosis

in later life (42).
4.6. Limitations

The heterogeneity of the population is one of the biggest

limitations of the study, reducing the power of the statistical

analysis. Nonetheless, this study aimed at describing the

Norwegian elite Para athlete population as it exists, and therefore

included various types of physical impairments. The overall

finding (high prevalence of low BMD) may not be directly

extrapolated to other Para populations since the diversity in type

and severity of physical impairment and ambulatory status may

vary between nations. Also, athletes in this cohort were
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Paralympic candidates, thus similar results may not be anticipated

in junior/recruit level athletes. High-resolution peripheral

quantitative computed tomography (HRpQCT) was not available

for the assessment of bone geometry or structure, which could

have provided a more detailed description of the bone

microarchitecture, including separate analysis of the trabecular and

cortical compartments which may be affected differentially by

physical impairment or loading/unloading (43, 44). There is a

need to validate TBS against direct bone microarchitecture

assessment methods such as HRpQCT in Para athlete population.

Finally, we did not consult a radiologist with DXA images, which

may be suggested to further improve the quality and precision of

DXA imaging of unusual bone segments in Para athletes.
4.7. Clinical implications

Non-ambulant athletes should be prioritized for BMD

assessments (DXA) to identify those with compromised BMD,

even without a BSI. TBS in our cohort may suggest lower risk

for BSI than the observed low BMD alone would imply, however,

the paucity of research of TBS assessment in Para athletes

prevents firm conclusions. BMD in lumbar spine in athletes with

spina bifida should be interpreted carefully. The low BMD may

illustrate the impairment (hernia) induced anatomical difference

rather than a reduction in bone density. Utilizing BMD in L1

and femoral neck might be more correct of the skeletal health, as

suggested in non-athletes.

Finally, despite the absence of clinically relevant consequences

of low BMD in our population, improving BMD and reducing the

risk of BSI should be a prioritized task for the multidisciplinary

team of Para athletes.
5. Conclusions

In conclusion, this study demonstrates high prevalence of low

BMD in Norwegian elite Para athletes. Non-ambulant athletes and

especially athletes with SCI were prone to low BMD. Low BMD in

lumbar spine in Para athletes with spina bifida needs careful

interpretation. Despite low BMD, TBS was normal in all athletes

and BSIs were absent in this young Para athlete cohort.
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