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Use of subject-specific models to
detect fatigue-related changes in
running biomechanics: a random
forest approach
Hannah L. Dimmick1*, Cody R. van Rassel1, Martin J. MacInnis1

and Reed Ferber1,2

1Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada,
2Running Injury Clinic, Calgary, AB, Canada
Running biomechanics are affected by fatiguing or prolonged runs. However, no
evidence to date has conclusively linked this effect to running-related injury (RRI)
development or performance implications. Previous investigations using
subject-specific models in running have demonstrated higher accuracy than
group-based models, however, this has been infrequently applied to fatigue. In
this study, two experiments were conducted to determine whether subject-
specific models outperformed group-based models to classify running
biomechanics during non-fatigued and fatigued conditions. In the first
experiment, 16 participants performed four treadmill runs at or around the
maximal lactate steady state. In the second experiment, nine participants
performed five prolonged runs using commercial wearable devices. For each
experiment, two segments were extracted from each trial from early and late
in the run. For each participant, a random forest model was applied with a
leave-one-run-out cross-validation to classify between the early (non-
fatigued) and late (fatigued) segments. Additionally, group-based classifiers
with a leave-one-subject-out cross validation were constructed. For
experiment 1, mean classification accuracies for the single-subject and group-
based classifiers were 68.2 ± 8.2% and 57.0 ± 8.9%, respectively. For
experiment 2, mean classification accuracies for the single-subject and group-
based classifiers were 68.9 ± 17.1% and 61.5 ± 11.7%, respectively. Variable
importance rankings were consistent within participants, but these rankings
differed from each participant to those of the group. Although the
classification accuracies were relatively low, these findings highlight the
advantage of subject-specific classifiers to detect changes in running
biomechanics with fatigue and indicate the potential of using big data and
wearable technology approaches in future research to determine possible
connections between biomechanics and RRI.
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1. Introduction

Researchers have long hypothesized that fatigue during running could be a

contributing factor to running-related injury (RRI) (1, 2) and performance degradation

(3–6). Fatigue-related changes in biomechanics may lead to tissues (i.e., bones, tendons,

ligaments, muscles) receiving “atypical” stress/impact beyond the tissue’s tensile limits
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(7). Given that “typical” biomechanics do not appear to be

associated with injury (8) or performance (9, 10), it has been

postulated that altered biomechanics due to fatigue could be

“improper” for the body, leading to negative outcomes. Thus, if

the nature of these atypical movements could be identified,

runners could attempt to correct these alterations to maintain

non-fatigued biomechanics and avoid injurious/inefficient

movement patterns through strength and conditioning

interventions. The ability to identify when biomechanics begin to

change could also inform training and recovery protocols.

However, to date, the scientific literature has not substantiated a

consistent relationship between biomechanical patterns and RRI

reduction or performance enhancement (11, 12), necessitating

new approaches to understand the etiology and implications of

fatigue on running biomechanics.

Conflicting results between physiological fatigue and

concomitant changes in running biomechanics could be

explained by methodological issues. One possibility is the

heterogeneous nature of the studies (i.e., varying fatiguing

protocols, participant populations, and data collection

modalities), making synthesis difficult. Another potential factor is

the predominance of group-based analyses (13, 14) that often

ignore relevant individual responses. For example, previous

studies have reported that fatigue is associated with significant

increases in mean step length (15) and instantaneous loading

rate (16), while simultaneously reporting that some individuals

demonstrated opposite changes or no changes in those variables.

Others have reported no changes in peak positive tibial

acceleration, even though ∼50% of the participants showed a

positive change, while others showed a negative change (17),

washing out any reportable mean effect. These examples

and others make it clear that group-based analyses can

mask relevant responses from individual runners, obscuring

meaningful conclusions.

In recent years, the medical field has turned towards “precision

medicine”—a model based on “an understanding of the genetic

make-up, personal lifestyle, gene, and surrounding environment

of an individual” (18). This model shifts the focus from the

“average” patient to the individual patient (19). Although some

researchers have commented on the need for individualized

models in a sports science context (20–22), noting “the “average”

runner (mean data) [does] not resemble any of the individuals in

a group”, (23), the volume of data required to design these

models has, until recently, been difficult to obtain. However, with

the advent and expanding accessibility of high-frequency data

from wearable sensors and machine learning models (24),

“precision sports science” (25) is an increasingly plausible and

potentially useful framework (26).

At present, machine learning models have been used

infrequently to investigate subject-specific models of running

biomechanical fatigue. Buckley et al. (27) used a random forest

classifier to distinguish fatigued and non-fatigued running

biomechanics from a single center-of-mass (CoM) inertial

measurement unit (IMU) in both subject-specific and group-

based classifiers. The subject-specific classifiers out-performed the

group-based classifier with accuracies of 89% and 75%,
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respectively. In contrast, Op De Beéck et al. (28) determined

that individual models had slightly higher mean average error

than group-based models when regressing rate of perceived

exertion (RPE) to biomechanical features over the course of a

fatiguing trial. These conflicting results may be due to analysis

differences, with one using a binary fatigue classifier and the

other employing a regression approach. Subject-specific models

have significantly outperformed group-based models for

differentiating incline (29) and weather (30) conditions during

running. Furthermore, Ahamed et al. (30) demonstrated that in a

random forest model, the most important features to

classification were different between participants, indicating that

biomechanics changed between conditions, but that these specific

changes were largely unique to each individual. Determining

feature importance for individuals during fatigue in running

has not, to our knowledge, been investigated previously.

Moreover, determining whether individuals rely on different

strategies when adjusting biomechanics during fatigue in running

is critical to ultimately determining the necessity of subject-

specific intervention.

Therefore, the purpose of this study was to investigate the

difference between subject-specific and group-based models used

to classify the effect of exercise-induced fatigue from prolonged

running in two experimental conditions: a lab-based treadmill

protocol and an outdoor, “real-world” dataset. Describing

biomechanical changes due to running fatigue at an individual

level has potential implications for RRI prevention and

performance if these effects can be correctly and consistently

defined. We hypothesize that subject-specific models will show

greater accuracy than group-based models and that data collected

from the treadmill in controlled conditions will produce a model

with higher accuracy than data collected from runners in real-

world, outdoor conditions.
2. Methods

Two experiments were conducted for this investigation.

Experiment 1 was performed using a laboratory-based protocol.

Subsequently, Experiment 2 was developed to compare/

complement the results from Experiment 1 using “in the

wild” data.
2.1. Experiment 1

2.1.1. Participants
Sixteen recreationally and competitively trained runners (7

female, 9 male, age = 30 ± 4 years, height = 174.3 ± 9.1 cm, weight

= 70.5 ± 10.5 kg) provided informed consent to participate in this

study, which was approved by the Ethics Board at the University

of Calgary (REB20-0111). Participants were included if they were

between the ages of 18 and 45 years and had a recent 10-km

performance of ≤50 min or ≤55 min for men and women,

respectively. All participants were familiar with treadmill

running, were free of medical conditions and injuries that could
frontiersin.org
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interfere with metabolic and cardiorespiratory exercise responses

and completed the Physical Activity Readiness Questionnaire

prior to exercise to ensure there were no identifiable

contraindications to exercise.

2.1.2. Protocol
Participants visited the lab 5 times. For all visits, participants

were instructed to refrain from eating and consuming caffeine at

least 2 h prior to testing and to refrain from strenuous exercise at

least 6 h prior. Participants used their own running shoes but

were required to use the same shoes for each visit. In the first

visit, maximal lactate steady state (MLSS) was estimated using a

modified Step-Ramp-Step test that has been validated for use in

running (31, 32). The MLSS represents the boundary between

heavy and severe exercise (33–36). For the next 4 visits,

participants performed treadmill runs at or around the estimated

MLSS (2 trials at MLSS, 1 trial 5% above MLSS, 1 trial 5% below

MLSS) (33). Each trial began with the participant performing a

5-min warmup at 1.9 m/s before increasing to the target speed.

The trial was terminated when the participant reached volitional

exhaustion, or at 45 min, whichever occurred first. Each visit was

separated by at least 48 h, and participants were not informed of

the speed until after all experimental trials were completed.

During each trial, participants were fitted with an IMU (Blue

Trident, Vicon, Oxford, UK; tri-axial accelerometer sampling rate

1,125 Hz, range ±16 g) positioned between the posterior superior

iliac spines with the top border of the sensor positioned on a

line coincident with the inferior aspect of the iliac crest. The X,

Y, and Z axes were oriented in the vertical (+ to the superior),

medial-lateral (+ to the left), and anterior-posterior (+ to the

posterior) directions, respectively. Incline was set at 1% to

correspond to previous literature (37). RPE values (38) were

recorded every 5 min.

2.1.3. Data processing
Initial contact for each step was identified using methods

described in Benson et al. (39). A step was defined as the

duration between consecutive initial contacts from contralateral

feet, and a stride was defined as the duration between

consecutive initial contacts from the ipsilateral foot. Mean and

standard deviation of the number of data points in each step

were calculated, and those ±2 standard deviations from the mean

were labeled as improperly segmented and excluded (39).

Samples were constructed from the raw signal of five consecutive

strides (39, 40). Non-fatigue (NF) and fatigue (FT) conditions

were considered the first 5 min of the trial and the final complete

5-min segment (to correspond to RPE sampling), respectively

(41). The RPE label for each condition was the value provided at

the end of the 5-min segment. For example, if a participant

terminated the test at 38 min, the period from 30 to 35 min

would be defined as the FT condition, and it would correspond

to a single RPE value (taken at 35 min).

Thirty-nine features were extracted from the acceleration

signals of each sample: mean, standard deviation, median, 25th

percentile, 75th percentile, root mean square (RMS), maximum,

minimum, sample entropy calculated from the three primary
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axes (vertical, medio-lateral, anterior-posterior) and the resultant

(17, 28, 39, 42–48), and the ratio of single-axis RMS to resultant

RMS (49). These features were selected based on previous

analyses (31) and were identified due to their typical inclusion as

features in machine learning models.
2.2. Experiment 2

2.2.1. Participants
Nine participants (1 female, 8 males, age = 44 ± 13 years) were

selected from the Wearable Technology Citizen Science Level-4

secure research database on the following criteria: reported very

good or excellent health in the previous year, recorded at least 5

outdoor runs that were >14 km within a 3-month period, and

recorded runs with a qualifying Garmin device (Garmin, Inc.,

Olathe, KS, USA). Participants provided informed consent to

share their information through the database, which was

approved by the Ethics Board at the University of Calgary

(REB20-0572).

2.2.2. Protocol
Within the database, the frequency of activities, weather,

distance, route, speed, and surfaces represent individuals’ own

training habits and were not prescribed or controlled by

researchers. Runs selected for this study were required to be

completed outdoors, within a 3-month period, under similar

weather conditions to minimize variability (e.g., effects of

training) (30). Surfaces were not reported, and injury history/

training status were not known.

Participants used their own Garmin devices for data collection

(HRM-Tri, n = 5; HRM-Run, n = 3; Running Dynamics Pod, n = 1).

Qualifying devices were those that were (1) enabled to calculate

Garmin Running Dynamics and (2) had been previously lab-

validated (50, 51). The HRM devices are mounted on the

sternum and the Running Dynamics Pod is mounted on the low

back. Garmin Running Dynamics are variables calculated

onboard select Garmin devices: stance time, stance time balance,

cadence, stride length, vertical oscillation, and vertical ratio (52).

Each participant used the same device for every run that was

included in analysis. Data were sampled using the device’s

onboard algorithms, uploaded by the participant to the Garmin

Connect online platform, and extracted for data processing via

the Wearable Technology Citizen database.

2.2.3. Data processing
Five of 6 Garmin Running Dynamics variables were selected

for analysis: stance time, stance time balance, cadence, stride

length, and vertical oscillation. It should be noted that vertical

ratio was excluded due to its direct correlation to vertical

oscillation and stride length (i.e., it would add minimal

additional relevant information for classification). Trials were

only included if <20% of strides had any variable missing. Strides

with any missing variables were excluded from analysis. Trials

were additionally excluded if the analysis segments included

stopped time (e.g., for a walk break or red light)≥ 30 s. This
frontiersin.org
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selection process was performed until each participant had 5 runs

that met the criteria.

To remove the effect of speed and grade, which can have

significant impacts on biomechanics (53, 54), all variables were

analyzed in successive univariate models adjusted for speed and

grade (55).

The first 2-km and final 1-km were excluded from each trial to

account for any potential changes in biomechanics associated with

warmup or cooldown. After these exclusions, the first 2-km

segment (BEG) and the final 2-km segment of each run were

selected for analysis. A visualization of the segment selection from

both experiments can be found in Figure 1. Due to the constraints

of the database, participants’ fatigue level in Experiment 2 could

not be empirically determined. The minimum distance, 14-km, was

selected to ensure reasonable confidence that participants would be

experiencing fatigue by the end of their session. For simplicity, this

prolonged effort is referred to here as “fatiguing”.
2.3. Data analysis

An ensemble machine learning classifier, random forest, was

employed to develop classification models for the NF vs. FT

during Experiment 1, as well as the BEG vs. END segments for

Experiment 2. The random forest classifier provides high levels

of accuracy while additionally reporting the relative importance

of each predictor variable (56). The random forest model was

selected for several reasons. First, in a pilot analysis, random

forest performed as well or better than a support vector machine,

naïve bayes, and logistic regression. Additionally, the random

forest allowed for consistency with previous literature (29, 30)

and robustness to small datasets (56).

Two methods were used to determine the ability of the random

forest classifier to distinguish between the two conditions (57, 58).

These methods are described in Figure 2. Method 1 was a
FIGURE 1

Timeline of segment selection.
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subject-specific approach, where data from only one participant

at a time was included. A leave-one-trial-out cross-validation was

performed. Data from 3 (Experiment 1) or 4 (Experiment 2)

runs were used as the training set, and the test set consisted of

the final (4th/5th) run. This was performed 4–5 times per

participant, with each possible combination of runs used for the

training and test sets.

Method 2 was a group-based approach and collapsed all runs for

each participant into a single set per participant. Then, a leave-one-

subject-out cross-validation was performed by using data from n-1

participants were used as the training set, with the test set

consisting of the left-out participant. This was performed for each

participant. Both methods were performed for each segment pair

(NF vs. FT, BEG vs. END) and were applied using the standalone

Python programming language (version 3.7.4, www.python.org) (59).

The developed random forest models were tuned with a grid

search (max_depth (2–20), n_estimators (100–1000), and

max_features (1–39 for Experiment 1, 1–5 for Experiment 2)) on

the training set using a 5-fold cross-validation with the built-in

Anaconda distribution (open-source) of Python programming

language, using numpy, scikit-learn, and scipy

(“sklearn.ensemble.RandomForestClassifier”) packages (60).

Because all variables were continuous, the random forest

employed a Gini index calculation to determine variable

importance based on impurity reduction (61).

For further information on usage of random forest for

commercial wearable data, refer to Ahamed et al. (30).

Significance of classification results was tested using binomial

methods from Combrisson & Jerbi (62). These methods provide

a framework to perform empirical significance testing for binary

classifiers given limitations in sample size, rather than assuming

a theoretical significance of >50% accuracy.

To compare RPE between conditions in Experiment 1, a paired

samples t-test was performed.

Significance was set at α≤ 0.05.
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FIGURE 2

Example data from Experiment 1 to demonstrate the workflow of the random forest classifiers for subject-specific and group-based models.
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3. Results

3.1. Descriptive

Trial details for each participant are presented in

Tables 1, 2 for Experiments 1 and 2, respectively. For

Experiment 1, treadmill speeds at MLSS ranged from 2.77–

3.98 m/s (males = 2.77–3.98 m/s, females = 2.82–3.89 m/s).

Results of other tested classifiers are reported in

Supplementary Tables S1, S2.
TABLE 1 Descriptive characteristics of participants and included runs for Exp

Participant Sex Age
(years)

Trial time (min) Mean strides pe
(NF)

1 M 28 44.7 ± 0.6 (43.8–45.0) 407.5 ± 13.2 (395–

2 F 32 35.0 ± 7.1 (30.0–45.0) 370.0 ± 21.6 (340–

3 M 24 38.8 ± 7.5 (30.0–45.0) 377.5 ± 53.6 (330–

4 M 26 27.5 ± 5.0 (20.0–30.0) 373.8 ± 53.0 (315–

5 M 25 32.9 ± 5.9 (26.6–40.0) 355.0 ± 67.6 (260–

6 M 32 45.0 ± 0.0 (45.0–45.0) 377.5 ± 66.6 (325–

7 M 29 37.5 ± 6.5 (30.0–45.0) 425.0 ± 123.4 (310–

8 M 40 41.5 ± 4.4 (36.0–45.0) 410.0 ± 61.8 (350–

9 F 25 43.3 ± 3.5 (38.0–45.0) 311.3 ± 200.1 (130–

10 F 29 41.3 ± 7.5 (30.0–45.0) 291.3 ± 88.2 (160–

11 F 34 35.6 ± 11.3 (22.5–45.0) 526.3 ± 207.6 (300–

12 F 32 41.3 ± 7.5 (30.0–45.0) 367.5 ± 8.7 (355–3

13 M 33 38.9 ± 12.3 (20.5–45.0) 376.3 ± 55.1 (315–

14 F 33 40.8 ± 8.5 (28.0–45.0) 508.8 ± 164.2 (420–

15 F 27 33.9 ± 9.4 (23.2–45.0) 396.3 ± 30.7 (365–

16 M 32 30.0 ± 0.0 (30.0–30.0) 423.8 ± 99.8 (290–

Mean 30 ± 4.2 38.0 ± 7.9 393.6 ± 60.2

NF, non-fatigued segment; FT, fatigued segment; RPE, rating of perceived exertion.

*Significantly greater than RPENF (p < 0.05).
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3.2. Random forest classifiers

Figures 3, 4 present the results of the random forest classifiers

for Experiments 1 and 2, respectively, and include the minimum

classification accuracy required for significance. Mean

classification accuracies for the single-subject and group-based

NF vs. FT classifiers from Experiment 1 were 68.2 ± 8.2% and

57.0 ± 8.9%, respectively. Mean classification accuracies for the

single-subject and group-based BEG vs. END classifiers from

Experiment 2 were 68.9 ± 17.1% and 61.5 ± 11.7%, respectively.
eriment 1; mean ± SD (range).

r run Mean strides per run
(FT)

RPENF RPEFT

425) 390.0 ± 50.2 (315–420) 11.5 ± 0.6 (11–12) 12.8 ± 1.5 (11–14)

390) 375.0 ± 47.4 (315–420) 12.8 ± 0.5 (12–13) 16.5 ± 1.3 (15–18)

450) 422.5 ± 70.0 (320–475) 12.8 ± 2.1 (10–15) 17.8 ± 1.9 (15–19)

430) 377.5 ± 68.4 (275–415) 11.8 ± 1.7 (10–14) 13.5 ± 1.3 (12–15)

420) 278.8 ± 95.1 (190–390) 13.3 ± 1.0 (12–14) 17.5 ± 0.6 (17–18)

475) 343.8 ± 56.5 (270–395) 10.3 ± 1.3 (9–12) 15.3 ± 1.7 (13–17)

600) 350.0 ± 92.5 (270–395) 9.8 ± 0.5 (9–10) 14.3 ± 1.9 (13–17)

495) 386.3 ± 67.5 (300–440) 12.3 ± 1.0 (11–13) 14.5 ± 1.3 (13–16)

545) 368.8 ± 67.3 (275–420) 11.5 ± 1.3 (10–13) 15.3 ± 1.3 (14–17)

350) 327.5 ± 57.8 (250–390) 11.8 ± 0.5 (11–12) 15.8 ± 1.0 (15–17)

705) 372.5 ± 69.3 (310–435) 13.8 ± 0.5 (13–14) 16.0 ± 0.8 (15–17)

75) 417.5 ± 8.7 (405–425) 9.0 ± 1.2 (8–10) 15.8 ± 2.2 (13–18)

430) 383.8 ± 79.8 (305–455) 10.0 ± 0.8 (9–11) 14.5 ± 1.3 (13–16)

755) 430.0 ± 13.5 (410–440) 13.0 ± 0.8 (12–14) 16.0 ± 1.4 (15–18)

435) 403.8 ± 8.5 (395–415) 12.5 ± 0.6 (12–13) 16.5 ± 1.3 (15–18)

530) 338.8 ± 30.7 (310–370) 9.8 ± 1.0 (9–11) 15.3 ± 1.3 (14–17)

372.9 ± 39.0 11.6 ± 0.5 15.4 ± 1.8*
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TABLE 2 Descriptive characteristics of participants and included runs for Experiment 2; mean ± SD (range).

Participant Sex Age (years) Distance of runs analyzed (km) Mean strides per run (BEG) Mean strides per run (END)
17 M 43 25.5 ± 7.5 (16.1–32.5) 194.0 ± 18.9 (170–217) 222.0 ± 33.4 (184–273)

18 M 30 16.9 ± 3.3 (14.2–22.2) 675.2 ± 118.1 (535–820) 723.4 ± 87.8 (623–847)

19 F 43 18.2 ± 2.8 (15.8–22.1) 151.8 ± 17.0 (136–173) 139.6 ± 11.6 (130–158)

20 M 61 57.1 ± 8.4 (42.5–62.9) 355.6 ± 79.6 (263–474) 382.6 ± 260.2 (152–825)

21 M 38 22.4 ± 6.8 (15.7–30.0) 187.2 ± 15.6 (168–202) 207.8 ± 11.9 (191–219)

22 M 46 27.6 ± 11.0 (14.3––43.1) 134.2 ± 5.8 (130–144) 141.4 ± 12.9 (120–152)

23 M 61 14.8 ± 0.5 (14.0–15.3) 237.0 ± 17.7 (220–262) 235.8 ± 46.3 (167–289)

24 M 50 18.0 ± 4.2 (14.5–25.2) 123.2 ± 10.9 (105–130) 133.8 ± 33.2 (113–191)

25 M 24 16.7 ± 3.1 (14.6–22.0) 150.0 ± 12.1 (139–169) 152.0 ± 8.5 (144–166)

Mean 42 ± 12 24.1 ± 13.1 245.4 ± 176.1 259.8 ± 190.6*

BEG, beginning segment; END, end segment.

*Significantly greater than mean strides per run (BEG) (p < 0.05).

FIGURE 3

Accuracies of non-fatigued (NF) vs. fatigued (FT) classifiers for subject-specific and group-based models in Experiment 1. Group-based values reflect
the accuracy of the model when the specific participant was used as the left-out test set. Red lines represent minimum classification accuracy required
for significance (p < 0.05).

Dimmick et al. 10.3389/fspor.2023.1283316
Further details of individual classifier results, including details on

precision and recall, can be found in the Supplementary Tables S3–

S6. Variable importance rankings are presented in Supplementary

Tables S7–S10, and the general trend of the data indicated that

individual participants showed relatively high consistency in variable

importance rankings across classifier iterations (with different train/

test sets), but these did not necessarily align with the variable

importance rankings in the group-based model, or other individuals’

subject-specific models. Alternatively, in the group-based models,

variable importance rankings were generally similar no matter which

participant was used as the test set.
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For example, for every iteration of the BEG vs. END classifiers,

the group-based model ranked cadence and stance time as the most

important features, but Participant 23 ranked ST as the least

important each time in the subject-specific models. Additionally,

in the BEG vs. END subject-specific classifiers, Participant 6

never ranked stance time balance outside of the top 2, whereas

Participant 25 only ranked stance time balance in the bottom

2. In the NF vs. FT classifier, the median of the vertical axis was

selected in the top 5 for 14 out of 16 iterations in the group-

based classifier, but was always ranked in the bottom 10 features

for Participant 16.
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FIGURE 4

Accuracies of beginning (BEG) vs. end (END) classifiers for subject-specific and group-based models in Experiment 2. Group-based values reflect the
accuracy of the model when the specific participant was used as the left-out test set. Red lines represent minimum classification accuracy required for
significance (p < 0.05).
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4. Discussion

The primary finding of this study was that subject-specific

models were more accurate than group-based models in

distinguishing between non-fatigued and fatigued running states.

These results support our hypothesis and align with previous

findings that have demonstrated greater efficacy of subject-specific

models over group-based classifiers for fatigue (27) and other

running conditions (30, 63, 64). In contrast to our hypothesis, the

mean classification accuracies were relatively similar between

Experiments 1 and 2, with high variability between participants

and trials. A secondary finding was that different variable

importance rankings were observed between participants, as well as

different rankings between each participant and the group classifiers.

The accuracy of the subject-specific classifiers here was lower

than a previous study that also used individualized binary

classifiers from an IMU at the CoM (89%) (27). However, that

study used a different type of fatiguing protocol (beep test) and a

continuous signal rather than a discrete or statistical feature set,

so it may not be directly comparable to the current study.

Moreover, the group-based accuracy means (i.e., NF vs. FT =

57.0 ± 8.9%; BEG vs. END = 61.5 ± 11.7%) and ranges (i.e., NF vs.

FT = 35.3–70.1%; BEG vs. END = 44.0–78.8%) were largely

similar to previous similar analyses using CoM-mounted IMUs

to classify between non-fatigued and fatigued states (i.e., 60.9%

(43); 53%–64% (27)).
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Importantly, the classification accuracies of most models were

statistically significant (p < 0.05), although this does not

necessarily indicate that the accuracy was sufficient to be

meaningful to an end user. As discussed previously, different

types of runners may have different standards for accuracy,

sensitivity, and specificity of a system that could be used to

identify fatigue (43). Determining the minimum accuracy for

usefulness may be a topic for future investigations. A system with

high specificity but low sensitivity for identifying fatigue may not

be sufficient for making real-time training decisions based on

fatigue identification given the lack of ability to detect fatigue as

it appears. However, a system with high sensitivity and low

specificity may lead to disuse or overly cautious training

decisions due to over-identification of fatigue states. There are

several possible reasons that higher classification accuracy was

not observed here. First, a single sensor placed at the CoM may

be insufficient to detect global changes in biomechanics due to

fatigue in these protocols. Marotta et al. (43) concluded that

placing sensors on either side of a joint, especially the knee joint

(i.e., thigh and shank), produced the highest classification

accuracies between non-fatigued and fatigued biomechanics.

Therefore, to adequately detect these effects, additional sensor

information may be required. Secondly, previous studies have

hypothesized that if the exercise intensity (and associated

cardiovascular stress) is high enough, participants may terminate

the activity prior to enough neuromuscular fatigue occurring to
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alter biomechanics (65). This could have been a factor in

Experiment 1, especially for the trials at the highest speed,

whereas in Experiment 2, because no information was collected

on participants’ fatigue states, it is possible that the prolonged

runs were an insufficient fatiguing stimulus to adequately alter

biomechanics as detected from a CoM IMU for some

participants (2, 41, 66–69). More data/additional trials may also

be required to adequately quantify an individual’s fatigue

response. Further research employing different sensor

arrangements, number of running trials, and intensity of trials is

therefore necessary.

Differences in fitness/experience level could also be a possible

explanation for the high variability in subject-specific model

accuracies (Supplementary Tables S3, S5). For example, in the

subject-specific NF vs. FT classifier, Participant 13 (VO2max =

58.2 ml/kg/min) had an accuracy of 50.2%, while Participant 10

(VO2max = 49.5 ml/kg/min) had an accuracy of 82.6%. The range

was even wider in the subject-specific BEG vs. END classifier,

with Participant 19 producing only a 36.4% accuracy, while

Participant 22 produced a 94.7% accuracy. These ranges also may

be due to differing individual strategies to manage fatigue,

anthropometric characteristics, training approaches/history, injury

status/history, etc. (41, 66, 67, 70–73), potential differences in

day-to-day placement of commercial devices (74).

Irrespective of these limitations, the results of the current study

emphasize how individual runners show different biomechanical

responses to fatigue as compared to those reported in group-

based models. These individual importance rankings showed

salient differences from the group rankings, supporting the

hypothesis that group-based information is likely insufficient to

capture fatigue effects for most individuals nor to understand the

intricacies of how fatiguing runs may alter biomechanical

patterns. While inter-individual differences for certain variables

have been previously noted, to our knowledge, this is the first to

compare inter-individual differences across multiple variables in

a single model.

More work is required before individualized running fatigue

models could serve as the basis for an intervention protocol.

Williams (13) advocated for identifying individuals’ structural

and functional abilities and determining how these abilities

interact to influence performance and injury outcomes. Relevant

variables to include in the models—as well as possible external

influences on “typical” biomechanics, such as different footwear

(75), listening to music (76), or mood (77)—would first have to

be determined. Subsequently, the causes of these biomechanical

alterations would have to be determined (e.g., weakness,

asymmetries, pain, or other sources). Next, interventions could

be designed to “correct” these issues and prolong non-fatigued

biomechanics later into the run. However, based on the results

presented here, it appears that a precision sports science

approach is required to ultimately determine if fatigue-based

interventions could be successful for injury prevention or

performance enhancement.

There are other limitations in this study that must also be

acknowledged. First, the devices used in Experiment 2 were

commercial wearable devices with parameters derived from
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proprietary algorithms and were limited to the specific

variables measured and calculated by the device. All devices

had been previously lab validated and shown to be highly

reliable, but additional variables important to the task (e.g.,

joint kinematics and kinetics) may have been missed (78).

However, these devices are those that are typically used by

runners to derive information about their training, and the

complementary results between the two experiments emphasize

the general underlying conclusions. Similarly, features selected

from treadmill data were based on previous literature, and by

making an ad hoc selection, relevant information could have

been discarded (79). Second, in Experiment 2, external

circumstances were not controlled and may have changed

running form or influenced biomechanical adjustments in

unknown ways. However, this also increases the real-world

applicability of the analysis given the heterogeneity of

circumstances most runners experience day-to-day. Third,

some participants in Experiment 2 had longer runs than

others, meaning that their END segments were further away

from the BEG segment than others. This method was chosen to

incorporate the segments that were most likely to represent a

fatigued state. However, without knowing participant fitness or

fatigue information, it is not clear which (if either) was the

correct selection to demonstrate fatigue-related alterations in

biomechanics. Fourth, there is a risk of overfitting given the

relatively small sample sizes, particularly in the subject-specific

model, although cross-validation procedures were employed to

reduce this risk (80, 81). Finally, the sample sizes between the

group-based and subject-specific models were not the same,

which could impact the comparability of accuracy results,

although it should not affect the interpretation of variable

importance rankings. Additionally, by including minimum

accuracies for significance (which are based on sample sizes),

better performance comparisons may be made.

In conclusion, this study indicates that fatigue-related

changes in running biomechanics are better described by subject-

specific than group-based models. Additionally, this presents

evidence that runners generally alter their biomechanics in a

manner different from the aggregate, indicating that group-based

models are likely insufficient to explain many individuals’

responses to fatigue and thus unlikely to be the basis for

successful intervention. In the future, adding more IMUs/

additional types of sensors (e.g., heart rate, blood oxygenation)

(78), using different IMU configurations (43), or applying

different classifiers (27, 82) may improve accuracy and

applicability. Researchers and developers will need to find the

right balance of model type, sensor configuration, and

measurement variables to make this type of system both

efficacious and usable to coaches and clinicians.
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