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Master runners maintain a similar running economy to young runners, despite
displaying biomechanical characteristics that are associated with a worse
running economy. This apparent paradox may be explained by a greater
physiological effort—i.e., percentage of maximal oxygen uptake (VO2-max)—that
master runners perform at a given speed. Moreover, age-related responses to
non-exhaustive sustained running are yet underexplored. The aims of this study
were, therefore, to examine if biomechanical adjustments in master runners are
physiological-effort dependent, and to explore the age-related biomechanical
changes during a non-exhaustive sustained run. Young (23.9 ± 6; n= 12) and
master (47.3 ± 6.9; n= 12) runners performed a sustained 30-minute treadmill
run matched for relative physiological effort (70% VO2-max), while
spatiotemporal and lower-limb kinematic characteristics were collected during
the 1st and 30th minute. Group differences were observed in step/stride length,
knee touch-down angle, and knee stiffness. However, both groups of runners
had a similar step frequency, vertical center of mass oscillation, and knee range
of motion. Age-related adjustment in these latter characteristics may thus not
be an inevitable result of the aging process but rather a strategy to maintain
running economy. The relative physiological effort of runners should, therefore,
be considered when examining age-related adjustments in running biomechanics.
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Introduction

The benefits of distance running for attenuating age-related deterioration of

musculoskeletal and cardiovascular health are increasingly recognized (1–5). Running

participation at older ages can thus contribute to improved quality of life and help reduce

the economic burden on healthcare systems. Accordingly, it is encouraging that the

participation of master runners (i.e., > 35 years old) in long-distance running events has

increased substantially over the last ∼40 years (6–8). Important motivational factors for

running participation among master runners are competition and personal achievement

(9, 10). Hence, understanding how aging affects running performance is essential for

helping older individuals maintain running motivation.

The ability to sustain a high running speed for an extended period of time is

fundamental for running performance, especially in long-distance events (races >5 km). It
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TABLE 1 Comparison of young and master runners.

Young runners Master runners

Sex (#) Males: eight Males: eight

Females: four Females: four

Age (years) 23.9 ± 6 47.3 ± 6.9*

Mass (kg) 64.9 ± 7.1 61.4 ± 9.5

Height (cm) 172.1 ± 9.1 165.4 ± 8.6

Thigh length (cm) 38.8 ± 2 38.9 ± 3.1

Training volume (sessions/week) 3.58 ± 1.68 4.58 ± 1.24

VO2-max (ml/kg/min) 47.19 ± 7.28 41.01 ± 8.29

Running speed at 70% of VO2-max (km/hr) 7.92 ± 2.41 6.38 ± 1.49

Values are means ± standard deviations.

*= significant group difference (p < 0.05).
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is well documented that long-distance running performance is

closely connected to running economy (11–13)—i.e., the amount

of oxygen consumed (VO2) at a given sub-maximal speed. The

primary determinants of running economy are physiological and

biomechanical in nature (14, 15). Physiological factors that can

enhance running economy include a higher maximal oxygen

uptake (VO2-max), an increased percentage of slow-twitch

muscle fibers, and a higher stroke volume (15). From a

biomechanical perspective, Moore (16) has pointed out several

parameters that can positively affect running economy, such as

running at a preferred stride length and frequency (i.e.,

spatiotemporal factors), less vertical oscillation, increased leg

stiffness, and reduced lower-limb joint extension at take-off (i.e.,

lower-limb kinematic factors). Running performance, and

changes thereof, are thus challenging to assess by considering

physiological or biomechanical factors in isolation.

Declines in running performance appear to be an inevitable result

of the aging process (17, 18). Age-related performance loss has been

linked to several distinct physiological and biomechanical

characteristics in master runners (19). Physiologically, aging

introduces declines in, e.g., peak heart rate and VO2-max (20).

Biomechanically, spatiotemporal and kinematic alterations, such as

increased stride frequencies (21), and reduced lower-limb joint

range of motion (22), have been shown to occur with increasing

age. It is interesting to note that many biomechanical characteristics

that are distinctive of master runners are also linked to a worse

running economy (16), which in turn is an important determinant

of distance running performance (11–13). Biomechanical alterations

with age thus likely contribute to reductions in running economy

and subsequently contribute to performance loss in master runners.

Age-related changes in running kinematics and performance have

indeed been linked previously in short- (23) and middle-distance

(24) runners. However, trained master runners have also been

shown to maintain a similar running economy at sub-maximal

speeds compared to young runners, despite having distinct

biomechanical characteristics (21, 25). Although running economy

and performance are influenced by numerous factors, it is yet

unclear how this apparent paradox can be explained.

Most studies that have investigated the biomechanical

differences between master and young runners have matched the

running speed for both groups. However, at a given sub-maximal

running speed, master runners perform at a higher percentage of

their VO2-max compared to young runners, despite having a

comparable running economy (21, 26)—i.e., master runners

perform a relatively greater physiological effort to maintain the

same speed. It could, therefore, be that master runners adjust

their running biomechanics in response to this greater

physiological effort, which can contribute to reductions in

performance despite maintaining a similar running economy.

However, it is yet unclear if differences in running biomechanics

are also present in master runners if the relative physiological

effort, rather than the exact running speed, remains the same.

Furthermore, changes in joint kinematics are known to occur

after typical non-exhaustive running sessions—i.e., a duration of

around 30–45 min, running at sub-maximal efforts such as

70%–85% of maximal heart rate or oxygen uptake (27, 28).
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Although there are indications that biomechanical adjustments

after a bout of sustained running are comparable between master

and young runners, evidence is still limited (29). The aim of this

study was, therefore, twofold. First, to examine if differences in

spatiotemporal and lower-limb kinematic characteristics are

present in master runners if the overall physiological effort is

matched with young runners. Second, to examine if changes in

spatiotemporal and lower-limb kinematic characteristics during a

typical non-exhaustive sustained run are similar between master

and younger runners. We hypothesized (1) that age-related

biomechanical adjustments depend on the relative physiological

effort during running, and (2) that biomechanical responses to a

sustained run are independent of age.
Methods

Participants

In total, 24 healthy recreational long-distance runners (i.e.,

competing in races >5 km) volunteered for this study (16 males

and eight females). Participants were included if they met the age

criteria for one of two age groups (Table 1)—either young

runners (<35 years; n = 12) or master runners (>40 years; n = 12)

(6). Only runners within the defined age brackets were included

to ensure distinct age groups, and both groups were intentionally

balanced for the number of male and female runners (Table 1).

The sample size was determined based on a two-sided

independent t-test (80% power, α = 0.05), considering a

detectable difference of three degrees in knee range of motion,

with a small to medium effect size (using G*Power 3.1,

Universität Düsseldorf, Düsseldorf, Germany). All runners

recruited for this study ran at least 25 kilometers per week in

training and had completed at least one minimarathon race

(10.55 km) in the last twelve months. Participants were excluded

from this study if they had any current lower-limb injuries or

previous surgery of the lower limbs in the past six months. All

participants provided informed consent before participating in

this study, in line with the ethical procedures, which were

approved by the Mahidol University Central Institutional Review

Board (reference number MU-CIRB 2019/132.0808).
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Testing procedure and data analysis

The data collection consisted of two visits to Mahidol

University’s College of Sports Science and Technology

biomechanics laboratory. During the first visit, participants

performed a ten-minute familiarization and warmup run on the

treadmill (Valiant 2 cpet, Lode, The Netherlands) at a self-

selected running speed before performing a protocol to

determine maximal oxygen uptake (VO2-max) (30–32). The

VO2-max protocol consisted of an incremental run until

exhaustion while oxygen uptake (VO2) was measured with a

portable gas analyzer (Oxycon mobile, Jaeger, Germany).

Running speed started at eight kilometers per hour and was

increased by two kilometers per hour every 2 min. If a speed of

16 km per hour was reached, the incline of the treadmill was

increased by 2% every 2 min. There were three termination

criteria for the VO2-max protocol (33): (1) oxygen consumption

during running reached a plateau with a plateau defined as two

VO2 values over a 30-s period where the second value did not

exceed the first value; (2) participants reached a respiratory

exchange ratio of 1.15; (3) participants could not continue the

protocol and asked to stop the test. Based on the results of the

VO2-max protocol, each participant’s running speed for the

sustained run during the second laboratory visit was determined.

A regression line was fitted to the VO2 measurements across all

running speeds. From this regression, each runner’s speed at 70%

of their VO2-max was determined.

During the second visit, all runners performed a sustained

treadmill run during which their spatiotemporal and kinematic

characteristics were assessed. Participants were asked to avoid

high-intensity exercise and caffeine consumption in preparation

for the second visit and wore their own running shoes in which

they were most comfortable running. After a 10-minute warmup

and familiarization on the treadmill, participants were instructed

to perform a 30-minute sustained run on the treadmill

(Walkerview performance 3.0, TecnoBody, Italy) at 70% of their

VO2-max (27, 28). The combination of this duration and

intensity was deemed non-exhaustive and reflective of a typical

training run.

Three-dimensional kinematics were recorded using a motion

capture system consisting of eight optoelectronic cameras

(OptiTrack, NaturalPoint, USA), sampling at 100 Hz, and 44

retro-reflective markers (16 mm diameter) were attached to the

participant’s body following the lower limb and trunk model

(34). Prior to each 30-min treadmill run, a static trial was

captured. Throughout the run, kinematic data for five strides

were collected during the 1st and 30th minute. Visual 3D

(version 6.0, C-motion, Germantown, USA) was then used to

process the marker trajectories and analyze kinematics. Marker

trajectories were gap-filled and filtered at 9 Hz using a fourth

order Butterworth lowpass filter. An eight-segment

musculoskeletal model was then built using the static trial, from

which segment and joint kinematics during running were

derived. Inverse kinematic constraints were applied to each of the

lower limb joints. Several discrete kinematic variables were then

determined to assess running kinematics for each runner.
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Spatiotemporal and kinematic
characteristics

For each of the five strides that were collected at both time points

(i.e., 1st and 30th minute), the moments of touch-down and take-off

were identified using the minimal vertical velocity of the pelvis center

of mass (35) and peak knee extension (36) respectively. Touch-down

and take-off were used to determine spatiotemporal running

characteristics—i.e., stride and step length, and step frequency.

Kinematic characteristics included the joint angles of the hip, knee,

and ankle, and the whole-body center of mass (CoM) position

(which was normalized to each participant’s height) at touch-down

and take-off. In addition, the range of motion of each joint and the

CoM during the stance phase was determined. Since bilateral

kinematic asymmetries are common, can be substantial, and can

affect group comparisons (37–40), leg-specific comparisons were

made between the master and young runners.

Stiffness of the knee joint was calculated using a previously

described and validated kinematics-based method (Figure 1) (28,

41–43). Briefly, knee stiffness values Kknee were determined for

the initial contact phase (from touch-down to the peak knee

angular velocity) and the weight acceptance phase (from peak

knee angular velocity to maximal knee flexion) according to:

Kknee ¼
I � Dv

2

Du2

ROM

in which I is the participant’s mass multiplied by the length of the

thigh squared (m � l2thigh), v is the knee angular velocity in

rad⋅s−1, u is the knee angle in radians, and ROM is the range of

motion of the knee in degrees, for either the initial contact or

weight acceptance phase of landing. The thigh length was

measured as the distance between the greater trochanter and

lateral femoral epicondyle (Table 1). Dv2

Du2
was determined by up-

sampling the knee angle data between touch-down and maximal

knee flexion to 500 Hz and fitting a line to the data points

between 20%–80% of each phase. Further details and examples

can be found in Dutto and Braun (28), Verheul et al. (42), and

Zhang and Lake (43).
Statistical analysis

Since bilateral kinematic asymmetries are common and can be

substantial (37, 38, 40), we performed leg-specific statistical

analyses for each kinematic variable. SPSS (version 18.0, IBM,

Chicago, IL, USA) was used to perform statistical analyses.

A Shapiro–Wilk test was used to determine the normal

distribution of discrete data. Group characteristics (Table 1) were

compared using t-tests, and effect sizes were assessed using

Cohen’s d as small (d = 0.2), medium (d = 0.5), or large (d = 0.8).

A two-way repeated measures ANOVA was used to evaluate the

effect of age (i.e., master vs. young runners) and running time (1st

and 30th minutes). Holm Post-hoc tests were used to determine

the locations of significant effects. All data are reported as mean ±
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FIGURE 1

A representative example trial of the kinematics-based calculation of the knee stiffness during the initial contact (red) and weight acceptance (blue) phase
of landing.
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standard deviation (SD). The level of statistical significance was set at

p < 0.05. To enhance result comparisons across studies (44), effect

sizes were determined by calculating the partial eta squared (h2
p).

Effect sizes were evaluated as either small (h2
p = 0.01), medium

(h2
p = 0.06), or large (h2

p = 0.14) effects (45).
Results

Young runners had a higher (p = 0.07, d = 0.8) VO2-max

compared to the master runners (Table 1). Accordingly,

the running speed at 70% of VO2-max was reduced (p = 0.07,

d = 0.8) in the master group, and the young runners completed a

greater distance (3.96 ± 1.2 km) during the 30-minute treadmill

run than the master runners (3.19 ± 0.74 km). Although these

differences were not significant, the effect sizes were large.
Spatiotemporal characteristics

Step lengths were significantly longer by 16% (p < 0.001) for

the young compared to the master group, for both legs with a

large effect size (right h2
p = 0.16; left h2

p = 0.15) (Figure 2).

Moreover, in both groups the step lengths significantly increased

(p < 0.001; h2
p = 0.08–0.1) after the 30-minute sustained run.

Consequently, stride lengths were also longer for the young

runners (16%; p < 0.001; h2
p = 0.16) and increased by 3% over

time (p < 0.001; h2
p = 0.12) (Figure 2). Step frequency, however,

was similar for both groups and significantly decreased
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(p < 0.001; h2
p = 0.21) after 30 min of running (Figure 3), with a

small interaction between age and running time (p < 0.05; h2
p = 0.04).
Kinematic characteristics

The normalized vertical position of the CoM was

significantly higher at touch-down in the master runners

compared to the young group (1%; p < 0.001; h2
p = 0.18),

whereas running time significantly lowered the position of the

CoM at touch-down in both groups (1%; p < 0.001; h2
p = 0.32)

(Figure 4—top row). At take-off, however, the vertical CoM

position was significantly higher in the master runners

compared to the young runners (1%; p < 0.001; h2
p = 0.16), but

the sustained run did not affect this. Furthermore, age did not

affect the range of motion of the CoM, but running time did

by 5% (p < 0.001; h2
p = 0.15).

The angles of the hip and knee joints at touch-down were

significantly larger (48%–50% and 11%–13% respectively; p < 0.05)

for the young runners compared to the master group, both for the

right (hip h2
p = 0.45; knee h2

p = 0.06) and left (hip h2
p = 0.44; knee

h2
p = 0.16) leg (Figure 4—left column). The sustained run caused

significant increases in the hip (14%–17%; p < 0.001; h2
p = 0.41–

0.45) and knee (1%–4%; p < 0.05; h2
p = 0.08–0.09) joint angles for

both legs at touch-down with medium to large effect sizes.

There was also small to medium interaction between age and

running time for knee touch-down angle for both legs (p < 0.05;

h2
p = 0.04–0.07). The ankle joint angle at touch-down, however,

was neither affected by age nor running time.
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FIGURE 2

Means and standard deviations for step length (left and right), stride length, and step frequency during running. T01 = 1st minute; T30 = 30th minute.
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Age and 30 min of sustained running both significantly

(p < 0.001) affected the hip joint angle at take-off (Figure 4—

middle column). For both legs, there were medium to large

90%–98% increases in hip angle with age (h2
p = 0.11–0.14), but a

large 9%–12% decrease with running time (h2
p = 0.14–0.2).

However, the knee and ankle joint angles at take-off were

unaffected by age or running time.

The range of motion of the hip during the stance phase was

significantly greater in the young runners compared to the

master runners (15%; p < 0.001; = 0.1) for both the right and left

leg (Figure 4—right column). Likewise, sustained running had a

large increasing effect (5%–6%; p < 0.001; h2
p = 0.23–0.35) on the

hip range of motion in both age groups. Although age did not

affect the range of motion of the knee or ankle joints, the knee

range of motion was significantly increased after the sustained

run in both legs (3%–6%; p < 0.05; h2
p = 0.06–0.12).
Knee joint stiffness

A medium significant effect of age (p < 0.02; h2
p = 0.05–0.09) on

knee stiffness (Figure 5) was found. In both legs, a 9%–15% higher

knee stiffness was found for the young runners compared to the

master runners during both the initial impact and weight

acceptance phases of landing. However, knee stiffness was not

affected by running time.
Discussion

Well-trained master runners have been found to have a similar

running economy compared to young runners, despite showing

altered biomechanics that are related to a worse running

economy. The results of this study show that when physiological

effort is matched, master runners run with a different step
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length, knee touch-down angle, and knee stiffness, compared to

younger runners. However, step frequency, vertical center of

mass oscillation, and knee range of motion were similar between

both groups. These findings indicate that age-related adjustment

in step frequency, vertical center of mass oscillation, and knee

range of motion may not be an inevitable result of the aging

process but rather a strategy to maintain running economy.

An essential component of running performance is speed,

which is determined by the combination of step length and

frequency. Runners are known to self-optimize these parameters

to get close to their economical optimum for a given speed (46).

We found that both the step and stride length were significantly

reduced in the master runners compared to the young runners,

while step frequency was the same in both groups. Several others

have reported similar reductions in step and stride length for

master runners, but these were always accompanied by increases

in step frequency to maintain speed (21, 22, 47, 48). In this

study, however, each runner’s speed was matched to be at 70% of

their VO2-max and hence, running speeds varied across runners

(Table 1). Our results thus show that master runners who run at

the same physiological effort adjust (i.e., lower) their step length

but maintain the same step frequency, which leads to the

observed reductions in speed. In other words, running

performance loss in master runners is primarily associated with

changes in step length but not frequency. In line with our first

hypothesis, step frequency adjustments are thus likely to be

dependent on physiological effort and not age.

An increased range of motion of the body’s CoM during the

stance phase of running (or vertical oscillation) is associated with

a worse running economy (16, 49). We did not find any

differences in vertical oscillation between both groups of runners.

In contrast, Karamanidis and Arampatzis (48) found that master

runners run with less vertical oscillation than young runners,

which should thus contribute to a better running economy. Since

that study used the same speed for all runners, and the master
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FIGURE 3

Centre of mass (CoM; top row) and hip angle (bottom row) trajectories during the stance phase of running for one representative young (blue) and master
(red) runner. Curves represent means and standard deviations (shaded areas) over five ground contacts. Data are shown for the start (T01) and end (T30) of
the sustained 30-minute run.
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group ran at a greater (perceived) physiological effort (i.e., higher

percentage of VO2-max), it is possible that the master runners

adjusted their vertical oscillation to a more economical pattern to

maintain running economy. Since we matched each runner’s

running speed to be at the same physiological effort, together,

these results provide evidence that master runners adjust their

vertical oscillation depending on the relative physiological effort,

which supports our first hypothesis.

Running with more knee flexion at touch-down and a larger

knee joint range of motion has been linked to a higher metabolic

demand—i.e., a worse running economy (50–52). Previous studies

have found older runners to run with a more flexed knee at

touch-down and a smaller knee joint range of motion (22, 25, 47),

which would respectively contribute to a worse and better running
Frontiers in Sports and Active Living 06
economy, and thus a negligible net change. In our study, however,

master runners only ran with a less flexed knee at touch-down but

had a similar knee range of motion to young runners, which

together would contribute to a better running economy. Hence,

master runners adjust multiple knee characteristics (i.e., touch-

down angle and range of motion) when the relative physiological

effort to perform the same running speed increases with age, to

help maintain a similar running economy (21). Since only the

knee touch-down angle was different from the young runners in

our study, adjustments of the touch-down angle of the knee joint

are likely to be independent of effort and primarily age-related.

Adjustments of the knee range of motion, however, are likely to

be physiological-effort dependent, which further supports our first

hypothesis.
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FIGURE 4

Means and standard deviations of the center of mass position (CoM) and hip, knee, and ankle joint angles (left and right), at touch-down and take-off, and
the range of motion during the stance phase of running. Positive-negative angles indicate flexion-extension (hip and knee), and plantarflexion-
dorsiflexion (ankle). T01 = 1st minute; T30 = 30th minute.
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Good evidence exists for a positive correlation between running

economy and the amount of flexion of the lower-limb joints at

take-off (53, 54). Although we did not observe any group
Frontiers in Sports and Active Living 07
differences for the take-off angle of the ankle and knee joints,

master runners ran with a significantly more extended hip joint

at take-off (together with a lower hip range of motions and less
frontiersin.org
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FIGURE 5

Means and standard deviations of left and right knee stiffness during the initial impact and weight acceptance phase. T01 = 1st minute; T30 = 30th minute.
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hip flexion at touch-down). This can be a contributing factor to a

less economic running style and performance loss. Interestingly,

not many previous studies have investigated the kinematics of

the hip joint during running in older populations. Future work

should, therefore, further examine the relationship between hip

flexion at take-off and running economy, and possibly

consequent performance loss, in master runners.

An increased stiffness of the knee joint is related to better running

economy and performance (55, 56).We found the knee to be 7%–19%

stiffer in young compared to master runners, both during the initial

contact phase and the weight acceptance phase, regardless of the

effort-matched design in this study. This decrease in knee stiffness

with age is in line with previous findings of ∼10%–20% stiffness

declines in the knee and ankle joints (57), and leg (21) in older

runners. Stiffness reductions have primarily been linked to the loss

of muscle strength and neuromuscular function due to aging, both

of which may be slowed down by running training (21, 58, 59). It

has indeed been shown that (young) runners with a higher training

volume can more efficiently coordinate the thigh muscles to regulate

knee stiffness during landing (42), whereas older runners with a

consistently high training volume can retain their stiffness regulation

capacity (58, 60). These findings support the notion that sufficiently

high running volume might positively contribute to the

maintenance of appropriate leg and joint stiffness in master runners

and can help attenuate economy and performance loss with aging.

Changes in joint kinematics have been shown to occur over the

course of a sustained run (27, 29, 61). Our findings further support

the notion that non-exhaustive sustained running affects lower-

limb kinematics. We found that 30 min of running at 70% of

VO2-max increased the step and stride length, decreased the step
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frequency, increased the hip and knee joint angles at touch-down,

lowered the CoM position at touch-down, decreased the hip angle

at take-off, and increased the range of motion of CoM, hip, and

knee. However, only for the step frequency and the touch-down

angle of the knee did we observe a significant interaction between

age and running time, but the effect sizes were small to medium.

Together, these findings are largely in line with a previous work

(29) that did not find sustained running to affect the running

biomechanics of master and young runners differently and

supports our second hypothesis that biomechanical responses to a

sustained run are largely independent of age.

Bilateral kinematic asymmetries are common and can be

substantial, although clear evidence of the detrimental effects of

asymmetries on running economy and performance is lacking (37,

38, 40). However, given the high asymmetry prevalence, either

focusing on a single leg or combining both legs together in the same

analyses can introduce biases in kinematic comparisons between

groups. Therefore, we performed leg-specific comparisons between

the master and young runners. We observed that all the significant

group differences were present in both legs, which further confirms

that the observed kinematic changes are indeed associated with age

and/or sustained running andarenot the result of, e.g., limbdominance.

Several limitations to this study should be considered. First, only

lower-limb kinematics in the sagittal plane were examined. However,

other planes of lower-limb kinematics may also contribute to

running economy and performance and can be considered in future

investigations of the effect of aging on running biomechanics.

Second, kinetic data were not collected and examined in this study,

while external kinetics (i.e., ground reaction forces) and joint kinetics

(i.e., joint moments) are known to be affected by aging (21, 22, 62,
frontiersin.org
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63) and to be important considerations for running economy and

performance (64). Third, a non-exhaustive 30-minute running

protocol was used in this study to examine the effect of a typical

training run on running biomechanics. Similar protocols have

previously been shown to induce alterations in running kinematics

(27, 28). Since the runners included in this study were all well-

trained, less-trained runners may display more prominent changes in

kinematics and further highlight age-related differences in

biomechanical responses to sustained running. Fourth, confounding

factors, such as physiological and anthropometric differences

between male and female runners, were not considered but can

influence the observed differences or similarities between age groups.

Since this study was a first step to examine the role that the

physiological effort at which runners perform plays in biomechanical

differences that have been observed between younger and master

runners, we encourage future studies to delve into the interactions of

other confounding factors (including sex, anthropometrics, etc).

Finally, VO2 was not measured and monitored during the sustained

30-min run. The assumption that runners maintained a relative

physiological effort of 70%of their VO2-max could thus not be verified.
Conclusion

We show that master runners do not have a different step

frequency, vertical oscillation of the CoM, or knee range of motion

when relative physiological effort was matched with young runners.

Speed-matched studies have previously found age-related differences

in these characteristics. Those adjustments in master runners may,

therefore, not be an inevitable result of aging but rather a strategy to

maintain running economy (and consequent performance).

However, differences in step/stride length, knee angle at touch-down,

and knee stiffness were observed between groups even when the

relative physiological effort was matched in all runners. Adjustments

in these characteristics are thus more likely to be the result of the

aging process. The relative physiological effort at which runners

perform should, therefore, be considered when examining age-related

adjustments in running biomechanics.
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