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Introduction: In Paralympic powerlifting competitions, movement execution
symmetry is a technical requirement influenced by individual athlete
characteristics and motor strategies. Identifying the elements associated with
individual motor strategies can offer valuable insight for improving sport
performance. Therefore, this case series study aimed to explore muscle
activation symmetry and its intra- and inter-individual variability to determine
the muscles mostly related to individual motor strategies in elite Paralympic
powerlifters.
Methods: Bilateral electromyographic activation of the anterior deltoid (AD),
pectoralis major (PM), latissimus dorsi (LD), triceps (TRI) and external oblique
(EO) muscles were analysed in five elite Paralympic powerlifters while
performing four sets of one-repetition maximum of Paralympic bench press.
Muscle activation symmetry indexes (SI) were obtained and transformed to
consider individual-independent evaluation. The coefficient of variation (CV),
variance ratio (VR), and mean deviation (MD) were computed to assess inter-
and intra-individual variability in electromyographic waveforms and SI.
Results: Both transformed and non-transformed SI indicated overall symmetric
activation in DA, PM, TRI, and LD. Transformed SI revealed asymmetrical muscle
activation of EO when grouping data (mean bilateral difference: 10%). Athletes
exhibited low intra-individual SI variability in all analysed muscles (CV < 10%) and
low inter-individual variability in DA, PM, LD, and TRI (CV < 10%; VR: 4%–11%;
MD: 29%–43%). In contrast, higher inter-individual variability was observed in EO
(CV: 23%; VR: 23%; MD: 72%–81%).
Conclusion: The highest variability and asymmetry in abdominal muscle activation
among athletes emphasize the importance of personalized training approaches
for targeting these muscles due to their role in individualizing motor strategies.
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1. Introduction

The increasing participation of individuals with disabilities in

sports, driven by societies’ increased awareness of their capabilities

and potential, represents a significant step towards inclusivity and

empowerment. In this context, Paralympic powerlifting has

witnessed a remarkable surge in participation and competitive

accomplishments at the international level, becoming one of the

fastest-growing sports within the Paralympic movement (1, 2).

This positive trend aligns with the increasing scientific research

activity in recent years, which has delved into the biomechanical,

physiological, and psychological aspects of this Paralympic

discipline (3). Despite this, certain aspects that are more tuned to

individual differences among para-athletes, such as impairment

type, remain underrepresented in research (4–7). Research in this

direction is crucial as it provides valuable insights for optimizing

personalised training programs and promoting the long-term

success and well-being of individual athletes.

Paralympic powerlifting revolves around a single exercise,

namely, a maximal bench press lift (one repetition maximum,

1RM) on a flat bench. In competition, a critical technical

requirement is the symmetrical execution of the lift, and not

meeting this criterion can impact the validity of the attempt (8).

Owing to its significance in competition and sport performance,

the assessment of bilateral symmetry in the lift has been

previously examined from multiple perspectives, including barbell

and arm kinematics, as well as muscle activity, in athletes with

and without disability (9–13). The findings of these studies

indicate that Paralympic powerlifters exhibit overall movement

symmetry, but asymmetries tend to be more pronounced at higher

loads (∼90% 1RM). Furthermore, recent research has suggested

that fatigue, even at lower sub-maximal exercise intensity (80%

1RM), can differentially affect the muscle activity between

dominant and non-dominant sides in shoulder muscles (e.g.,

pectoralis muscle), accentuating the likelihood of asymmetry (13).

The presence of asymmetrical muscle strength and activation is

frequently associated with increased injury risk (14) and reduced

athletic performance (15), although research outcomes are not

always consistent (16, 17). Muscle strength and activation

asymmetry can stem from various factors, such as the specific

muscle investigated (18), limb dominance (19), and training habits

(11). In the specific context of Paralympic athletes, additional

contributors to asymmetry could include the impact of disability

on anatomical side differences, such as leg length differences in

amputees, and neuromuscular imbalances resulting from

neurological conditions (20). Research studies on muscle activation

symmetry in Paralympic bench press reported conflicting results,

with both asymmetrical (9) and symmetrical (10, 13) activation of

shoulder and arm muscles being observed. These contrasting

outcomes may be linked not only to the small sample size and the

different computational approaches to symmetry evaluation, but

also to the heterogeneity of impairment types among the included

athletes. Supporting this hypothesis, a previous study comparing

Paralympic powerlifters with and without spinal cord injury found

distinct muscular activation patterns between the two groups,
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suggesting a potential impact of individual disability/impairment

type (6). However, the symmetry of muscle activation pattern was

not investigated, nor was its variability.

The analysis of variability in muscle activation can provide

crucial information about the central organization of motor

strategies and motor skill acquisition (21). For instance, previous

study on elite bench press performance indicated a more

individualized motor strategy among experienced powerlifters

evidenced by an increased inter-individual variability in muscle

coordination (22). However, it’s worth noting that the existing

literature lacks a comprehensive understanding of the potential

indicators of individual motor strategy, particularly in terms of

identifying which muscle can provide the most informative

insights. Distinct individual motor strategies and their potential

association with specific muscle groups can be identified by

leveraging intra- and inter-individual variability analysis, yielding

useful knowledge for optimizing personalised training programs

and understanding/preventing potentially risky situations.

Therefore, in this case series study, we analysed the symmetry of

muscle activation and its inter- and intra-individual variability with

the aim of identifying which muscle group is mostly related to

individual motor strategies (i.e., with low intra-individual variability

but high inter-individual variability) during maximal Paralympic

bench press in elite athletes. We hypothesised that athletes would

demonstrate individual motor strategies characterised by low intra-

individual variability of muscle activation symmetry, whereas we

expect to observe high inter-individual variability in the muscles

that play a crucial role in compensating for individual impairments.
2. Materials and methods

2.1. Study design and setting

This case series study involved testing procedures performed in a

single experimental session at the Italian Army Sports Center (Rome,

Italy) during the first day of a mid-season weekend retreat (from

10:00 a.m. to 20:00 p.m.). Considering the context of testing

within a scheduled seasonal retreat, athletes were instructed to

optimize their physical condition by tailoring their personal habits

and training programs to align with the retreat. Additionally,

consistent environmental conditions of the setting on the testing

day were ensured through air conditioning. The experimental

protocol was approved by the institutional review board of the

University of Rome “Foro Italico” (CAR 116/2022), and all

participants provided written informed consent before testing.
2.2. Participants

The study involved five international-level elite Paralympic

powerlifters (age: 30.0 ± 5.1 years, body mass: 74.1 ± 17.1 kg,

males) (Table 1). To be included in the study, participants

needed to be eligible for Paralympic powerlifting competition

(20) and to achieve the minimum qualification standards for
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TABLE 1 Individual athlete data.

Athlete Age
(years)

Sitting
height
(cm)

Body
mass
(kg)

Disability 1RM
(kg)

#1 32 78 101 Unilateral
transtibial
amputation (left)

192

#2 37 76 71.8 Unilateral
transfemoral
amputation (left)

155

#3 30 64 54.5 Spina bifida 133

#4 23 77 76 Bilateral
transfemoral
amputation

200

#5 28 64 67 Spina bifida 132

RM, repetition maximum.
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World Championships and Paralympic Games (23). The exclusion

criterium for the study was the presence of impairment or injury in

the upper limbs on the day of testing.
2.3. Data measurement

Participants performed a standardized warmup based on the

most recent competition result of 1RM (6 repetitions at 40%

1RM, 3 repetitions at 60% 1RM, 2 repetitions at 75% 1RM, and

1 repetition at 85% 1RM) with three-minute rest pauses between

sets (24). After the warmup, data from four attempts of 1RM

Paralympic bench press were collected with five-minute rest

pauses between attempts to mitigate the impact of fatigue. The

athlete’s recovery was monitored using the Total Quality

Recovery scale before proceeding with the next attempt (25). The

first attempt was based on the athlete’s most recent 1RM

competition result. Experienced technical personnel were present

for assistance in case of failure to minimize the risk of injury.

Body positioning on the Paralympic powerlifting bench (Eleiko,

Halmstad, Sweden) was standardized during each lift and

adhered to official technical regulations, involving the use of leg

straps to secure the lower body to the bench, while no exceptions

were made for lower and upper body positioning or elbow angle

(8). The data analysis considered only lifts that were performed

with the correct lift sequence, in accordance with official

regulations (8). This determination was made on-site and verified

through video recordings by three coaches possessing

international experience. After complete recovery from 1RM

trials (at least 5 min), the athlete performed two maximal

voluntary isometric contraction (MVIC) tests that were used for

normalising the EMG data (26). During these trials, the athlete

was positioned on the bench exerting a maximal pushing force

against the barbell (Eleiko, Halmstad, Sweden) which was

appropriately locked to obtain a 90° angle at the elbow and a

sternum-to-bar distance of approximately 15 cm (6). Each MVIC

test lasted 5 s with a 5-min break between trials (please refer to

Supplementary Figure S1 for the entire experimental protocol).

The barbell trajectory on the frontal plane was estimated

through a high-resolution and high-speed camera (Hero 9,
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GoPro, San Mateo, CA, USA, sampling frequency: 120 Hz). The

action camera was positioned on a tripod at 1-m height from

the floor and 1-m away from the rear of the bench,

perpendicularly to the barbell longitudinal axis, to record the

2D position of two reflective markers. The two markers

(diameter 17 mm) were placed laterally on the barbell endcaps.

The marker’s vertical displacement was obtained using the

open-source software Kinovea (version 0.9.5) (12, 27). To

minimize depth errors in the sampled data, the known length

of the bar in the picture frame immediately before the exercise

execution was used for software calibration. A 600% zoom was

used for the frame-by-frame visual inspection to enhance the

precision of the marker tracking and manual corrections were

made whenever necessary.

The arm and upper body muscle activity was bilaterally

measured by surface EMG (MiniWave, Cometa, Bareggio, Italy,

sampling frequency: 2,000 Hz). Surface electrodes (Ag/AgCl,

20 mm inter-electrode distance) were placed on the anterior

deltoid (AD), sternal portion of pectoralis major (PM), latissimus

dorsi (LD), long head of the triceps (TRI) and external oblique

of the abdomen (EO). To improve recorded signal quality,

SENIAM recommendations were taken as a reference for skin

preparation as well as electrode placement and fixation

procedures (28). The video recordings and EMG sensor systems

were synchronised using the EMG acquisition software

(EMGandMotionTools, version 8.6.2.0, Cometa, Bareggio, Italy).
2.4. Variables

The symmetry of movement execution was analysed on

kinematic and muscle activation variables. The barbell vertical

velocity was derived from the markers vertical displacement after

smoothing the video recorded signal with a 20 Hz second-order

Butterworth filter (12). A previously validated algorithm was used

to identify the timings of the main events of the Paralympic bench

press lift (i.e., initial bar lowering, and lift end at complete elbow

extension) and to segment barbell kinematic and muscle activation

data (29, 30). Briefly, this algorithm exploits the features of the

barbell vertical velocity profile and detects significant changes in

the curve slope which are known to be associated with specific

events of the lift (e.g., initial bar lowering: initial decline of velocity

from zero to negative values). The lift cycle was then normalised

to 100 data points including both eccentric and concentric phases.

EMG raw data was band-pass filtered with a 10–500 Hz

second-order Butterworth filter, full-wave rectified, and smoothed

with a 10 Hz fourth-order Butterworth filter to obtain a linear

envelope. For each muscle, the maximum value between EMG

root mean squares computed over 3 s of maximal muscle

activation in the two MVIC trials was used for normalisation.

The amplitude-normalised signal was then integrated over the

entire lift cycle to compute the following symmetry index (SI):

SI ¼
Ðk
i¼1 EMGright

(
Ð k
i¼1 EMGright þ Ð k

i¼1 EMGleft)
�100
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where k is the number of time intervals of the lift cycle. SI of 50%

indicates perfect symmetry in muscle activation between sides

and values >50% represent a greater contribution of right side

(31). In addition, SI was transformed by subtracting 50% and

then taking the absolute value. The transformed SI ranged

0%–50%, with 0 value indicating perfect symmetry in bilateral

muscle activation. This methodological approach was adopted

to consider differences in dominant and/or impaired side

between individuals and facilitate the comparison of results

among athletes.

Both intra- and inter-individual variability of muscle

activation symmetry were assessed using the coefficient of

variation (CV) of non-transformed SI (32). In addition, for

quantifying inter-individual variability, the variance ratio (VR)

and mean deviation (MD) were also calculated from right and

left EMG curves over the complete lift cycle as in (33). These

two metrics are widely used in the assessment of inter-

individual variability and were added to overcome the

limitation of the CV (32, 33). The CV is influenced by the

mean EMG value (at the denominator in the CV formula),

potentially overestimating variability when muscle activity is

weak or inactive (33). In this regard, the VR and MD are less

influenced by mean EMG values and provide a good measure of

repeatability in waveform shapes (33, 34).
FIGURE 1

Right (red) and left (blue) barbell vertical velocity profiles (top panels) and mus
top row of the panel, the barbell velocity profiles of single valid lifts are repo
pectoralis major (PM), latissimus dorsi (LD), triceps (TRI), and external oblique
(shaded area). Vertical dashed lines represent the individual average timing o
concentric phases. The area under the EMG curves was shaded to emph
asymmetric activations.
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3. Results

Out of the four 1RM attempts made by the athletes, four athletes

achieved three valid lifts, while one athlete successfully completed all

four lifts. For this athlete, only results from the last three valid trials

are presented. Figure 1 shows the bilateral barbell velocity profiles and

EMG curves over the lift cycle per each athlete. Despite individual small

variations, all athletes exhibited progressively increasing activity of AD,

PM, and especially TRI, along the lift execution. Higher muscle

activation bursts were observed during the concentric phase (later

positive barbell vertical velocity in the top panel of Figure 1)

compared to the eccentric phase (initial negative velocity).
3.1. Symmetry of muscle activity

Table 2 shows the non-transformed and transformed SI for

each athlete. In general, individual values indicated good

symmetry (non-transformed SI: 45%–55%, transformed SI: 0%–

5%) in AD, PM, LD, and TRI, with only two exceptions. Athlete

1 displayed a higher contribution from left-side LD and TRI

(non-transformed SI < 45%), which corresponds to the same side

as the unilateral amputation. Athlete 5 showed a similar higher

muscle activity at left side in TRI.
cle activity envelopes normalised over the lift cycle for each athlete. In the
rted. In the following rows, the EMG envelopes of anterior deltoid (AD),
(EO) are reported as individual mean (solid line) and standard deviation

f barbell stop at chest, marking the transition between the eccentric and
asize both overlapping muscle activation between the two sides and
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TABLE 2 Symmetry indexes (mean ± SD) of bilateral muscle activation per each muscle (range 0–100%). Transformed symmetry indexes (range: 0%–50%)
are also provided.

Athlete #1 Athlete #2 Athlete #3 Athlete #4 Athlete #5 Group

SI (%)
DA 48 ± 1 53 ± 1 47 ± 3 45 ± 5 48 ± 1 49 ± 4

PM 55 ± 2 47 ± 1 50 ± 1 49 ± 3 49 ± 1 50 ± 4

LD 42 ± 2* 45 ± 1 51 ± 2 45 ± 3 54 ± 1 47 ± 5

TRI 42 ± 1* 53 ± 5 51 ± 1 51 ± 2 43 ± 3* 48 ± 5

EO 31 ± 3* 63 ± 2* 58 ± 5* 49 ± 3 61 ± 2* 49 ± 12

Transformed SI (%)
DA 2 ± 1 3 ± 1 3 ± 3 5 ± 4 2 ± 1 3 ± 3

PM 5 ± 2 3 ± 1 1 ± 0 3 ± 1 1 ± 1 3 ± 2

LD 8 ± 2* 5 ± 1 1 ± 1 5 ± 3 4 ± 1 4 ± 4

TRI 8 ± 1* 5 ± 3 1 ± 1 1 ± 2 7 ± 3* 4 ± 3

EO 19 ± 3* 13 ± 2* 8 ± 5* 2 ± 2 11 ± 2* 11 ± 6*

SI, symmetry index.

*>5% difference between sides.
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When considering mean group values, non-transformed SI of

each muscle were centred close to perfect symmetry (SI = 50%),

while transformed SI revealed the presence of muscle activation

asymmetry. The highest asymmetry was observed in EO as four

out of five athletes reported transformed SI greater than 5% and

up to 19% (maximal range 0%–50%). When observing the non-

transformed SI values to assess the side of asymmetry, it was

evident that athlete 1 exhibited a more significant contribution

from the left EO muscle. On the other hand, athletes 2, 3, and 5

demonstrated higher muscle activity on their right side.
3.2. Intra- and inter-individual variability

Athletes exhibited consistently low intra-individual variability

in muscle activation symmetry, with the CV of non-transformed

SI below 10% in each observed muscle (Figure 2A). Similar

results were displayed for the inter-individual analysis of DA,

PM, LD, and TRI muscles, where the CV of non-transformed

SI was less than (or equal to) 10%, demonstrating low

variability (Figure 2B). Conversely, the EO muscle displayed

the highest variability among participants, with a CV of 23%

(Figure 2B). Additionally, other measures of inter-individual

variability of EMG curves over the complete lift cycle (VR and

MD) revealed comparable findings, with DA, PM, LD, and TRI

muscles demonstrating relatively consistent variability and the

EO muscle showing the greatest variability among athletes

(Figures 2C,D).
4. Discussion

The aim of this case series study was to identify the individual

motor strategies and the muscle groups primarily linked to

individual differences in elite Paralympic powerlifters through the

analysis of muscle activation symmetry and its variability. The

findings revealed that athletes displayed a consistent low intra-

individual variability in muscle activation symmetry of all the
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observed muscles. Similarly, a low inter-individual variability was

reported in the prime mover muscles involved in the lift,

including deltoid anterior, pectoralis major, and triceps muscles.

On the other hand, the muscles responsible for movement

stabilisation, particularly the abdominal external oblique,

demonstrated the highest variability among the participants.

The visual inspection of muscle activation patterns indicated

that the motor strategy for the deltoid anterior, pectoralis major,

and triceps muscles was similar across the participants. The

anterior deltoid and pectoralis major were symmetrically (SI:

45%–55%) activated throughout the entire lift cycle, with a

greater involvement during the concentric phase. A similar but

more pronounced behaviour was displayed by the triceps muscle,

whose peak of activation was reached at a later stage of the

concentric phase and related to elbow extension. These findings

align with previous research in both athletes with and without

disability performing maximal bench press, confirming an

increasing muscle activation in the deltoid anterior and pectoralis

major muscles over the lift cycle, as well as a prominent

activation of triceps around the sticking region of the concentric

phase (35–37). Noteworthy, as indicated by the symmetry

indexes, two athletes exhibited an asymmetrical activation of the

triceps in the eccentric (athlete #5) and concentric (athlete #1)

phase, respectively. By examining video recordings, we

hypothesized that this phenomenon could be associated with

rotational forces generated by asymmetric force transfer resulting

from variations in lower body positioning and contact with the

bench. Specifically, athlete #5 adopted an asymmetric leg

placement due to motor impairment constraints, and difference

in pressure against the bench between residual and prosthetic

heels likely occurred in athlete #1. These rotational forces

appeared then to transmit through the upper body, involving

segments like the pelvis and upper trunk, ultimately affecting the

arms. Unfortunately, the methodology adopted in this study

lacked the necessary data, such as force/pressure measurements

between the athletes and the bench, to comprehensively explain

this phenomenon. Nevertheless, this perspective introduces a

novel consideration regarding lower body positioning and
frontiersin.org
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FIGURE 2

Variables of intra- and inter-individual variability of EMG signal: (A,B) intra- and inter-individual coefficient of variation (CV) of non-transformed symmetry
index (SI, mean ± standard deviation); (C,D) variance ratio and mean deviation of right (red) and left (blue) EMG envelopes of anterior deltoid (AD),
pectoralis major (PM), latissimus dorsi (LD), triceps (TRI), and external oblique (EO) during the complete lift cycle.
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physical impairment characteristics in the individualization of the

muscle activation strategy in Paralympic bench press.

The symmetrical activation of shoulder and arm muscles, as

indicated by the symmetry indexes, underscores their crucial role

in the symmetrical execution of the bench press movement, a

skill refined by elite athletes to meet competition requirements

(8). Nevertheless, this observation also suggests that a singular

focus on these muscles may not provide substantial insights for

personalized evaluation approaches. On the contrary, the

symmetry indexes revealed a higher degree of asymmetry in

abdominal stabilizing muscles. This indicates that, while

symmetry may be expected at the higher body levels performing

the motor action and in the assessment of barbell kinematics, the

stabilizing action of abdominal muscles may not necessarily

exhibit the same level of symmetry. Nevertheless, when

compared to previous literature, these results confirmed the

reported absence of bilateral differences in shoulder and arm

muscles (10, 13), although being in contrast with the

asymmetries in the activation of pectoralis major and deltoid

anterior muscles reported by Aedo-Munoz et al. (9). In this

regard, it is worth to acknowledge that Aedo-Munoz and

colleagues (9) compared EMG signals between sides without a

normalization procedure, primarily due to experimental

limitations. This approach is recognized for disregarding

physiological and anatomical factors that might influence the
Frontiers in Sports and Active Living 06
amplitude of the EMG signal and its association with muscle

activation (26). Irrespective of the different outcomes, instances

of asymmetrical activation in shoulder and arm muscles were

identified in both our investigation and previous study (9). This

underscores the need for methodologies able to discern

individual attributes in muscle activation symmetry.

Most of the previous studies relied on right/left or dominant/

non-dominant comparison to assess muscle activation symmetry

during the bench press lift (9, 10, 19, 38). However, this

approach may not be the most appropriate when dealing with

athletes with different disabilities, where the right/dominant or

left/non-dominant upper body side may not correspond to the

side affected by the impairment. To address this limitation, we

employed a transformed symmetry index to obtain information

about symmetry independent on the body side. Notably, when

aggregating values across athletes, asymmetries were emphasized

solely within the transformed symmetry index. This methodology

allowed for a more effective variability analysis, aligning with the

International Paralympic Committee’s principle of developing

impairment-independent tools for Paralympic performance

evaluation (39, 40). As a result, we were able to identify low

inter-individual variability of muscle activation symmetry in

most investigated muscles and to highlight those muscles

requiring further attention. As wearable EMG technologies

continue to advance and become more feasible for in-field use
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(41–43), future studies are suggested to implement this

methodological approach and evaluate its effectiveness in

accounting for the potential impact of individual impairments on

sport performance.

The analysis of variability measures revealed a consistent low

intra-individual variability of muscle activation symmetry among

all athletes and muscles. This outcome is likely related to the elite

level of the participants, as higher levels of training experience are

associated with more individualised and less variable motor

strategies (22). When assessing inter-individual variability of both

muscle activation symmetry (CV of non-transformed SI) and

bilateral EMG curves (VR and MD), the shoulder and arm muscles

were the less variable between athletes. This underscores the high

degree of specialization among elite athletes who have refined a

consistent symmetrical muscle activation pattern for the muscles

primarily engaged in the bench press action (13). On the other

hand, the abdominal external oblique muscle displayed a high

inter-individual variability, indicating its potential association with

individual motor strategy. Previous EMG studies on Paralympic

bench press have primarily focused on the examination of shoulder

and arm muscles, while the stabilising role of abdominal muscles

has been inadequately explored (7, 35, 44, 45). This study

accentuates the significance of understanding the activation

strategies of these stabilizing muscles, especially given that

prominent impairment types in Paralympic powerlifting pertain to

lower limbs and necessitate robust trunk and abdominal motor

control for stability. Furthermore, this is particularly significant as

Paralympic athletes perform bench press while lying with their

entire body on a flat bench without placing their legs to the

ground for force transfer (8, 11). Therefore, addressing this gap in

research is paramount to not only for improving performance and

ensuring the safety of Paralympic powerlifters, but also to provide

further insights on the relationship between impairment type and

sport performance.

While this study offers insights into specific aspects of muscle

activation symmetry among elite Paralympic powerlifters, the

study’s case series design inherently imposes limitations on the

generalizability of the findings to a broader population. The

constrained sample size, coupled with the diverse impairments

and individual characteristics among the recruited athletes, may

have amplified the heterogeneity within the sample. Consequently,

this increased heterogeneity makes it challenging to conclusively

extrapolate the results to a more diverse and extensive athlete

population. Nonetheless, we observed a consistent low level of

inter-individual variability in muscle activation symmetry across

most investigated muscles, providing initial indicators and

methodological suggestions. With a larger sample size, a more

comprehensive statistical analysis could be conducted, potentially

revealing nuanced patterns of muscle activation and asymmetry

that are specific to various impairment types.

In conclusion, the main results of this study indicate that

symmetrical and less variable muscle activity can be expected in

arm and shoulder muscles but not in abdominal muscles in

Paralympic powerlifting. Although being limited to a small

sample size due to the study design, these findings emphasize the

importance of addressing asymmetries to optimize training
Frontiers in Sports and Active Living 07
strategies and enhance overall performance in this sport.

Abdominal muscles have been indicated as pivotal components

in individual motor strategies for elite Paralympic powerlifters,

revealing substantial variability and asymmetry. Understanding

and targeting these muscle groups through tailored training

protocols can be crucial for optimizing performance through the

development of personalized training regimens for athletes in

this discipline. By further exploring the underlying mechanisms

of asymmetry and inter-individual variability, researchers and

coaches can develop targeted interventions tailored to individual

motor strategy for the support of the Paralympic athlete.
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